

Visual Objects
For

Windows 2000® and Windows XP®

IDE User Guide

Version 2.7

Contents iii

Contents

Chapter 1: Introduction
What You Need to Know ... 14
General Typographic Conventions .. 15
Getting Help .. 16

Chapter 2: Working in the Desktop
Desktop Basics .. 17

Arranging and Manipulating Windows .. 18
The Toolbars .. 19
The Status Bars .. 19
Saving, Building, and Executing... 19

The IDE Tools ... 21
Repository Explorer .. 22
Editors.. 23
Command Line .. 28
UDC Tester ... 29
Debugger ... 31
Reindexing the Repository .. 31
Automation Server... 32

Setting System-Wide Options ... 34
Selecting Fonts .. 34
Setting Editor Options.. 35
Selecting Source Code Editor Colors ... 36
Setting Compiler Options... 38
Setting System Options ... 42
Saving the Current Desktop... 44

iv CA-Visual Objects IDE User Guide

Chapter 3: Using the Repository Explorer
The Repository Explorer .. 45

Repository Explorer Graphics ... 47
The Toolbar.. 48

Navigating Basics .. 49
Browsing Projects, Applications, and Modules .. 51

Expanding the Initial Tree... 51
Collapsing the Tree ... 54

Browsing Entities .. 54
Viewing Entities at the Module Level .. 55
Viewing Entities at the Application Level ... 57

Browsing Classes .. 59
Expanding the Display.. 60
Collapsing the Tree ... 62
Showing Additional Classes ... 63
Viewing Inherited Properties and Classes... 64

Customizing the Repository Explorer .. 64
Icons .. 65
List and Details Toolbar Buttons ... 66
Setting View Options ... 67

Managing Projects ... 71
Creating a Project .. 72
Deleting Projects ... 73
Adding a Project ... 74
Renaming a Project ... 75

Creating a New Application .. 76
Using the Wizard .. 76
Modifying Your Application’s Properties ... 88
Creating Libraries and DLLs .. 96
Manipulating Applications .. 98
Importing and Exporting Applications and Libraries ... 100

Creating Modules ... 100
Creating an Internal Module ... 100
Creating an External Module ... 101
Setting Module Properties.. 104
Editing Modules .. 107
Manipulating Modules .. 108
Importing and Exporting Modules .. 111

Creating Entities .. 112
Editing Entities ... 112
Setting Entity Properties ... 113

Contents v

Printing in the Repository Explorer... 115
Printing the CA-Visual Objects 2.7 Tree ... 115
Printing Lists ... 115

Chapter 4: Using the Window Editor
Window Types ... 118
Workspace Overview ... 121

Window Forms ... 121
The Tool Palette .. 122
The Toolbar .. 122
The Properties Window ... 123

Creating a Window ... 125
Specifying Window Properties ... 128
Generating Code.. 143

Control Types .. 143
Placing Controls on a Form .. 144

Using the Tool Palette ... 144
Using the Select from Palette Menu Commands.. 145
Using the Grid.. 146

Specifying Control Properties and Style Settings ... 147
Common Properties... 148
Check Box Properties and Style Settings... 155
List Box Properties and Style Settings ... 159
Combo Box Properties and Style Settings.. 162
Push Button Properties and Style Settings ... 165
Radio Button Properties and Style Settings .. 168
Radio Button Group Properties and Style Settings.. 170
Single-Line Edit Properties and Style Settings.. 172
Multi-Line Edit Properties and Style Settings .. 175
Group Box Properties and Style Settings .. 178
Fixed Icon Properties and Style Settings ... 179
Fixed Text Properties and Style Settings ... 179
Fixed Bitmap Properties and Style Settings .. 181
Horizontal Scroll Bar Properties and Style Settings ... 182
Vertical Scroll Bar Properties and Style Settings .. 184
Sub-Data Window Properties and Style Settings ... 185
Column Properties Window and Styles Settings ... 188
List View Properties and Style Settings.. 190
Tree View Properties and Style Settings ... 194
Rich Edit Control Properties and Style Settings .. 196
Animation Control Properties and Style Settings ... 199

vi CA-Visual Objects IDE User Guide

Hotkey Edit Control Properties and Style Settings .. 200
Progress Bar Properties and Style Settings ... 201
Horizontal Slider Properties and Style Settings ... 202
Vertical Slider Properties and Style Settings .. 205
Horizontal Spinner Properties and Style Settings ... 207
Vertical Spinner Properties and Style Settings .. 209
Tab Control Properties and Style Settings .. 212
OLE Object Control Properties and Style Settings ... 215

Defining Arrays for List and Combo Boxes .. 218
Push Button Controls and Actions .. 219
Manipulating Tab Control Pages ... 220
Linking and Embedding OLE Objects and Controls .. 224

Basic Terms ... 224
Inserting an OLE Object.. 226
Inserting an OLE Control .. 229

Modifying a Window.. 234
Editing Window Properties .. 235
Editing Controls .. 236
Changing Tab Order by Reordering Controls .. 240

Printing Windows .. 243
Using the Window in an Application ... 243

Chapter 5: Using the Menu Editor
Menu Terms .. 246
Workspace Overview.. 247
Defining a Menu .. 249

Creating a Menu .. 250
Adding Predefined Menus ... 265
Modifying a Menu .. 266

Printing Menu .. 268
Using the Menu in an Application .. 268

Chapter 6: Using the Source Code Editor
Workspace Overview.. 269
Accessing the Source Code Editor .. 273

Creating New Entities ... 273
Loading Single Entities .. 276
Loading All Entities ... 277
Importing a File ... 278

Contents vii

Editing and Saving.. 278
Editing Source Code .. 279

Deleting Lines of Code .. 280
Inserting a New Line .. 280
Going Directly to an Entity .. 280
Viewing Prototypes ... 281
Filling in Prototypes .. 282
Finding Matching Tokens ... 283
Presetting Breakpoints .. 283

Printing Source Code ... 284

Chapter 7: Defining Data Servers and Field Specifications
What Is a Data Server? .. 286
What Is a Field Specification? .. 287
What Is a Hyperlabel? .. 288
The Data Server Editors ... 288
Using the DB Server Editor .. 289

The DB Server Editor.. 289
Defining a Data Server in the DB Server Editor .. 292
Generating Code.. 313
Modifying a Data Server... 314
Importing Database and Index Files .. 320
Exporting Database and Index Files .. 322

Using the SQL Editor ... 323
The SQL Editor ... 324
Defining an SQL Server ... 325
Generating Code.. 329
Modifying an SQL Server .. 329

Using the FieldSpec Editor .. 331
The FieldSpec Editor .. 332
Defining a Field Specification .. 333
Generating Code.. 334
Editing Field Specifications .. 334

Printing ... 337

Chapter 8: Creating Data-Aware Windows
Creating a Data-Aware Window ... 340

Associating Data Servers .. 342
Using Auto Layout ... 342

viii CA-Visual Objects IDE User Guide

Customizing a Data-Aware Window .. 348
Browse and Form View .. 349

Working in Browse View .. 350
Form View ... 353

Sub-Data Windows ... 353
Creating a Sub-Data Window Using Auto Layout .. 353
Manually Creating a Sub-Data Window ... 354
Modifying a Sub-Data Window ... 362

Chapter 9: Using the Report Editor
Report Styles and Definitions .. 364
Workspace Overview.. 366

The Toolbar... 367
The Rulers .. 368

Creating a Report ... 368
Creating a New Report .. 368
Opening a Report ... 373
Generating Code .. 374

Viewing Report Data .. 374
Customizing Report Definitions .. 377

Tabular Reports ... 377
Form Reports ... 379
Label Reports ... 380
Form Letter Reports[.. 382
Free Style Reports ... 383
Cross Tabular Reports ... 383

Setting Report Properties .. 386
Working with Queries in Reports ... 387

Associating Multiple Queries with a Report Definition .. 387
Changing the Default Query Name ... 390
Editing a Query ... 391
Exporting a Report Query .. 393

Designing Reports .. 393
Working with Sections .. 394

Report Section Types .. 395
Adding a Section to a Report ... 397
Working with Group Headers and Footers... 398
Adding Report Details to Sections .. 401
Formatting Sections ... 402
Deleting a Section ... 405

Working with Tables .. 406

Contents ix

Defining Table Styles.. 406
Deleting a Table Style ... 408
Using Columns in Tables .. 409
Working with Rows... 413
Selecting a Table Cell for Editing ... 416

Formatting a Report’s Appearance ... 417
Aligning Paragraph Text .. 418
Formatting Text Displays .. 419
Adding Borders to Paragraphs ... 420
Changing Font, Font Size, Style, and Color .. 420
Creating a Report Title Page ... 421
Controlling Page Breaks ... 422

Using Conditions to Determine Report Data .. 425
Using a Subreport in a Conditional Paragraph ... 426

Determining Page Layout ... 427
Setting Page Size, Orientation, and Margins ... 427
Snaking Columns on a Page ... 428
Using Horizontal Pagination ... 429

Adding Graphics ... 430
Drawing Lines.. 431
Drawing Rectangles... 432
Inserting Graphic Images in a Report ... 434
Working with Overlapping Graphics ... 439

Using Report Fields... 440
Types of Fields ... 440
Data Types ... 441

Viewing and Editing Field Definitions .. 442
Inserting, Moving, and Deleting Fields ... 444

Inserting a Field in a Report Definition.. 444
Moving a Field ... 445
Deleting a Field... 445

Defining Computed Fields .. 448
Defining a Simple Computed Field ... 449
Using Functions to Define a Computed Field .. 450
Defining a Computed Field Using a Function .. 452
Defining a Sum Field with the Sum Button .. 454

Using Parameter Fields ... 455
Formatting Fields... 455

Applying Formatting to a Field .. 456
Editing the Format of a Field ... 457
Formatting Numbers .. 457
Formatting Dates ... 459

x CA-Visual Objects IDE User Guide

Saving Reports.. 459
Printing a Report.. 460

Previewing a Report as It Prints .. 460
Adding Print Status Messages .. 461

Using the Report in an Application ... 464
Exporting a Report to a File .. 465

Chapter 10: Using the Image Editor
Starting the Image Editor .. 467
Workspace Overview.. 468

Image Editor Components ... 469
Customizing the Image Editor.. 471
Loading Images... 472
Using the Color Indicator .. 474

Solid Colors .. 474
Transparent Colors .. 475

Using Drag-and-Drop ... 476
Using the Edit Area ... 477

Setting Colors ... 477
Using the Tool Palette ... 478
Clearing the Edit Area ... 483

Creating a Ribbon ... 484
Saving Images .. 486
Using Images in Applications .. 487

Chapter 11: Debugging Your Applications
A Sample Debugging Application .. 491
Resolving Compiler Errors ... 492

Building the Application ... 493
Using the Error Browser ... 493
Correcting the Errors .. 494

Setting Debugging Options .. 497
Resolving Runtime Errors.. 499

Using the Online Help Reference to Isolate an Error .. 500
Correcting an Error Using the Source Code Editor .. 501
The Error Dialog Box .. 501
Correcting Errors Using the Debugger... 502
The Debugger Workspace .. 504
Execution Commands ... 506

Contents xi

Analyzing the Problem .. 507
More Debugging.. 511
Correcting the Final Error ... 518
Viewing Local and Private Variables.. 519
Modifying Local and Private Variables.. 520
Viewing Global and Public Variables ... 520
Using Watch Expressions .. 521
Viewing the Call Stack .. 523
Viewing Sets ... 524
Other Debugging Techniques .. 525

Chapter 12: Importing and Exporting Applications
Exporting Applications and Modules ... 527

Exporting Applications .. 528
Exporting a Module ... 529

Exporting Source Files .. 530
Importing Applications and Modules... 531

Import Options ... 531
Importing an Application.. 533
Importing a Module... 535

Importing Source Files .. 536
Exchanging Projects .. 538

Appendix A: File Types

Appendix B: CA-Visual Objects Registry Entries
The Multi-Tiered Registry ... 541
Adam Options Key ... 542
Compiler Key .. 542
DBServerEditor Key .. 543
Directories Key ... 544
EnvironmentOpt Key ... 545
Tools Key .. 546
Window Key ... 546
Dynamic Memory .. 546

xii CA-Visual Objects IDE User Guide

Appendix C: Using the Install Maker
Program Components ... 548
Floppy Disk Utilization .. 554
Project Files .. 554
Producing Install Disks .. 555

Appendix D: Using the CA-Uninstall Utility
Starting CA-Uninstall ... 557
Uninstalling CA-Visual Objects... 558

Chapter 1: Introduction 13

Chapter

1 Introduction

This guide explains how to use the various features of the CA-Visual Objects 2.7
integrated development environment (IDE). It is organized into the following
chapters:

Chapter 1: Introduction, details the conventions and symbols used in presenting
the information in this guide. Because they are vital to your understanding of
this guide, it is highly recommended that you take the time to familiarize
yourself with them.

Chapter 2: Working in the Desktop, presents the IDE and its various
components, explains how to customize and save the current desktop, and
describes how to set default system options.

Chapter 3: Using the Repository Explorer, explains how to use the Repository
Explorer to create, view, and modify your projects, applications, modules, and
entities, as well as view their class hierarchy.

Chapter 4: Using the Window Editor, explains how to create various types of
application windows and define their GUI and common controls.

Chapter 5: Using the Menu Editor, describes how to create custom menus and
toolbars, as well as standard, predefined ones, and how to add them to your
applications.

Chapter 6: Using the Source Code Editor, demonstrates how to enter and edit
source code in CA-Visual Objects.

Chapter 7: Defining Data Servers and Field Specifications, describes how to
create and maintain data servers and all ancillary information like index files,
field lists, and so on for the data server objects in your applications, using the
following editors: DB Server, SQL, and FieldSpec.

Chapter 8: Creating Data-Aware Windows, explains how to create data, data
dialog, and sub-data windows that utilize your data servers and field specs.

Chapter 9: Using the Report Editor, provides instructions for creating
sophisticated reports using CA-Visual Objects Report Editor.

What You Need to Know

14 CA-Visual Objects IDE User Guide

Chapter 10: Using the Image Editor, describes how to create and modify images,
such as icons, cursors, and ribbons, for your applications.

Chapter 11: Debugging Your Applications, demonstrates how to set various
debugging options, and to test and debug your applications at any level using
advanced debugging tools.

Chapter 12: Importing and Exporting Applications, explains how to import and
export common types of files, including text-based source files.

Appendix A: File Types, lists the different types of files generated or used by
CA-Visual Objects.

Appendix B: CA-Visual Objects Registry Entries, explains key entries in the
system registry.

Appendix C: Using the Install Maker, describes how to use the CA-Visual
Objects Install Maker to generate installation disks for a selected application.

Appendix D: Using the CA-Uninstall Utility, explains how to use the
CA-Uninstall utility to remove CA-Visual Objects from your PC.

Index

What You Need to Know
In addition to an understanding of basic programming concepts, this guide
assumes that you are familiar with Microsoft Windows terminology and
navigational techniques, including how to work with standard Windows items
like menus, dialog boxes, the Clipboard, and the Control Panel. If you are
unfamiliar with Windows, please refer to your Windows documentation before
using CA-Visual Objects.

Note: In general, when this guide indicates a procedure using toolbar buttons
or mouse actions, it takes for granted that you know the alternative procedure,
using only the keyboard. For example, you will be directed in most cases to
“click the Find toolbar button,” rather than “select the Edit Find command,
press Alt+F3, or press Alt+E, F.”

This guide also assumes that you have read the Getting Started guide and are,
therefore, familiar with its various features, and that you have worked through
its “hands-on” tutorial.

General Typographic Conventions

Chapter 1: Introduction 15

General Typographic Conventions
This guide also employs several typographic conventions (such as capitalization

or italic formatting) to distinguish between language elements and discussion of
them.

Key Names The names of keys, such as Enter, Ctrl, and Del, appear in the document as they
do on your keyboard, where possible.

Note that when referring to the four arrow keys as a group, they are referred to
as Direction keys; however, the name of each Direction key (for example, Up
arrow or Left arrow) is used when referring to them individually.

Key Combinations Whenever two keys are joined together with a plus (+) sign (for example,
Ctrl+R), you should hold down the first key while pressing the second key to
complete the command. Release the second key first.

Key Sequences When keys are separated by a comma (,), press them in the sequence indicated.
The keystroke sequence Alt+E, C, for example, indicates that you should hold the
Alt key down while pressing the E key, release them both, and then press and
release the C key.

User Input Examples The following conventions are used for user input:

■ Literal information (text that the user must enter exactly as shown) is shown
in bold:

Insert the diskette into drive A and type a:\install.

■ Placeholder text (variable information a user must enter) is denoted by a
bold and italic typeface:

Enter login username.

UPPERCASE The following appear in uppercase:

■ Commands (like CLEAR MEMORY)

■ Keywords (for example, AS, WORD, and INT)

■ Reserved words (for example, NIL, TRUE, and FALSE)

■ Constants (for example, NULL_STRING and MAX_ALLOC)

Mixed Case / Initial
Capitalization

The following are displayed using mixed case:

■ Function, method, and procedure names (like SetDoubleClickTime() and
Abs())

■ Class names (for example, TopAppWindow and DBServer)

Getting Help

16 CA-Visual Objects IDE User Guide

■ Variable names (for example, oTopAppWindow and nLoopCounter)

Italic Variable names are displayed in italic in syntax (for example, Abs(<nValue>))
and when referring to them in the discussion text.

Cross References The following conventions are used:

■ Guide name in italic:

See the IDE User Guide.

■ Part name in single quotes:

See ‘Database Programming’ in the Programmer’s Guide.

■ Chapter name in double quotes:

See “Using the Source Code Editor” in the IDE User Guide.

■ Section name as it appears in the document:

Also see the Setting the Search Path section.

Getting Help
CA-Visual Objects provides online help, which can be used to display
information on your PC as you work. You can use any of the following Help
menu commands:

Menu Command Description

Index Displays an index of available help topics about the
CA-Visual Objects language and IDE.

Context Help Allows you to get context-sensitive help for an item
or area currently displayed on your screen.

How to Use Help Describes how to use the Windows online Help
system.

In the IDE you can also receive context-sensitive help for a menu or menu
command by pressing either the F1 key or the Shift+F1 key combination. Press
Shift+F1 to receive context-sensitive help for most dialog boxes and windows.

Additionally, when the Source Code Editor is open, you can receive
context-sensitive help for the keywords, commands, classes, and functions in a
selected module or entity. Simply highlight the keyword, command, class, or
function and press the Shift+F1 key combination.

Chapter 2: Working in the Desktop 17

Chapter

2 Working in the Desktop

This chapter introduces you to the CA-Visual Objects IDE and its various
components, explains how to customize and save the current desktop, and
describes how to set default system options.

Note: For an overview of all the innovative changes to the IDE in CA-Visual
Objects, version 2.7, see either Getting Started Guide. Also, for
assistance with specific topics, refer to CA-Visual Objects 2.7 Help—the online
help system.

Desktop Basics
The IDE is a flexible, intuitive, and powerful environment for creating
applications, libraries, and dynamic link libraries (DLLs). Almost all features of
the IDE—the Repository Explorer, the visual editors, the Source Code Editor, the
background compiler, the Debugger, and the Error Browser—are available at the
touch of a button from almost any window. For example, you can:

■ Open and work with multiple applications

■ Double-click on any entity—function, class, menu, form, report, data server,
field spec, etc.—to launch the editor associated with that entity

■ Modify a single entity and click the Build button to rebuild the necessary
parts of the application based on that change

■ Start up two editor sessions and copy and paste information from one to the
other

■ Execute a compiled application or generate an executable file

Desktop Basics

18 CA-Visual Objects IDE User Guide

Arranging and Manipulating Windows

The CA-Visual Objects desktop permits you to open and simultaneously work
with multiple windows and editors. You can even have multiple copies of the
Repository Explorer open, as shown below!

(Three different views of the Default Project in CA-Visual Objects are shown
here, with the project’s subitems grouped by module, class, and type,
respectively, in each of the right panes. See Browsing Projects, Applications, and
Modules for more information about viewing items in the Repository Explorer’s
tree structure.)

You can switch between open windows by clicking them with the mouse or
choosing them from the list displayed on the Window menu. You can also use
the commands on the Window menu to reformat the current window display
(for example, to tile or cascade all open windows).

In addition, almost all windows can be resized, repositioned, and
minimized/maximized using standard Windows techniques.

Desktop Basics

Chapter 2: Working in the Desktop 19

The Toolbars

Almost every window and editor contains a customized toolbar that provides
buttons as shortcuts for commonly used menu commands. Most toolbars have
the same set of common buttons on the left, and buttons specific to the particular
editor or browser on the right.

For example, the toolbar in the Repository Explorer contains buttons for creating
a new application, importing an existing application, and setting default
application options. Other toolbar buttons allow you to group items in the
Repository Explorer tree by module, type, or class. The buttons in the Menu
Editor toolbar, on the other hand, allow you to add predefined menus
automatically; cut, copy, paste, and insert menu items; promote and demote
items in a menu’s hierarchy, and so on.

Tip: If you want to know what a toolbar button does, simply point to it—a
tooltip window with descriptive text pops up right next to it.

The Status Bars

In addition, the status bar of almost every window and editor displays helpful,
informative text about various system features, giving you a quick summary or
reminder about their contents or the actions that they perform.

For example, move the mouse over the entities displayed in the Repository
Explorer to view the first line of each entity in the status bar; or highlight a menu
command to display a description of what it does in the status bar.

Saving, Building, and Executing

Note: CA-Visual Objects now provides version control for managing
applications with its new Source Code Control Interface. See the online help for
detailed information about this new feature.

At almost any time and location, you can save, build, and/or test the current
application, because in almost every browser and editor, toolbar buttons and
menu commands are provided for saving, building, and executing.

Saving Your Work

When you create a new entity, you should store it in the repository and then save
any additional edits on a frequent basis.

Desktop Basics

20 CA-Visual Objects IDE User Guide

To initially save a new entity in the repository, click the Save toolbar button in
any editor.

To save any subsequent changes, just click the Save toolbar button again.

Building an Application

Note: See the online help for detailed information about the new Rebuild All
menu command.

You can build an application at any time by clicking the Build button on the
toolbar. A compilation message box will appear, allowing you to abort the
compilation process if you want. For example:

Compilationmessagebox

Note: Because CA-Visual Objects 2.7 has a background compiler and linker, you
can continue working in another module or entity while building the application.
However, you cannot save your current work until the build is complete, as
indicated by the disappearance of the modeless compilation message box and the
“Build done.” status bar message.

Based on date and time stamps and the system-maintained dependency list,
CA-Visual Objects rebuilds only those parts of the current application that have
been changed, or are affected by changes, since the application’s last build and
then does any necessary recompilation, rebinding, and relinking.

Tip: You can update the date/time stamp for each entity and force the
compiler to rebuild all of the entities in an application, thereby overriding
the control of the system-maintained dependency list. To do so, use either
the Touch All Entities command on the Edit menu or the Touch command
on the local pop-up menu when you right-click on an entity. See the online
help for details about Touch All Entities.

The manner in which an individual application is built can be controlled using
application-specific compiler options or project-wide, default compiler options.
See Setting Compiler Options later in this chapter for details.

The IDE Tools

Chapter 2: Working in the Desktop 21

Executing an Application

After building an application, the easiest way to execute it is to select the Execute
toolbar button when the desired application is selected.

You can also execute an application by choosing the Command Line command
from the Tools menu. See the Command Line section later in this chapter for
details.

The third option is to create an executable file that can be run independently of
the IDE. This is discussed in detail next in Generating an EXE.

Generating an EXE

CA-Visual Objects allows you to generate quickly and easily a stand-alone
executable file (.EXE) for an application. This .EXE can then be run
independently of the IDE. Simply choose the Make EXE toolbar button or the
Application Make EXE menu command when the desired application is selected.

When creating an .EXE file, CA-Visual Objects also creates a folder and icon for
the Windows Start menu—you can use system-supplied defaults for these or
customize them for each application. (See Creating a New Application in
“Using the Repository Explorer” for details.)

If the selected application is a DLL, this toolbar button corresponds to the
Application Make DLL command, generating a .DLL and an .AEF file with the
same name. The .AEF file defines the public protocol, or interface, for the DLL.

The IDE Tools
CA-Visual Objects provides a host of tools for its integrated development
environment. There are browsers, which let you organize and view the layout of
your applications, and editors, which allow you to create windows, menus,
source code, data servers, reports, and icons. Other tools include a compiler,
debugger, UDC tester, and command-line utility.

In the IDE, all development tools are closely integrated with the repository. For
example, double-clicking on an entity in a browser invokes the appropriate
editor for that entity: the Window Editor or Menu Editor for form or binary
menu entities, respectively; the Report Editor for report entities; and the Source
Code Editor for code (functions, classes, methods, and so on).

The IDE Tools

22 CA-Visual Objects IDE User Guide

Repository Explorer

The Repository Explorer allows you to view and manipulate the code that is
currently stored in your repository in a convenient and organized way. In
CA-Visual Objects, you can browse:

■ Projects

■ Applications, libraries, and DLLs

■ Modules

■ Entities

■ Classes

■ Errors

Tip: You can customize the Repository Explorer by specifying what
particular items and subsets of information are displayed in its
collapsible/expandable tree structure. See Customizing the Repository
Explorer in the “Using the Repository Explorer” chapter for detailed
information.

Browsing Projects, Applications, and Modules

Projects represent the highest level in the CA-Visual Objects hierarchy: projects
consist of applications, applications consist of modules, which in turn consist of
entities. The Repository Explorer follows this top-down hierarchy.

Group By Module When you start CA-Visual Objects, the Repository Explorer is automatically
loaded, displaying all of the various projects, applications, libraries, DLLs, and
modules that currently exist.

Note: This default view is referred to as module view and is indicated by the
depressed Group By Module toolbar button.

Double-clicking on a project displays the applications, libraries, or DLLs defined
for it, while double-clicking on an application displays the modules defined for
it. Similarly, double-clicking on a module displays the entities defined for that
module.

The IDE Tools

Chapter 2: Working in the Desktop 23

Browsing Entities

Group By Type You can browse all of the entities in the current application by clicking on the
Group By Type toolbar button. This view of the Repository Explorer displays
entities in a similar collapsible/expandable tree structure and allows you to set a
name filter.

Browsing Classes

Group By Class At any time you can also view a comprehensive list of the methods and
properties associated with an application’s classes by clicking on the Group By
Class toolbar button.

Tip: To return to the Repository Explorer’s default view, simply click the
Group By Module toolbar button.

Browsing Errors

At any time during the development cycle, you can access the Error Browser to
view a comprehensive list of all of the compilation errors and warnings within an
application.

The Error Browser displays those entities with errors in a tree structure that is
collapsible/expandable like that of the Repository Explorer. If you double-click
on an entity, you are brought directly to the line in the source code where the
error or warning lies.

See Chapter 11: Debugging Your Applications for details about the Error
Browser.

Editors

The various editors allow you to create windows, menus, source code, data
servers, reports, and images easily, conveniently, and efficiently.

The IDE Tools

24 CA-Visual Objects IDE User Guide

Accessing the Editors

The editors can be accessed either by creating a new entity or opening an existing
one.

Creating an Entity The most logical place to create a new entity is from within a module—simply
click on the New Entity toolbar button. Then select the appropriate editor for the
type of entity you want to create from the local pop-up menu that appears:

The selected editor is launched, allowing you to define and save the new entity.

Tip: The local pop-up menu shown above appears whenever the New Entity
button is selected from any visual editor’s toolbar.

You also can create a new entity by accessing an editor from the Tools menu:

Tip: All new entities are created as part of the current module. If you want
the entity to be part of a new module, you must create the module before
creating the entity.

The IDE Tools

Chapter 2: Working in the Desktop 25

Opening an Entity Opening an entity simply means to display the entity in its associated editor. To
open an existing entity, simply double-click on it, or highlight it and press Enter:

Double-clickhere...

For example, double-clicking the EmptyShellMenu source entity invokes the
Source Code Editor:

The IDE Tools

26 CA-Visual Objects IDE User Guide

Double-clicking the EmptyShellMenu binary menu entity, on the other hand,
invokes the Menu Editor:

You can work with multiple entities within the same module at the same time.
For example, if you had two binary menu entities, two form entities, and two
source entities open simultaneously, the IDE desktop would have two separate
Menu Editors and two separate Window Editors open but only a single Source
Code Editor, as both source code entities would appear in the same Source Code
Editor window.

See Creating Entities in “Using the Repository Explorer” for more detailed
information about entity types and creating new entities.

Creating and Editing Source Code

You can create source code entities at any time in CA-Visual Objects in several
different ways. First, you can access the Source Code Editor directly and
manually type in code.

Secondly and most importantly, when you define entities using the visual
editors, CA-Visual Objects generates straightforward source code utilizing the
supporting class libraries. For example, creating a report in CA-Report Writer,
part of CA-Visual Objects Report Editor, will generate a subclass of the
ReportQueue class. This code can then be edited from within the Source Code
Editor.

Lastly, you can import text-based source files, while within the Source Code
Editor.

The IDE Tools

Chapter 2: Working in the Desktop 27

The Source Code Editor in all cases displays various information in the source
code, such as keywords, literals, and comments, in different colors of your choice
for your convenience while editing.

Refer to Chapter 6: Using the Source Code Editor for details about editing your
applications’ source code.

The Visual Editors

Many of the editors are visual, that is, you can lay out various GUI controls—like
push buttons, check boxes, and scroll bars—on a window, design a report, and
create a custom menu using point-and-click, drag-and-drop techniques. Visual
feedback is immediate when designing objects in the Menu Editor, Window
Editor, and Report Editor.

See the following chapters for more information about these editors: Chapter 5:
Using the Menu Editor, Chapter 4: Using the Window Editor, Chapter 8:
Creating Data-Aware Windows, and Chapter 9: Using the Report Editor.

The Data Server Editors

CA-Visual Objects provides a set of data server editors: the DB Server and SQL
Editors.

DB Server and
SQL Editors

The DB Server Editor allows you to create data servers based on the traditional
Xbase model of a .DBF file, whereas data servers created with the SQL Editor
are based on the SQL paradigm. Data servers are high-level objects used to
provide an object-oriented interface for a database whose structure is known at
compile-time. Information about the database, such as its file name and sort
order, is stored in the data server along with detailed field information stored in
the form of FieldSpec objects. You can create automatic layouts for data servers
in the Window Editor that you can easily modify.

Note: With both editors, you can import an existing database structure and
generate a default set of field specifications that you can optionally modify. In
addition, the DB Server Editor allows you to design a data server “from scratch”
and generate a database file (and index files) from the data server definition.

The IDE Tools

28 CA-Visual Objects IDE User Guide

The FieldSpec Editor

Although both data server editors have built-in mechanisms for defining field
specs, the FieldSpec Editor is independent of them and is used to set properties
for common field types that can be accessed by multiple data servers. For
example, if you specify properties for a Salary field in the FieldSpec Editor, you
can simply reuse those properties when creating a Salary field in a new table.

See Chapter 7: Defining Data Servers and Field Specifications for more
information about these editors.

Creating and Editing Images

Using the Image Editor you can create custom icons, cursors, bitmaps, and
ribbons for your applications using a drag-and-drop interface that allows you to
work with several images at the same time.

See Chapter 10: Using the Image Editor for more information.

Command Line

CA-Visual Objects provides a command line utility that allows you to evaluate
any valid expression at any time. Examples of valid expressions are 2 + 2, Start(),
and QOut(“Hi”), whereas the following is a statement, not an expression: ? “Hi”
(For more detailed information about valid expressions, refer to the “Operators
and Expressions” chapter of the Programmer’s Guide.)

To access the command line utility, select the Command Line command from the
Tools menu.

Note: You can only use the command line utility after the application, library, or
DLL has been successfully compiled.

The Command Line dialog box appears—by default, it contains “Start()” in the
Expression edit control. Choosing Go at this point will execute the application:

Important! The expression you specify is evaluated in the context of the current
application (and the libraries and DLLs in its search path). You will receive an error
message if the expression cannot be evaluated.

The IDE Tools

Chapter 2: Working in the Desktop 29

Refer to the Chapter 11: Debugging Your Applications chapter for more
information about evaluating expressions.

UDC Tester

CA-Visual Objects provides a UDC tester that you can use to create and test user-
defined commands (or UDCs). In general, a UDC provides a way to specify an
English-language statement that is, in fact, one or more expressions, thereby
improving the readability of source code.

See the online help system for details about the syntax rules and prerequisites for
creating UDCs.

Note: All commands in CA-Visual Objects are UDCs and are supplied in the
STD.UDC file. You can, however, create your own .UDC files and associate them
with your applications, using the Properties dialog box. (See Creating a New
Application in “Browsing Applications, Modules, Entities, and Classes” for
details.)

Testing a UDC

To test a UDC:

1. Choose the UDC Tester command from the Tools menu.

The UDC Tester dialog box appears:

2. In the UDC edit control, enter the UDC to be tested—for example, SKIP <x>
=> DBSkip(<x>).

3. Enter some sample source code to be tested in the Test Code edit control—
for example, SKIP 1.

The IDE Tools

30 CA-Visual Objects IDE User Guide

4. Choose the Test push button.

The Resulting Code edit control displays the result of the test. For example, it
would display the following for the statements used as examples above:

DBSkip(1)

Tip: If you are testing a UDC that already exists, you may find it helpful to
use the Clipboard’s cut/paste feature to enter information into the UDC
combo box. If you are unfamiliar with this feature, refer to your Microsoft
Windows or Windows NT User Guide.

Creating and Saving a UDC

You can also save to a .UDC file using the UDC Tester dialog box. After testing
the UDC, click the Save button to open the Select File for the UDC dialog box:

UpOneLevelbutton

NewFolderbutton

Double-click on a folder and select one of its .UDC files, or enter the .UDC file
name in the File Name edit control, and the UDC will be written to the file.

Tip: Use the Up One Level toolbar button to move up a level within a
directory, and use the New Folder button to create a new directory to store
the UDC.

Once you have identified your .UDC file, subsequent saves append new UDCs to
the same file without prompting until you choose Cancel to close the UDC Tester
dialog box.

The IDE Tools

Chapter 2: Working in the Desktop 31

Debugger

Not only can you build and execute applications at the touch of a button, but you
can also debug them just as easily. To start the CA-Visual Objects Debugger,
select the Debug toolbar button from within the Repository Explorer or the Trace
Expression toolbar button in any of the editors. Naturally, you can also access
the Debugger using the Debug Run menu command.

Note: For detailed information about the Debugger’s , such as
AutoStart debugging and DLL debugging,
see the online help.

The Debugger allows you to:

■ Set debugging options at the application, module, and entity levels

■ Use one of several execution modes to control the execution of your
application while viewing the source code in the Debug source code window

■ Evaluate and trace expressions

■ Set, reset, and clear breakpoints

■ View and modify variables

■ Create watch expressions

■ View the call stack

■ View database, index, and other work area information in a separate
window and modify database field values

■ View and modify system settings

To utilize debugging in your application, the Enable Debug option must be
checked in the Properties dialog box. You can also control debugging at the
module and entity level by highlighting the module or entity and then pressing
the right mouse button. This opens a local pop-up menu with debugging options
that you can select.

See Chapter 11: Debugging Your Applications for complete information about
the Debugger.

Reindexing the Repository

If you receive a message about index corruption while working in the IDE, you
should completely rebuild and synchronize your index files by reindexing the
repository. To do so, highlight the project and then select the Reindex Project
command from the Repository Explorer’s File menu.

The IDE Tools

32 CA-Visual Objects IDE User Guide

Automation Server

Note: CA-Visual Objects 2.7 not only provides OLE client support for OLE
automation servers, OLE objects, and ActiveX controls, but it now supports the
creation of both OLE automation servers and ActiveX servers. For detailed
information, refer to the online help.

The Automation Server allows you to create CA-Visual Objects classes for object
linking and embedding (OLE) automation servers provided by third-party
applications.

Note: In order to access the Automation Server Base Class Generation window,
the OLE library has to be included in your application’s search path. See Setting
the Search Path in the “Using the Repository Explorer” chapter.

To access the Automation Server:

1. Select the Automation Server command from the Tools menu.

The Automation Server Base Class Generation window appears:

Note: In this version of CA-Visual Objects, this window has a new option,
Include Containing Objects. For detailed information, see the online help.

2. Select one or more automation servers defined to your PC from the list box
(for example, Excel 97).

3. Click the Show Interfaces button.

The Interfaces list box is filled with available interfaces.

Note: Some servers may actually become visible when clicking on the Show
Interfaces button.

The IDE Tools

Chapter 2: Working in the Desktop 33

4. Select an interface from the Interfaces list box:

Alternatively, click the Open TypeLib button to access a type library file
(.TLB or .OLB) for code generation.

Either the interface name or the type library file name will appear
appropriately in the Class Name edit control as the default class name.

5. Click Generate Source.

Below are more complete descriptions of the available options for this window:

(Automation Servers) Lists the available third-party applications acting as (or accessible as) an OLE
automation server (for example, Microsoft Excel 97, PowerPoint, Exchange, etc.).
Additional information includes: 16/32-bit characterization, type, program ID,
file name, and class ID (CLSID).

Class Name The name of the CA-Visual Objects-generated class. By default, CA-Visual
Objects uses the interface name as the class name.

Include Description Info If selected, the automation server is queried for information about each entity’s
server type. These descriptions will appear in the Repository Explorer’s list view
pane, as well as in the generated source code.

Interfaces Lists the specific interfaces through which an automation server is available.
Each server has at least one main dispatch interface.

Open Type Lib If selected, allows you to choose an external type library file (*.TLB, *.OLB) from
the Open Type Library dialog box for code generation.

Setting System-Wide Options

34 CA-Visual Objects IDE User Guide

Setting System-Wide Options

Note: See the online help for new system,
application, and Source Code Editor options in CA-Visual Objects 2.7, as well as
detailed information about the Explorer tab page.

You can set a number of system-wide options for CA-Visual Objects, including
compiler options and settings for the desktop, by selecting the File Setup
command. The System Settings dialog box appears:

Tabs

Note: This dialog box now contains the following tabs: System, Compiler
Defaults, Fonts, Colors, Editor, and Explorer.

Selecting Fonts

CA-Visual Objects allows you to customize fonts on two levels: for the various
browsers and for the Source Code Editor, as indicated by the Font Options tab:

Setting System-Wide Options

Chapter 2: Working in the Desktop 35

Choosing the Change button for either Source Code Editor Font or Browser Font
displays a standard Font dialog box:

Browser Font The font you select for the Browser Font option is used for the text in the
Repository Explorer, the standard text in the Error Browser, and the status bar
text in all windows.

Source Code
Editor Font

The Source Code Editor Font option allows you to specify the
font to be used for the text displayed in Source Code Editor
windows.

Setting Editor Options

To set editing options—such as case synchronization and tab stops—for the
Source Code Editor, click on the Editor Options tab in the System Settings dialog
box:

Setting System-Wide Options

36 CA-Visual Objects IDE User Guide

Note: In this version of CA-Visual Objects, the Editor tab page provides three
new options: Use Spaces for Tabs, Show Parameter Tips, and Activate IDE on
Break. Additionally, the Automatic Method Insertion option has a new default
value. For more detailed information, see the online
help.

This dialog box provides the following options:

Auto Indent If True, automatically indents text in the Source Code Editor according to the
structure of your code.

Tab Stops Defines the width of a tab (in characters).

Automatic Method
Insertion

If True, enables CA-Visual Objects automatic method insertion
feature, which brings up a local pop-up menu from which you
can choose one of the specified object’s methods. (See Chapter
6: Using the Source Code Editor for detailed information
about this feature.)

Note: In this version of CA-Visual Objects, the time-saving Automatic Method
Insertion feature is enabled by default.

Case Synchronization If selected, all references to other entities and keywords in the Source Code
Editor are automatically case-synchronized according to their definitions in the
repository. For example, if you type arraynew() in order to define a new array,
CA-Visual Objects automatically changes the entry to its correct format,
ArrayNew().

Keyword Case The Keyword Case radio button group allows you to select a case setting for
your keywords in the Source Code Editor. Valid choices are Upper Case, Lower
Case, and None. The default is Upper Case.

Selecting Source Code Editor Colors

CA-Visual Objects allows you to specify different text colors for syntactic
elements in the Source Code Editor, as well as select a background color for its
window.

By default, as you type text in the Source Code Editor, the system monitors each
keystroke, recognizing syntactic elements and color-coding them according to
their category. (It also appropriately color-codes pasted or imported text.)

Setting System-Wide Options

Chapter 2: Working in the Desktop 37

To customize these colors, click on the Color Options tab in the System Settings
dialog box:

Then select one of the following push buttons:

Command Description

Background The background color for the Source Code
Editor window

Keywords The color for keyword text

Comments The color for commentary text

Text The color for functions, variables, fields, classes,
and so on

Constants The color for all constants

In each case, a standard Color dialog box appears:

Setting System-Wide Options

38 CA-Visual Objects IDE User Guide

Setting Compiler Options

CA-Visual Objects provides a set of default compiler options, which can be
changed on a project-wide basis, thereby affecting all new applications within a
project from that point forward, or changed at the application-level, affecting
only the current application.

Default Compiler
Settings

To set project-wide, default compiler options, click on the Default Compiler
Options tab to access them:

Typically, you will want to specify the most commonly used settings as
permanent system defaults and then, if necessary, override some of the
project-wide settings on an application-by-application basis. (Descriptions of the
various options follow in the Application-Specific Compiler Options section.)

Note: Default compiler settings are in effect for all applications within a project,
unless you override them by using the application-level compiler options. You
can also override the default compiler settings at the module and entity levels.
Refer to Setting Module Properties and Setting Entity Properties in “Using the
Repository Explorer” for more information.

Application-Specific
Compiler Options

To set compiler options for a specific application, overriding one or more system
defaults:

1. Click the Application Properties toolbar button.

Alternatively, right-click on the application and then select the Properties
command from the local pop-up menu that appears, or select the Properties
command from the Application menu.

Setting System-Wide Options

Chapter 2: Working in the Desktop 39

The Application Options dialog box appears:

Note: The Application Options dialog box has been updated in CA-Visual
Objects 2.7 and now contains the following tabs: Application, Libraries,
UDCs, Clipper Headers, Compiler, and OLE Server. Moreover, its tab pages
provide many new options and updated default settings. For detailed
information, see the online help.

Note: In this version of CA_Visual Objects, the appropriate Properties
dialog box—Project Properties, Application Options, Properties (Module), or
Properties (Entity)—can be accessed directly by using the Alt+Return key
combination. This is an alternative method to right-clicking with the mouse
and then selecting the Properties menu command from the local pop-up
menu that appears.

2. Click on the Compiler Options tab to access the application-specific compiler
options:

3. Reset any of the compiler options described below.

4. Click OK.

Setting System-Wide Options

40 CA-Visual Objects IDE User Guide

Note: The Compiler Options tab of the Application Options dialog box is
identical to the Compiler Options tab of the System Settings dialog box except for
fact that the application-specific version has an active Reset button. Use this
button at any time to reset the compiler options for the selected application to the
project-wide, default compiler options.

Compiler Warnings

This group of options allows you to select the level of warnings that you want
the compiler to generate.

The All, High, Low, and None options range from every type of warning
message being generated to no warning messages at all.

Optimization

This group of options allows you to control the amount and type of optimization
that the compiler performs when generating code.

The left column of radio buttons (High, Medium, Low, and None) lets you
identify the degree of optimization that should take place. (The compiler tries to
generate efficient code that is fairly compact.)

The Speed/Size radio buttons allow you to decide whether the compiler should
try to bias code generation towards performance or towards code size. Your
choice will necessarily be influenced by the use of undeclared variables in your
code.

Runtime Checking

This list of check boxes allows you to decide whether certain conditions will
generate compiler and/or runtime errors.

Overflow Generates checks for numeric overflow conditions, if selected.

Range Generates checks for attempts to access array elements outside the current size of
the array, if selected. This option applies to dimensioned arrays only—not
dynamic arrays (see “Arrays” in the Programmer’s Guide for more information on
these two types of arrays).

Class Generates checks to ensure that objects assigned to object variables are of the
right class, if selected.

Setting System-Wide Options

Chapter 2: Working in the Desktop 41

Note that whether error messages are displayed at compile time or runtime can
depend on the code. For example, if you have selected Range Checking, the
following code generates a compiler error:

LOCAL DIM x[1]
x[2]:= 5

However, this code results in a runtime error since it is only at runtime that the
compiler checks to see that the value of i is within the bounds of the array:

LOCAL DIM x[1]
i := 2
x[i] := 5

CA-Clipper Compatibility

This group of check boxes allows you to specify what level of CA-Clipper
compatibility the compiler should allow.

Undeclared Variables Allows the use of CA-Clipper-style variables without declaring them first. If this
box is not checked, any reference to an undeclared variable is flagged as a
compiler error.

Old Style Assignments Allows you to have the equal sign (=) as an assignment operator. If this box is
not checked, any use of “=” is considered the equality comparison operator.

For a list of valid assignment operators, see the “Operators and Expressions”
chapter of the Programmer’s Guide.

Integer Divisions Permits the division of two integers to yield a floating point result. If this box is
not checked, the division of two integers will always be an integer, and the
remainder will be discarded.

PROCNAME/PROCLINE Enables runtime support of ProcName() and ProcLine() function calls. If the box
is not checked, these function calls will be compiled but will not run.

Note: Selecting the Debug option in the Properties dialog box causes the
application to behave as if the PROCNAME/PROCLINE option is selected, even
if it is not.

Important! You must set this option if you wish to use the error messages displayed by
the runtime system to lead you to bugs in your code.

General Options

This group of check boxes controls additional compiler options.

Setting System-Wide Options

42 CA-Visual Objects IDE User Guide

Type Inference If checked, enables the compiler to infer the data type of undeclared variables by
looking at their usage; the compiler attempts to determine the data type of a
variable and generate more efficient code for it, if possible.

Operator Methods If checked, the compiler will convert certain operations to method invocations.
For details, refer to the “Objects, Classes, and Methods” chapter in the
Programmer’s Guide.

Full Runtime Class
Information

If checked, includes symbolic runtime information in the
executable for the PROTECT and HIDDEN instance variables,
allowing functional access to these instance variables using the
IVarGet() and IVarPut() functions.

Warning as Errors If checked, treats warnings as errors—that is, an entity is not considered to be
successfully compiled if a warning has occurred.

Setting System Options

Note: As mentioned earlier, the System Settings dialog box has been updated in
CA-Visual Objects 2.7, providing new system, application, and Source Code
Editor options. The System tab page, for example, now offers a new system
option, Debug AutoStart. Another option, Use Wizard, has a new value, and still
another, Show Prototype, has been moved to the new Explorer tab page. For
more detailed information, see the online help.

CA-Visual Objects provides a set of default system options, such as defining
default paths and creating default modules. You can also select or deselect other
system options, such as debugging new modules and showing prototypes.

To set or override the default system options, select the System Options tab in the
System Settings dialog box:

Setting System-Wide Options

Chapter 2: Working in the Desktop 43

Default Path Options

Path for EXE and
DLL Files

Contains the default directory in which to place generated .EXE
and .DLL files.

Path for Application
Export Files

Contains the default directory in which to place generated .AEF
files.

Path for Module
Export Files

Contains the default directory in which to place generated
.MEF files.

Path for PRG Files Contains the default directory in which to look for .PRG files
when importing and exporting within the Source Code Editor.
This setting also determines where the compiler searches for
icon (.ICO) files declared with the RESOURCE ICON
statement.

Miscellaneous System Options

Confirm on Exit By default, the Confirm on Exit feature is not enabled. Select this option if you
want a verification dialog box to display when you exit CA-Visual Objects.

Show Prototype By default, CA-Visual Objects displays prototypes for entities (like classes,
methods, and functions) in the status bar. You can suppress this display by
deselecting this option.

Create Default Module By default, CA-Visual Objects creates and loads an empty default module
automatically every time you create a new application. You can override this
option by deselecting it.

New Module Debug By default, the system does not turn debugging on for all new modules. Select
this option if you do want the system to automatically debug any new modules.

Color LEDs By default, CA-Visual Objects displays LED-style indicators for the compilation
status of entities, modules, and applications in the Error Browser. You can
override this option by deselecting it; compilation status will then be indicated
appropriately by a character. The following table describes the status for each
indicator in the Error Browser:

Indicator Status

Red LED or “X” Entity contains compilation errors.

Yellow LED or “?” Warning messages were generated during
compilation.

Use Wizard If selected, this option takes advantage of CA-Visual Objects wizard technology
for creating applications.

Setting System-Wide Options

44 CA-Visual Objects IDE User Guide

Note: One of the more noticeable changes in CA-Visual Objects 2.7 is that the
Application Wizard has been replaced by the new Application Gallery as the
preferred method for creating applications. Therefore, the Use Wizard option is
now disabled by default. For detailed information about the Application Gallery
feature and the many new predefined application frameworks that it offers, see
the online help.

Saving the Current Desktop

The Save Desktop command on the File menu allows you to save the current
configuration of all open browsers and editors. The next time you start CA-Visual
Objects, all browsers in the current configuration will be opened and arranged as
they were when you selected the Save Desktop command.

Chapter 3: Using the Repository Explorer 45

Chapter

3 Using the Repository Explorer

This chapter explains how to use CA-Visual Objects Repository Explorer. You
will learn how to:

■ Navigate within the Repository Explorer

■ Customize the Repository Explorer

■ Create, view, and modify projects, applications, modules, and entities

The Repository Explorer
Top-Down Hierarchy In CA-Visual Objects, projects consist of applications, applications consist of

modules, and modules consist of entities. As explained earlier, the Repository
Explorer tree structure follows this same top-down hierarchy. When you start
CA-Visual Objects, the Repository Explorer is automatically loaded.

Clicking on a project in the Repository Explorer’s tree view pane displays the
applications defined for it, while clicking on an application displays the modules
defined for that application. Similarly, clicking on a module displays the entities
defined for that module in the Repository Explorer’s list view pane.

Lastly, you can control the overall display by using the Group By Module, Group
By Type, and Group By Class toolbar buttons. Note that you can customize the
Repository Explorer’s list view pane by using the Large Icons, Small Icons, List,
and Details toolbar buttons. You can also use the View Options menu command
to limit the display by name and type. (See Customizing the Repository Explorer
for details.)

The Repository Explorer

46 CA-Product User Guide

When you start CA-Visual Objects, the Repository Explorer is automatically
loaded. It displays each of the projects, applications, libraries, DLLs, and
modules currently stored in the CA-Visual Objects repository. For example:

CA-VisualObjectsmenubar

Selectedapplication

Root

Project

Applications,libraries,DLLs

RepositoryExplorertoolbar

LeftPane:TreeView

RightPane:ListView

Modulesincurrentselection

Note: This default view is referred to as module view and is indicated by the
depressed Group By Module toolbar button, shown here.

Working in the
Repository Explorer

When you are in the Repository Explorer, you can:

■ Create, copy, rename, delete, print, import and export, build, and debug
applications, libraries, DLLs, modules, and entities

■ Access the various editors, the Debugger, and the Error Browser

The Repository Explorer

Chapter 3: Using the Repository Explorer 47

Repository Explorer Graphics

In the Repository Explorer, icons are used to pictorially represent projects,
applications, modules, and entities in both the tree view pane and the list view
pane. Each graphic indicates an item’s level in the tree structure, as well as its
type:

Graphic Represents

Project

Application

CA-Visual Objects Library

User-Defined Library

DLL

Module - Internal (a module stored in the CA-Visual
Objects repository)

Module - External (a module not stored in the
repository, but rather in an external source file)

Entity - Form

Entity - Binary Menu

Entity - Source and Resource

Entity - DB Server

Entity - SQL Server

Entity - Field Spec

Entity - Report

Entity - Cursor, Icon, Bitmap, Ribbon

The Repository Explorer

48 CA-Product User Guide

Note: You can assign a customized icon to an application using the Application
Properties dialog box’s Icon option, if you did not do so when using the New
Application wizard initially to create the application. See Choosing an Icon later
in this chapter for more information.

Compilation Status If an application, module, or entity is new to the tree structure, its uncompiled
status is denoted by a red X, as well as the notation “Uncompiled” in the
Vitality column of the list view pane of the Repository Explorer. An item that is
already compiled is denoted only by the notation “Compiled” in the Vitality
column, and a binary menu entity is always denoted by the “Non-Compilable”
notation.

In the Error Browser, compilation status is indicated using LED indicators, by
default. Red indicates that there are compilation errors, or that the application
has been modified and needs to be recompiled. Yellow indicates that warning
messages were generated during compilation.

Note: The icons for errors and warnings have been updated slightly in this
version of CA-Visual Objects. An error is now indicated by a red circle with an
“E” inside it, and a warning and its severity level by a yellow or white circle with
a number.

Source Control Icons Note: In CA-Visual Objects 2.7, if the Show Source Control Icons in List View
option is selected and if you have a Microsoft Common Source Control
Interface compliant source control system installed, “lock” icons appear before
each entity under source control in the Repository Explorer’s list view. For
detailed information about source code control, the source control icons, and
the Show Source Control Icons in List View option, see
the online help.

The Toolbar

The Repository Explorer toolbar contains the following buttons:

New

Import

Print

Build

MakeEXE

Execute

Debug

ApplicationProperties

LargeIcons

SmallIcons
Details

UpOneLevel

GroupByType

GroupByModule

GroupByClass

List

Navigating Basics

Chapter 3: Using the Repository Explorer 49

The New, Import, Print, Application Properties, Large Icons, Small Icons, List,
Details, Up One Level, Group By Module, Group By Type, and Group By Class
buttons are described later in this chapter. See Chapter 2: Working in the
Desktop for information about Build, Make EXE, and Execute. See Chapter 11:
Debugging Your Applications for information about Debug.

Tip: For a quick description of any toolbar button, simply point to it—a
tooltip window with descriptive text pops up right next to the button.

Note: Some of the Repository Explorer’s commands are also available on local
pop-up menus. Others, such as Rename, List, and Edit All Source in Module, are
available only via the local pop-up menus.

Navigating Basics
Navigation within the Repository Explorer is flexible and easy!

Up One Level You can use the Up One Level toolbar button at any time to move up a level in
the Repository Explorer’s hierarchy and display that level’s items. (Note that
this button is also available in many dialog boxes as an aid in locating files,
directories, and drives.)

Scrolling You can use the scroll bars and/or the Direction keys to scroll through the lists
of items displayed in both the left (Tree View) and right (List View) panes of the
Repository Explorer.

Moving from Pane
to Pane

You can move from pane to pane by clicking the desired side with the mouse.

Navigating Basics

50 CA-Product User Guide

Resizing the Panes The width of the left and right panes in the Repository Explorer can be adjusted
at any time by placing the mouse pointer over the split bar:

Positionthepointeroversplitbar

toactivatethedoublearrowpointer

This activates the split bar so that a double arrow pointer appears. You can also
choose the Split command from the Window menu to activate the split bar.
When the double arrow pointer is displayed, hold down the left mouse button
and drag the mouse to move the split bar to the desired location, then release the
mouse button.

Tip: Resize the Repository Window itself by placing the mouse pointer over
the lower right-hand corner of the window, activating a diagonal
double-arrow pointer. Hold down the left mouse button and drag the
mouse to enlarge or reduce the window simultaneously in two directions.

Browsing Projects, Applications, and Modules

Chapter 3: Using the Repository Explorer 51

Browsing Projects, Applications, and Modules
When the Repository Explorer tree initially appears, all branches in the tree are
collapsed (or condensed) except for the Visual Objects root and the Default Project.
If there are any other projects, their subitems are hidden from view. For
example, My Project below is collapsed:

+indicatesacollapsedbranch

Tip: If the Repository Explorer has been closed for any reason, choose the
Repository Explorer command from the Tools menu to reopen it. Use this
menu command, also, to open multiple copies of the Repository Explorer, if
desired.

Expanding the Initial Tree

The Repository Explorer allows you to show the hidden levels in its tree by
expanding it several different ways:

■ By a single level

■ For an entire branch

■ For all branches in the tree

If a particular item has subitems (that is, it is expandable), a
+ button appears to the left of the item name. If an item has no subitems, no
button is displayed.

Browsing Projects, Applications, and Modules

52 CA-Product User Guide

Note: See Customizing the Repository Explorer for detailed information about
restricting the module view, including setting name filters for applications and
modules and limiting the types of applications and modules to be displayed.

By a Single Level

Expanding an item by a single level allows you to display the next level of
subitems that belong to that item, without displaying all of its subitems. For
example, you may want to browse only the applications, libraries, and DLLs that
belong to a project, but not their specific modules.

To expand an item by a single level:

1. Choose the branch to be expanded (for example, My Project).

2. Click the + button to the left of My Project, or choose the Expand One Level
command from the View menu.

The tree shows all of the branches at the next level of the selected item:

In this instance, all of the CA-Visual Objects libraries that are automatically
included when you create a new project are displayed.

An Entire Branch

Expanding the entire branch of an item allows you to immediately display all
subitems of a particular item, rather than the intermediate, level-by-level
approach offered by the Expand One Level command described above.

To completely expand an item:

1. Select the branch to be expanded (for example, GUI Classes in My Project).

2. Choose the Expand Branch command from the View menu.

Browsing Projects, Applications, and Modules

Chapter 3: Using the Repository Explorer 53

The tree is expanded to show all levels of subitems in the selected item (in
this case all of the modules in the GUI Classes library):

3. Use the scroll bar to see that the other libraries in My Project are still
collapsed:

All Branches in the Tree

The previous two sections describe different ways to expand the Repository
Explorer tree for the currently selected branch.

You can also expand every branch in the tree to display all available subitems for
every item. To do this, select the Expand All command from the View menu.

Note: If the tree is already fully expanded, the Expand All menu command has
no effect. Also note that at the project level only, Expand Branch and Expand All
have the same effect.

Browsing Entities

54 CA-Product User Guide

Collapsing the Tree

Just as you can expand the Repository Explorer tree by a single level, for an
entire branch, or for all branches in the tree, you can collapse it. Collapsing means
to hide the additional levels that are below a selected item in the tree.

To condense all or a portion of the tree, use the Collapse One Level, Collapse
Branch, and Collapse All commands on the View menu as you would their
Expand command counterparts (as described in the previous section). For
example, the Repository Explorer shown below is collapsed at the Visual
Objects root level, after choosing the Collapse All command:

Treecollapsedatrootlevel

Note: You can click the – button to the left of an item as a shortcut to the
Collapse One Level command (similar in function to the + button for Expand
One Level).

Browsing Entities
Entities form the lowest level in the application hierarchy. An entity is a
component that has a distinct name and can be edited. Applications can share
entities in libraries.

The basic types of entities available in CA-Visual Objects are:

Form Binary Menu

DB Server SQL Server

Field Spec Report

Source Resource

Cursor, Icon,
Bitmap, Ribbon

Browsing Entities

Chapter 3: Using the Repository Explorer 55

Resource and source entities can be further categorized by subtype, as follows:

Source Subtypes Resource Subtypes

Class Accelerator

Access Dialog

Assign Menu

Method Icon

Function Bitmap

Global Ribbon

Structure (struct) Version Info

Procedure

Union

In CA-Visual Objects you can view either all of the entities defined for a specific
module, or all of the entities defined for a particular application.

Viewing Entities at the Module Level

To view only the entities defined for a specific module in an application—for
example, the Standard SQL Menus module in Order Entry—do the following:

1. Double-click on Order Entry or click the + icon to its left.

All of the modules defined to Order Entry are displayed in the Repository
Explorer tree:

2. Click on Standard SQL Menus in the tree.

Browsing Entities

56 CA-Product User Guide

All of the entities belonging to the Standard SQL Menus module are
displayed in the right, or List View, pane of the Repository Explorer:

Notice that the entities are sorted by entity name in alphabetical order. You
can, however, sort the entities by other criteria—such as vitality or entity
type—simply by clicking on the appropriate column header in the list view
pane.

3. Now move the cursor over the list of entities.

Notice that the Repository Explorer’s status bar displays the syntactical
prototype for each item as the mouse pointer passes over it. For example:

Prototypefor...Resourceentity(acceleratorsubtype)

Note: This feature is available only if the Show Prototype option has been
selected on the Explorer Tab of the System Settings dialog box. Furthermore,
prototypes are not applicable to binary entities.

Browsing Entities

Chapter 3: Using the Repository Explorer 57

Viewing Entities at the Application Level

On the other hand, to browse all of the entities defined for an application (for
example, Order Entry):

1. Select Order Entry again in the Repository Explorer tree.

2. Click the Group By Type toolbar button.

The Repository Explorer switches from module view to entity view:

Notice that the types of entities defined for Order Entry are arranged
alphabetically in the list view pane, and the number of each type is indicated
in the Entities column.

Collapsing and Expanding the Display

Expanding To expand the Repository Explorer tree so that an application’s entities are
displayed, choose the Expand One Level command from the View menu. For
example:

Browsing Entities

58 CA-Product User Guide

If you choose Expand All instead, the result is:

Collapsing Just as you can expand the Repository Explorer tree by a single level, for an
entire branch, or for all branches in the tree, you can collapse it. Use the Collapse
One Level, Collapse Branch, and Collapse All commands on the View menu as
you would their Expand command counterparts.

Viewing Additional Entities

When we used the Expand One Level menu command earlier, the list view pane
indicated that there were a total of 48 method entities in Order Entry:

NumberofmethodsinOrderEntry

Browsing Classes

Chapter 3: Using the Repository Explorer 59

To view these methods, simply click on Method in the tree view pane. The list
view pane in the Repository Explorer changes accordingly:

See Customizing the Repository Explorer for detailed information about
restricting the entity view, including setting a name filter for entities and limiting
the entity types and subtypes to be displayed.

Browsing Classes

Note: There are five new libraries in CA-Visual Objects 2.7 : Console Classes,
Internet, Internet Server API, and OLE Server. For more
detailed information, see the online help.

CA-Visual Objects also allows you to take a comprehensive look at all of the
classes defined for or used by an application. For example, to browse the classes
in the System Classes library you need to switch from module view to class view.
To do so:

1. Highlight System Classes in the Repository Explorer tree:

Browsing Classes

60 CA-Product User Guide

2. Click the Group By Class toolbar button.

The Repository Explorer switches from module view to class view:

Notice that all branches in the tree are collapsed and that the names of the
columns in the list view pane have changed.

Expanding the Display

To view the classes and subclasses belonging to an application, use the Expand
One Level, Expand Branch, and Expand All menu commands which you are
already familiar with.

By a Single Level

For example, to display the classes that belong to the System Classes library, click
the + button to the left of System Classes, or choose the Expand One Level
command from the View menu. The Repository Explorer tree now displays the
topmost level
of classes:

Havesubclasses

Nosubclasses

Browsing Classes

Chapter 3: Using the Repository Explorer 61

Notice that if a particular class has subclasses (that is, it is expandable), a +
button appears to the left of the class name.
(If a class has no subclasses, no button is displayed.)

To expand a class—for example, FieldSpec—simply click on its + button or
choose Expand One Level again. The Repository Explorer tree changes
accordingly:

Subclassesof
FieldSpecclass

An Entire Branch

To view all of the subclasses of a particular class, use the Expand Branch
command instead of expanding each branch one level at a time using Expand
One Level, as we did above. For example:

1. Select the System Classes module again.

2. Choose the Expand Branch command from the View menu.

The tree is expanded to show all levels of classes and subclasses in the
System Classes library:

Note: If the selected class has no subclasses or is already completely expanded
(indicated by a – button), the Expand Branch command has no effect.

Browsing Classes

62 CA-Product User Guide

All Branches in the Tree

You can also expand every branch in the tree to display all available subclasses
for every class. To do this, select the Expand All command from the View menu.
For example:

Note: If the tree is already fully expanded, the Expand All menu command has
no effect.

Collapsing the Tree

Just as you can expand the Repository Explorer tree by a single level, for an
entire branch, or for all branches in the tree in class view, you can collapse it.
Collapsing means to hide the additional class levels that are below a selected
class in the tree.

To condense all or a portion of the tree, use the Collapse One Level, Collapse
Branch, and Collapse All commands on the View menu as you would their
Expand command counterparts.

Note: You can click the – button to the left of a class name as a shortcut to the
Collapse One Level command (similar in function to the + button for Expand
One Level).

Browsing Classes

Chapter 3: Using the Repository Explorer 63

Showing Additional Classes

By default, the Repository Explorer initially displays only the classes that are
defined to the modules in the current application. To view additional classes
with which the current application may be associated, select the Include Libraries
command from the View menu.

Tip: An application’s search path—including libraries—is set when the
application is created. You can, however, use the Properties command on
the Application menu or the local pop-up menu to add libraries to or remove
libraries from the current search path.

For example, suppose you create an MDI application named Test Application
that includes the default libraries—GUI Classes, RDD Classes, and System
Classes—in its search path and contains only the standard application
framework. The Repository Explorer tree would initially look as follows in class
view when first displayed for Test Application:

Customizing the Repository Explorer

64 CA-Product User Guide

If you then choose the Include Libraries menu command, classes belonging to the
default libraries are merged and arranged in proper hierarchical order in a single
tree:

To hide the additional classes, deselect the View Include Libraries menu
command.

Viewing Inherited Properties and Classes

By default, the list view pane of the Repository Explorer displays only those
properties and methods that the currently selected class owns. That is, the
properties and methods it may have inherited from its superclasses are not
shown.

You can optionally display all properties and methods that are inherited by the
currently selected class by selecting the Include Inherited command from the
View menu.

To hide the inherited properties and methods, deselect the View Include
Inherited menu command.

Customizing the Repository Explorer
By default, the Repository Explorer initially displays everything—applications,
libraries, and DLLs. You can, however, customize the Repository Explorer’s
initial display in several ways: specifying the size of the icons used, displaying
data in list or detailed format, and restricting the display to a specified
application type(s) and/or name(s). This is in addition to selecting module, type,
or class view by clicking the Group By Module, Group By Type, or Group By
Class toolbar button, respectively.

Customizing the Repository Explorer

Chapter 3: Using the Repository Explorer 65

Icons

You can specify the size of the icons used to represent projects, applications,
modules, and entities in the list view pane of the Repository Explorer.

Large Icons For large icons, simply click the Large Icons toolbar button. For example:

Tip: To customize the display, choose the Arrange Icons command from the
View menu to arrange the icons by name, vitality, creation date, and so on.

Small Icons For small icons, simply click the Small Icons toolbar button. For example:

Customizing the Repository Explorer

66 CA-Product User Guide

List and Details Toolbar Buttons

List Button To view the data in the list view pane in list format, click the List toolbar
button. For example:

Notice that the only data in the list view pane are application and library names
and their corresponding icons.

Details Button To view the data in the list view pane in detailed format, click the Details
toolbar button. For example:

Notice that there is now much data in the list view pane formatted in columns.
You can control the types of data displayed by hiding columns selectively. See
Setting View Options below.

Customizing the Repository Explorer

Chapter 3: Using the Repository Explorer 67

Setting View Options

You can also customize the Repository Explorer by limiting the display of
applications, modules, and entities by type or name, as well as to specify the
particular subsets of data to be displayed in its list view pane.

Limiting by Type

For example, to limit the CA-Visual Objects display to applications only:

1. Select the Options command from the View menu.

The Options dialog box appears:

Notice that there are three tabs: Application View, Module View, and Entity
View.

2. Select the Application View tab.

3. Choose Hide Items of These Types from the Hidden Items radio button
group.

4. Highlight Libraries, DLLs, and System Libraries.

Note: System Libraries is new with CA-Visual Objects 2.7.

5. Click OK.

Customizing the Repository Explorer

68 CA-Product User Guide

The Repository Explorer now displays only applications:

Tip: Since you need to access libraries and DLLs less frequently than your
applications, limiting the display to just applications results in an
uncluttered Repository Explorer.

Similarly, you can limit the types of modules or entities displayed by clicking on
the appropriate tab in the Options dialog box and setting options for Hidden
Items. (See the online help system for complete descriptions of the available
options for this dialog box.)

Limiting by Name

Using the Name Filter You can also limit the display to applications with a certain name. For example,
if you want to view only applications and libraries whose names begin with the
acronym “OLE”:

1. Select the Options command from the View menu again.

The Options dialog box appears.

2. Select the Application View tab.

3. Choose Hide Items of These Types from the Hidden Items radio button
group.

4. Highlight DLLs.
5. Enter OLE in the name filter—that is, the Filter edit control—in the Options

dialog box.

Note: No wild cards are allowed.

6. Press Enter.

Customizing the Repository Explorer

Chapter 3: Using the Repository Explorer 69

The Repository Explorer changes accordingly, displaying the following OLE
applications and libraries:

Restoring the Display To restore the Repository Explorer window to its original display:

1. Select the Options command from the View menu once more. The Options
dialog box appears.

2. Select the Application View tab.

3. Highlight the contents in the filter.

4. Press the Del key to delete the filter.

5. Click OK.

Note: You can also limit modules and entities by name using the name filter in
the appropriate tab in the Options dialog box.

Limiting Details

Additionally, you can customize the Repository Explorer by specifying the
following types of data to be displayed in the list view pane:

Data Type Description

Name Application name.

Vitality Compilation status.

Type Application type - application, library, or DLL.

Debug Debugging status.

Entities Number of entities in application.

Dead Entities Number of dead entities.

Modules Number of modules in application.

Creation Time Date/time application was created.

Last Build Date/time application last compiled.

Description Brief description of application.

Note: Similar data can be specified for modules and entities, as well.

Customizing the Repository Explorer

70 CA-Product User Guide

Scrolling the
List View Pane

For example, if you enlarge the list view pane shown below and scroll through
it, you will see that all of the possible types of data about each application in the
Default Project are displayed:

Usescrollbartoviewallcolumns

Limiting the Display Suppose, however, you want to limit the display to just Name, Vitality, Type,
Debug, Entities, and Modules. To do this:

1. Select the View Options menu command.

The Options dialog box appears:

2. Select the Application View tab, if it is not already selected.

3. Choose Hide Columns from the Hidden Columns radio button group.

4. Highlight the following items: Dead Entities, Creation Time, Last Build, and
Description.

5. Click OK.

Managing Projects

Chapter 3: Using the Repository Explorer 71

The Repository Explorer changes accordingly:

Notice that now there is no horizontal scroll bar.

Note: You can also limit the type of data displayed for modules and entities by
clicking on the appropriate tab in the Options dialog box and setting options for
Hidden Columns. (See the online help system for complete descriptions of the
available options for the Options dialog box.)

New Customization Options

Note: As mentioned in Setting System Options in the previous chapter, the
System Settings dialog box has been updated in CA-Visual Objects 2.7. Its new
Explorer tab page, for example, now offers the following options for the
Repository Explorer: Show Prototype, Select Entire Row, Grid Lines, Track
Selection, AutoSize Name Column, and Show Source Control Icons in List View.
For detailed information about these options, see the
online help.

Managing Projects

Note: CA-Visual Objects 2.7 also provides version control for managing your
applications with its new Source Code Control Interface. For complete
information, see the online help.

CA-Visual Objects allows you to group together all of a repository’s applications,
libraries, and DLLs as a single project. Because CA-Visual Objects is a
repository-based system, you can even create multiple projects that access
separate repositories.

Managing Projects

72 CA-Product User Guide

All projects currently available to you are managed through a project catalog. A
project can only belong to one catalog at a time. When you create a new project,
it is added automatically to your catalog. If you wish, however, to share your
work with other members of a development team, you can remove the project
from your catalog. Note that this action does not delete the project’s directory; it
only removes the project from your Repository Explorer’s window. This allows
another developer to add the existing project to his or her own catalog.

Note: To view a project’s properties, access the Project Properties dialog box
directly by using the Alt+Return key combination, or by right-clicking and
selecting the Properties command from a local pop-up menu.

For additional information about projects, see Exchanging Projects in the
“Importing and Exporting Files” chapter later in this guide.

Creating a Project

To create a project:

1. From the root level of the Repository Explorer, click the New toolbar button.

Alternatively, select the New Project command from the File menu.

The New Project dialog box appears:

In CA-Visual Objects 2.7, there is an additional button on this screen that
allows you to browse your existing folders.

2. Enter a name in the Project Name edit control (for example, My Project).

Project names can be up to 30 characters long including spaces and special
characters.

3. In the Project Directory edit control, enter the path for the repository with
which the project is to be associated (for example,
C:\CAVO27\TEAM\PROJECTS) .

4. Click OK.

The new project is added to the Repository Explorer tree structure:

Multipleprojects

Managing Projects

Chapter 3: Using the Repository Explorer 73

If you now click on the + icon to the left of My Project, you can see that the
new project has access to the CA-Visual Objects predefined system libraries:

These predefined libraries, which reside usually in the CAVO27\SYSTEM
subdirectory, are shared by all projects. They cannot be modified, as they are
completely read-only.

5. Proceed to add applications, user-defined libraries, and DLLs to the new
project.

Note that all user-defined components of a project will reside in the specified
project directory.

Deleting Projects

In CA-Visual Objects you can either remove a project from a catalog or delete it
completely from the repository.

Deleting from a
Catalog

To remove a project from your catalog and the Repository Explorer without
deleting it from the repository itself:

1. Right-click on the project in the Repository Explorer (for example, My
Project).

The local pop-up menu appears:

2. Choose the Delete from Catalog command.

Note: The Delete from Catalog menu command is available only via the
local pop-up menu.

Managing Projects

74 CA-Product User Guide

The project is deleted from your catalog and removed from the Repository
Explorer.

Deleting from the
Repository

To delete a project in its entirety from the repository:

1. Right-click on the project in the Repository Explorer (for example, My
Project).

The local pop-up menu appears.

(Alternatively, select the Delete command from the Edit menu.)

2. Choose Delete from the local pop-up menu.

The standard Confirm Deletion dialog box reappears:

3. Click Yes.

The project is deleted from the repository, and its directory is also deleted.

Note: See your online help system for information about the other local pop-up
menu commands.

Adding a Project

To add someone else’s project to your own catalog:

1. From the root level of the Repository Explorer, select Add Project from the
File menu.

The Add Project dialog box appears:

In CA-Visual Objects 2.7, there is an additional button on this screen that
allows you to browse your existing folders.

2. Enter a name in the Project Name edit control.

3. In the Project Directory edit control, enter the path for the repository with
which the existing project is associated.

4. Click OK.

Managing Projects

Chapter 3: Using the Repository Explorer 75

The specified project is added to the Repository Explorer tree structure.

Renaming a Project

To rename a project:

1. Right-click on the project in the Repository Explorer (for example, My
Project).

The local pop-up menu appears.

2. Choose Rename from the local pop-up menu.

A single-line edit control now surrounds the specified application, indicating
that you are now in edit mode:

Single-lineeditcontrol

Note: The Rename command is available only via a local pop-up menu.
However, you can also just single-click on a project to open the single-line
edit control.

3. Enter the new name in the single-line edit control (for example, Team
Project).

4. Click outside the single-line edit control to close the control and save your
changes.

The new project name appears in the Repository Explorer tree:

Creating a New Application

76 CA-Product User Guide

Creating a New Application

Note: As mentioned earlier in this guide, one of the more noticeable changes in
CA-Visual Objects 2.7 is that the Application Wizard has been replaced by the
new Application Gallery as the preferred method for creating applications.
Therefore, the Use Wizard option is now disabled by default. For detailed
information about the Application Gallery (also referred to as the New
Application dialog box) and the many new predefined application frameworks
that it offers, see the online help.

For this section, you will need to enable the Application Wizard. To do so, select
File Setup and check the Use Wizard Checkbox on the System tab, then click OK.

If you followed the tutorial in the Getting Started guide, you should have already
created the Order Entry application, which is used to demonstrate CA-Visual
Objects features. Here we will recap the application creation process, going into
more detailed explanations of the intuitive, easy-to-use wizard and its various
options.

Using the Wizard

To access the Application Wizard in order to define a new application and its
properties:

1. From the project level of the Repository Explorer, click the New toolbar
button.

Alternatively, select the New Application command from the File menu.

The Create a New Application page displays:

This window explains the Back, Next, Cancel, and Finish push buttons.

2. Click Next.

Creating a New Application

Chapter 3: Using the Repository Explorer 77

The Application Type and Name page appears:

3. Enter Order Entry, if you have not already created the Order Entry
application.

The default name is Application n.

The Application Type and Name page provides the following options:

Application Name Specify the name of the new application. Application names can be up to 30
characters long, including spaces and special characters (the default is
Application <n>, where <n> is an integer), and they appear in the Repository
Explorer’s tree structure.

Application Type Specify whether to create an executable, library, or DLL. This section discusses
creating applications—for details about libraries and DLLs, see Creating
Libraries and DLLs later in this chapter.

Note: Whereas the Application Wizard limits you to building a standard SDI or
MDI application, library, or DLL, the new Application Gallery allows you to
build many new types of basic and standard applications, including terminal and
console applications, ActiveX controls, Internet applications,
, a n d OLE server applications, as well as ISAPI and Active Server
Page (ASP) component DLLs. Examples of these new applications are available
from the Samples tab page of the Application Gallery. For detailed information,
see the online help.

4. Click Next.

Creating a New Application

78 CA-Product User Guide

The User Interface page appears:

The User Interface page provides the following options:

User Interface CA-Visual Objects offers two types of user interface programming: CA-Visual
Objects GUI interface or your own user interface code.

Selecting the default No radio button gives your application access to the
CA-Visual Objects GUI Classes library, which contains over a hundred classes
that allow you to create the objects required for a full-featured GUI. These
include windows, menus, push buttons, scroll bars, list boxes, and so on.

The GUI Classes option also gives you access to CA-Visual Objects
self-configuring Standard Application, which generates a basic application,
including windows, menus, startup code, and default event and error handling.

For most applications, you will want to include this library, so the No radio
button is selected by default. If you plan to use code generated by the IDE’s
visual editors, you must select the No radio button here.

Note: If the Yes radio button is selected, the GUI Classes library is not included
in the path for the specified application.

Terminal Window The Terminal Window option, on the other hand, is not initially chosen. This is
because the terminal emulation practices used in most Xbase applications (such
as @...SAY...GET and most terminal window functions and commands) have no
place in event-driven, GUI applications and, therefore, they are no longer
supported in CA-Visual Objects.

However, there may be situations where you may want to view or test simple
text-based applications. To do so, select the Yes radio button. (Note that this
option requires that the Terminal Lite library be included in your application’s
search path.)

Creating a New Application

Chapter 3: Using the Repository Explorer 79

Note: Remember, these are just initial settings to help you get your application
started. You can change them at any point during the lifetime of the application.

5. Click Next.

The Application Framework page appears:

Note: As mentioned earlier, the new Application Gallery allows you to build
many new types of basic and standard SDI and MDI applications, as well as
terminal and console applications, ActiveX controls, Internet applications, OLE
server applications, ISAPI DLLs, and Active Server Page (ASP) component DLLs.

The Application Framework page provides the following options:

Application Style Typically, the main window in a GUI application either supports
multiple-document interface (MDI) or single-document interface (SDI)
applications. (Note that MDI applications are more common.)

To help you get started, the Application Wizard asks you to choose one of these
application style options:

■ MDI

An MDI application is structured around the presentation of multiple
documents simultaneously in many windows. It typically uses a shell
window as the main, or “owner,” window. The documents that are opened
in the shell window are typically child application windows or data
windows.

Selecting the MDI radio button creates a multiple windows application in
which the main window is a subclass of the ShellWindow class and the child
windows are data windows.

Creating a New Application

80 CA-Product User Guide

■ SDI

An SDI application, on the other hand, is structured around displaying one
document at a time, and it typically uses a top application window as the
main window. In this case, the child window is also a child application
window or data window.

Selecting the SDI radio button creates a single window application in which
the main window is a subclass of the TopAppWindow class and the child
window is a data window.

Once you have selected an application style, CA-Visual Objects provides support
for your application by automatically creating:

■ The appropriate windows and menus based upon its specified application
style

Note that in both MDI and SDI applications, you automatically receive
standard menus (like File and Help),
a status bar, and a toolbar.

■ Startup code for the application

This code is inserted in the startup module that is created for either type of
application. It includes a Start() method that instantiates and displays the
application’s main window.

6. Click Next.

The Data Access page appears:

Note: Using the Application Gallery in CA-Visual Objects 2.7, you can choose
either a standard SDI or MDI application framework with support for any one of
the following databases: Xbase, SQL, OLE.

Creating a New Application

Chapter 3: Using the Repository Explorer 81

The Data Access page provides the following options:

Database CA-Visual Objects provides three choices for database access. Similar to the user
interface choices described above, the choices made here affect what CA-Visual
Objects libraries are automatically included in the application’s search path and,
consequently, what type of database access is available to the application.

If checked, the “Using CA-Clipper-style commands and functions to access DBF
files” option provides support for traditional Xbase database operations, like
SKIP and EOF(), and includes the RDD Classes library in your application.

If checked, the “Using object-oriented techniques to access DBF files” option
includes the RDD Classes library in your application’s search path, giving your
application access to an object-oriented interface for Xbase files. This is the
default setting.

Similarly, the “Using object-oriented techniques to access Client/Server
databases” option, if checked, includes the SQL Classes library in your
application’s search path, giving your application access to an object-oriented
interface for SQL tables.

An application can use any mixture of these options: choose all, just one, or even
none of them if you do not plan to create a database application.

7. Click Next.

The OLE Services page appears:

Click the Yes radio button if you want to incorporate Object Linking and
Embedding (OLE) technology in your application. This option provides you
with the capability of linking and embedding OLE objects, as well as
embedding OLE custom (OCX) controls in any window. It also gives you
access to the Automation Server feature, which creates CA-Visual Objects
classes from the objects in third-party applications.

Creating a New Application

82 CA-Product User Guide

Note: See Linking and Embedding OLE Objects in the “Using the Window
Editor” chapter for more information about using OLE objects and OCX
controls. Also, refer to the Programmer’s Guide.

8. Click Next.

The Language Style/Debug page appears:

The Language Style/Debug page provides the following options.

Language Style CA-Visual Objects also provides a choice of language styles:

■ Strict

Strict is selected by default—choosing this option promotes the use of some
of the more rigid programming techniques supported by CA-Visual Objects.
Typically, using these techniques makes code easier to debug, as well as
more robust and efficient at runtime. For example, with Strict enabled, using
an undeclared variable in a program will raise a compiler error.

■ XBase

However, you may not be familiar with, or are not ready to move to, a more
rigid programming style. For example, perhaps you want to prototype an
application quickly, or you want to migrate an existing Xbase application. In
such cases, it would be best to select the XBase option so that you do not get
compiler errors for valid (but not always efficient) programming practices.

In either case, it is important to note that neither option locks you into a particular
programming style. Your choice simply influences how the compiler options are
initially set for the new application. If you change your mind, you can change the
application’s compiler options. (See Setting Compiler Options in “Working in
the Desktop” for complete details.)

Debug Select the Debug check box so that the application can be debugged when it is
compiled.

Creating a New Application

Chapter 3: Using the Repository Explorer 83

9. Click Next.

The Path for .EXE and .DLL page appears:

Note that the application name has defaulted from the wizard’s Application
Type and Name page to the first edit control on this page. This page offers you a
chance to change the application’s name and specify a folder for your
application.

Note: The path for EXE and DLL files might not be set to C:\CAVO27\BIN (i.e.,
if you installed your system to another drive or directory.

10. Click Next.

The Libraries page appears:

Defaultlibraries Availablelibraries

Creating a New Application

84 CA-Product User Guide

Note: In this version of CA-Visual Objects, the Available for Use list box now
includes the following new class libraries: Console Classes, Internet, Internet
Server API, and OLE Server.

This page provides the opportunity to confirm the libraries that should belong to
the application’s search path. For example, if you accepted the CA-Visual
Objects GUI interface earlier, the following libraries appear in the Include in My
Application list box by default: System Classes, GUI Classes, and RDD Classes.

As Order Entry will require the SQL Classes library, you need to add it here if
you did not select the “Using object-oriented techniques to access Client/Server
databases” option earlier on the Data Access page. To do so:

11. Highlight SQL Classes in the Available for Use list box:

12. Click the Include button.

SQL Classes is added to the search path.

You are free, of course, to include and/or remove other libraries and/or DLLs in
the search path. See Setting the Search Path later in this chapter for complete
details on how to do this.

13. Click Next.

Creating a New Application

Chapter 3: Using the Repository Explorer 85

The User Defined Commands page appears:

Associate one or more user-defined command (.UDC) files with the application.
See Associating .UDC Files later in this chapter for details on how to do this.

14. Click Next.

The Application Icon page appears:

Specify the icon to be used for the application in the folder for the Windows Start
menu. See Choosing an Icon later in this chapter for details on how to do this.

15. Click Finish.

Creating a New Application

86 CA-Product User Guide

Your new application, Order Entry, is added to the Repository Explorer:

Note that, in the list view pane, Order Entry has a red X over its application
icon indicating that it is uncompiled.

Now double-click on Order Entry. The Repository Explorer displays four
predefined modules in the list view pane:

Uncompiledmodules

Note that each module icon has both a red X and the “Uncompiled” notation in
the Vitality column of the list view pane, indicating that each is uncompiled.
Also note that debugging is turned on for each module, since the debugging
option was selected earlier.

Creating a New Application

Chapter 3: Using the Repository Explorer 87

Now click the Build toolbar button to compile the entire application, as explained
earlier in the Saving, Building, and Executing section of “Working in the
Desktop.” The build is successful, and the Repository Explorer reflects this
change in vitality:

and"Uncompiled"replacedby"Compiled"

Before modifying any of its properties or adding any window controls to it, click
the Execute button to run the application.
A new, functional standard MDI application window appears—the CA-Visual
Objects Standard Application, complete with menus, startup code, and default
event and error handling:

Systemmenu

Menubar

Toolbar

Titlebar
Minimize,Maximize,
andClosebuttons

You have created your first CA-Visual Objects application in just seconds using
the Application Wizard!

Creating a New Application

88 CA-Product User Guide

Modifying Your Application’s Properties

When you use the Application Wizard to create an application, you set its initial
properties. You are free to modify any of these properties, such as changing the
standard MDI application’s caption, or add any of the following options to your
application:

■ Include and/or remove additional libraries and/or DLLs in the search path

■ Associate one or more user-defined command (.UDC) files with the
application.

■ Specify an application icon

Modifying the Application’s Caption

Obviously, you will want to change the caption (or title) for your application
from the default caption, “Standard MDI Application,” to “Order Entry.” To do
this:

1. Click the Close button in the upper-right corner to exit the application, if you
have not already done so.

Alternatively, choose the Exit command from the File menu to exit the
application.

2. Highlight Order Entry’s Standard Shell module in the Repository Explorer’s
tree structure, and then click the List toolbar button.

All of Standard Shell’s entities are displayed in the Repository Explorer’s list
view pane:

Listtoolbarbutton

StandardShell'sentities

3. Scroll through the list of entities until you find the
StandardShellWindow:Init method, and then double-click on it.

Creating a New Application

Chapter 3: Using the Repository Explorer 89

The shell window’s Init() method is loaded in the Source Code Editor:

Systemmenu

Closebutton

4. Move the cursor to the line of code reading:

SELF:Caption := "Standard MDI Application"

5. Change it to:

SELF:Caption := "Order Entry"

6. Close the Source Code Editor by either double-clicking on its system menu
or clicking on its Close button.

If you now rebuild and run Order Entry, you can see its updated caption:

Setting the Search Path

Sharing Code Very often, you will want to store commonly used code in a library or a DLL so
you can share that code among different applications without having to
duplicate and maintain the common code in each application. You will also
want to exploit the following CA-Visual Objects libraries: GUI Classes, OLE,
RDD Classes, System Classes, Report Classes, SQL Classes, Terminal Lite, and
Win32 API.

Creating a New Application

90 CA-Product User Guide

By default, all applications created in CA-Visual Objects are automatically
associated with the System Library and the Win32 API Library. To associate any
other library or DLL with an application (such as the GUI Classes library or your
own or third-party libraries), you must explicitly add them to the application’s
search path.

Note: For more detailed information about libraries and DLLs, refer to the
“Operating Environment” chapter of the Programmer’s Guide.

Adding Libraries/DLLs Adding such libraries and DLLs to an application’s search path means that
CA-Visual Objects can automatically resolve all references to them during
compilation. For example, if the compiler encounters a reference to a function or
a define that is not contained within any of the application’s modules, it starts
searching through the libraries and DLLs defined for the application’s search
path in the order the libraries and DLLs are listed in the Included list box.

Libraries and DLLs can be added to an application’s search path using the
Properties dialog box, displayed either when you first create the application, or
afterwards, using either the Application Properties toolbar button or the
Properties command on the local pop-up menu.

Note: In this version of CA-Visual Objects, you can also access the Application
Options dialog box directly by using the Alt+Return key combination.

Using the Application
Options Dialog Box

In all cases, the Application Options dialog box appears. For example, this
dialog box shows the properties that were defined initially for the sample GUI
application, Order Entry:

Note: The Application Options dialog box has been updated in
CA-Visual Objects 2.7. It now displays the following tabs: Application, Libraries,
UDCs, Clipper Headers, Compiler, and OLE Server. For more detailed
information, see the online help.

Creating a New Application

Chapter 3: Using the Repository Explorer 91

Adding Items to the
Search Path

Suppose, for example, you decide that the sample application should use
existing OLE code. To add the OLE library to Order Entry’s search path:

1. Click on the Libraries tab.

The Application Options dialog box displays the library options:

The Libraries tab page includes two list boxes used for defining an
application’s search path. The Included list box contains the names of the
libraries and DLLs already in the application’s file path, as defined earlier
using the wizard. The Available list box displays the names of the libraries
and DLLs that can be added.

Creating a New Application

92 CA-Product User Guide

2. Highlight OLE in the Available list box and then click Copy (or just double-
click on OLE):

HighlightOLEandclickCopytoadd
theOLElibrarytothesearchpath

The selected item then appears in the Included list box:

3. Click OK.

Order Entry’s search path is updated.

Removing Items from
the Search Path

To remove a library or DLL from an application’s search path, double-click on it
in the Included list box (or just highlight it and click on the Delete button).

Tip: To add or remove all of the available libraries, click on the All or Del All
button, respectively.

Creating a New Application

Chapter 3: Using the Repository Explorer 93

Reordering the
Search Path
Sequence

By default, the Included list box displays libraries/DLLs in the order in which
they were added. The order you see in the Included list box reflects the
sequence in which the system searches when resolving references: the
library/DLL at the top of the list is searched first, the second is searched
second, and so on.

You can rearrange the order in which libraries/DLLs are searched by reordering
them in the Included list box. This is useful if, for example, two different
libraries in an application’s search path contain a function of the same name.
You may want to force CA-Visual Objects to use one rather than the other and,
therefore, need to ensure that it is searched first.

To move a particular library/DLL up in the list, simply select it in the Included
list box and click on the Up button. Similarly, use the Down button to move a
library down in the Included list box.

For example, to move the GUI Classes library to the end of the list, highlight it
and click three times on the Down button:

The selected item is reordered in the Included list box:

Creating a New Application

94 CA-Product User Guide

Note: For details on creating libraries and/or DLLs, see Creating Libraries and
DLLs later in this chapter.

Associating .UDC Files

You can also associate .UDC files with an application after defining it initially.

To associate .UDC files with an application:

1. Click the UDCs tab in the Application Options dialog box:

2. Choose Add.

A standard Open dialog box appears.

3. Choose the .UDC file to be included.

4. Select OK.

5. Repeat steps 2–4 for each .UDC file you want to include.

The maximum is 16.

Tip: Just as you can rearrange the order in which libraries and DLLs are
accessed, you can also rearrange the order in which the specified .UDC files
are associated with your application using the Up and Down buttons.

Deleting a UDC To delete a UDC:

1. Highlight the .UDC file in the UDCs Included list box.

2. Choose Delete.

Select OK to close this dialog box when you are finished adding and deleting
UDCs.

Creating a New Application

Chapter 3: Using the Repository Explorer 95

Choosing an Icon

You can also specify an icon for your application, which will be added to the
application’s folder for the Windows Start menu and to the application’s name in
the Repository Explorer tree.

To specify an icon for an application:

1. Choose the Application tab in the Application Options dialog box.

2. Click the Explorer Icon push button.

The Icons dialog box appears:

3. Select an icon from the Available Icons list box.

The default icon is shown.

4. Click OK.

Tip: You can create your own icons with the Image Editor and save them as
entities in any module. When the application is compiled, your icons show
up in the Icons dialog box. (See Chapter 10: Using the Image Editor for
more information.)

Adding Clipper Headers

You can optionally include CA-Clipper header (.CH) files in your application, as
CA-Visual Objects has a two-level preprocessor. If one or more CA-Clipper-
compatible .CH files are included in an application, entities will first be
processed by the CA-Clipper preprocessor, which does pure textual replacement.
The preprocessed output will then be processed by the CA-Visual Objects 2.7
preprocessor and finally compiled.

If an application uses .CH files, all of the CA-Clipper directives, like #xtranslate
and #include, can also be used within an entity’s source code. Note that all
conditional compilation (#ifdef, #ifndef, and so on) will be done by the
CA-Clipper preprocessor and is not seen by the CA-Visual Objects preprocessor.
The CA-Clipper preprocessor does not know about defines in the repository: it
uses #defines in the header files.

Creating a New Application

96 CA-Product User Guide

Note: If an application does not use .CH files, the CA-Clipper preprocessor will
not run during compilation. See the Programmer’s Guide for more detailed
information about the CA-Clipper preprocessor.

To include .CH files in your application:

1. Choose the Clipper Headers tab in the Application Options dialog box:

2. Choose Add.

A standard Open dialog box appears.

3. Choose the .CH file to be included.

4. Select OK.

5. Repeat steps 2–4 for each .CH file you want to include.

The maximum is 16.

Creating Libraries and DLLs

In addition to applications, CA-Visual Objects also allows you to create libraries
and DLLs. Either type allows you to store commonly used code in a single
location.

Note: See the “Operating Environment” chapter of the Programmer’s Guide for a
more detailed discussion of the benefits and the circumstances under which you
should use a DLL rather than a library.

Creating a New Application

Chapter 3: Using the Repository Explorer 97

To create either a library or DLL from “scratch,” select the appropriate radio
button in the Application Type radio button group on the Application Wizard’s
Application Type and Name page:

Selecteitherbuttonto
createalibraryorDLL

You can also change the type of an existing application to either Library or a DLL
using the Application Options dialog box. For example, select the Library radio
button in the Type radio button group to change the Order Entry sample
application to a library, like so:

Note: As mentioned earlier, the Application Options dialog box has been
updated in CA-Visual Objects 2.7. The Application tab page now displays four
new options: Description, .MDF File, Create VOM File, and Executable for Debug
Session. Additionally, two others have new values. Specifically, the Type radio
button group box offers the following choices: Windows Application, Console
Application, Library, and DLL or ActiveX. Moreover, system variables, such as
%ExecutableDir%, may be entered in the Path for EXE and DLL Files edit control.
For more detailed information, see the online help.

Note, however, that some options in this dialog box, such as Path for EXE and
DLL Files, are not available for libraries.

Creating a New Application

98 CA-Product User Guide

Manipulating Applications

The Repository Explorer allows you to manipulate your applications and
libraries—for example, you can rename an application, move an application to a
different project, delete an application, or print the contents of an application.

Renaming Applications

If you want to rename an application:

1. Right-click on the application in the Repository Explorer (for example, OLE
Application).

The local pop-up menu appears:

2. Choose Rename from the local pop-up menu.

A single-line edit control now surrounds the specified application, indicating
that you are now in edit mode:

Single-lineeditcontrol

Note: The Rename command is available only via a local pop-up menu.
However, you can also just single-click on an application to open the single-
line edit control.

3. Enter the new name in the single-line edit control.

4. Press Enter.

The new application name appears in the Repository Explorer tree.

Note: You cannot rename any CA-Visual Objects system files.

Creating a New Application

Chapter 3: Using the Repository Explorer 99

Moving Applications

To move an application from one project to another:

1. Click on the application in the list view pane.

2. Choose the Cut command from the Edit menu.

3. Highlight the target project in the tree view pane, and then choose the Paste
command from the Edit menu.

The specified application is removed from the original project, and added to the
target project.

Copying Applications

To copy an application from one project to another:

1. Click on the application in the list view pane.

2. Choose the Copy command from the Edit menu.

3. Highlight the target project in the tree view pane, and then choose the Paste
command from the Edit menu.

The specified application is copied to the target project.

Deleting Applications

If you want to delete an application:

1. Right-click on the application in the Repository Explorer (for example, OLE
Application).

The local pop-up menu appears.

(Alternatively, select the Delete command from the Edit menu.)

2. Choose Delete from the local pop-up menu.

The Confirm Deletion dialog box appears:

3. Click Yes.

The application is deleted from the repository.

Creating Modules

100 CA-Product User Guide

Note: See your online help system for information about the other local pop-up
menu commands.

Importing and Exporting Applications and Libraries

CA-Visual Objects allows you to import and export entire applications; they are
stored in application export files (.AEF).

Tip: The export option can be used to create a backup copy of the
application.

For details, see Chapter 12: Importing and Exporting Applications in this guide.

Creating Modules
From within the Repository Explorer you can:

■ Create, open, copy, rename, delete, print, import and export, and debug
modules

■ Access other editors, the Debugger, and the Error Browser

Creating an Internal Module

When creating modules in CA-Visual Objects, you typically want to create them
as internal modules, so that they are stored and maintained by the repository.
To create an internal module:

1. With the current application highlighted, click on the New toolbar button.

Alternatively, choose the New Module command from the File menu.

The Create Module dialog box appears:

2. Type a name in the Enter Module Name edit control.

Creating Modules

Chapter 3: Using the Repository Explorer 101

Module names can be as long as 30 characters, including spaces and special
characters. The default is Module <n>, where <n> is an integer.

3. Choose OK.

Creating an External Module

You can also create a module that is external—that is, it is not stored in the
repository, but is actually a link to an external source file. The Associate button
in the Create Module dialog box allows you to associate a new module with an
external source file on disk.

You work with an external file like any other module—viewing, editing, and so
on. External modules are imported into the repository when the module is
created, and CA-Visual Objects will keep the source code in the repository in
synchronization with the source code in the external file. This is accomplished
by reading the file from disk whenever source code is needed by the repository
and writing all changes made in the Source Code Editor to the external file when
you save changes.

Creating an
External Module

To create an external module:

1. With the current application highlighted, click on the New toolbar button.

The Create Module dialog box appears:

2. Choose the Associate button.

A standard Open dialog box appears:

Creating Modules

102 CA-Product User Guide

3. Select the desired text-based source file (for example, CHGINDEX.PRG in
the GSTUTOR folder):

4. Choose Open.

You are returned to the Create Module dialog box, and the Enter Module
Name edit control is filled in with the source file’s file name:

5. Optionally, type a new name in the Enter Module Name edit control.

6. Choose OK.

Creating Modules

Chapter 3: Using the Repository Explorer 103

CA-Visual Objects creates a module that can be opened, renamed, and
manipulated like any other. However, it associates a different graphic to the
module button to indicate that it is an external module:

Externalmodulegraphic

Type=ExternalModule

Removing the Link
to an External File

Later you can optionally save the external module as an internal module by
removing its link to the external text-based source file.

To remove the link between a module and an external file:

1. Right-click on the selected module.

A local pop-up menu appears:

2. Select the Cut Link to External File command.

Creating Modules

104 CA-Product User Guide

The Repository Explorer changes accordingly:

Internalmodulegraphic

Type=Module(Internal)

For more detailed information about using external text-based source files, see
the Chapter 12: Importing and Exporting Applications chapter.

Setting Module Properties

You can add a description for the module, as well as set debugging and compiler
options at the module level in CA-Visual Objects.

Description Property For example, to add a description that will appear in the Description column of
the Repository Explorer’s list view:

1. Right-click on the specified module.

The local pop-up menu shown earlier appears.

Note: In this version of CA-Visual Objects, you can also access the
Properties (Module) dialog box directly by using the Alt+Return key
combination.

2. Select the Properties command from the local pop-up menu.

Creating Modules

Chapter 3: Using the Repository Explorer 105

The Properties (Module) dialog box appears:

Notice that the Module Properties tab reflects the module's history, including
vitality, number of entities, creation date, and so on.

Note: This dialog box has been changed slightly in CA-Visual Objects 2.7.
The Debug drop-down list box has been replaced by three radio buttons:
Auto, On, and Off. Additionally, it indicates whether or not source control is
available and, if so, the source control status of the specified module. For
detailed information about the new Source Code Control Interface, refer to
the online help.

3. Enter a description in the Description edit control.

Debug Option 4. Optionally, reset the debugging option for this module.

Valid choices are: <Auto>, On, and Off. See Setting Debugging Options in
the “Debugging Your Applications” chapter for more information.

5. Click OK.

Creating Modules

106 CA-Product User Guide

Compiler Options Just as you can override the system-wide, default compiler options at the
application level, you can do the same at the module level.

To set module-specific compiler options:

1. Click the Module Compiler Options tab in the Properties dialog box:

2. Reset any of the compiler options.

Refer to Setting Compiler Options in “Working in the Desktop” for
complete descriptions of these options.

3. Click OK.

Creating Modules

Chapter 3: Using the Repository Explorer 107

Editing Modules

Opening Modules In CA-Visual Objects, opening a module simply means to display its entities in
the Repository Explorer so that you can view or edit its contents.

To open an existing module, simply click on the module and all of the entities in
that module are displayed. For example, if you choose the Standard SQL Menus
module of the Order Entry application, the result is:

StandardSQLMenus'entities

Once a module is opened, you can access a module’s source code and edit it—
either at the module level or the entity level.

Editing an Entire
Module

To access all of the module’s source code (not just the code for an individual
entity within that module):

1. Right-click on the specified module (for example, Standard SQL Menus in
Order Entry) in the Repository Explorer’s tree view pane.

A local pop-up menu appears:

2. Choose the Edit All Source in Module menu command.

Creating Modules

108 CA-Product User Guide

The Source Code Editor appears:

You can now edit all of the module’s source code. For more information about
editing source code, see Chapter 6: Using the Source Code Editor.

Manipulating Modules

The Repository Explorer also allows you to manipulate your modules. For
example, you can move and copy modules from one application to another using
the standard Windows drag-and-drop techniques. You can also rename or delete
modules.

Moving Modules

To move a module from one application to another:

1. With the application highlighted in the Repository Explorer’s tree view pane,
click on the specified module in the list view pane (for example, the
Chngindex module in Order Entry).

Creating Modules

Chapter 3: Using the Repository Explorer 109

2. Hold the left mouse button down and drag the module to the desired
application (for example, OLE Application) in the tree view pane, as shown:

Drag-and-dropmoduleontoapplication

Tip: Alternatively, use the Cut and Paste commands on the Edit menu.

Copying Modules

To copy a module from one application to another:

1. Click on the module in the list view pane (for example, the Chngindex
module in Order Entry).

2. Hold down the Ctrl key and drop-and-drag the module to the desired
application (for example, OLE Application).

Now both applications contain copies of the Chngindex module:

Creating Modules

110 CA-Product User Guide

Tip: Alternatively, use the Copy and Paste commands on the Edit menu.

Renaming Modules

If you want to rename a module:

1. Right-click on the module in the Repository Explorer (for example,
Chngindex in Order Entry).

A local pop-up menu appears:

2. Choose Rename from the local pop-up menu.

A single-line edit control now surrounds the module:

Single-lineeditcontrol

Note: The Rename command is available only via a local pop-up menu.
However, you can also just single-click on an item to open the single-line edit
control.

3. Enter the new name in the edit control (for example, Index).

4. Press Enter.

Creating Modules

Chapter 3: Using the Repository Explorer 111

The name change is reflected in the Repository Explorer:

Newname

Deleting Modules

If you want to delete a module from the repository:

1. Right-click on the module in the Repository Explorer.

A local pop-up menu appears.

(Alternatively, select the Delete command from the Edit menu or use the Del
key.)

2. Choose Delete from the local pop-up menu.

The Confirm Deletion dialog box appears.

3. Click Yes.

Note: See your online help system for more information about the local pop-up
menu commands for manipulating modules.

Importing and Exporting Modules

CA-Visual Objects allows you to import and export entire modules; they are
stored in module export files (.MEF).

Tip: The export option can be used to create a backup copy of the module.

For details, see Chapter 12: Importing and Exporting Applications in this guide.

Creating Entities

112 CA-Product User Guide

Creating Entities
As stated earlier, entities form the lowest level in the application hierarchy. An
entity is a component that has a distinct name and can be edited (for example, a
function, procedure, global, constant, or form).

To create a new entity, click on the New toolbar button at the module level in
the Repository Explorer and then select the appropriate editor for the type of
entity you want to create from the local pop-up menu that appears. For
example, choose Menu Editor to create a new binary menu entity using the
Menu Editor.

CA-Visual Objects places the new entity in the current module. Therefore, you
may first want to switch to another module or create a new one before clicking
the New Entity button. (See Accessing the Editors in “Working in the Desktop”
for details.)

Editing Entities

Opening Entities Opening an entity in CA-Visual Objects simply means to display the entity in its
associated editor.

To open an existing entity:

1. Double-click on that entity or right-click on it to open a local pop-up menu:

2. Choose the Edit command.

In all cases, the appropriate editor is invoked. For example, the Source Code
Editor appears if the EmptyShellMenu source entity in the Standard SQL
Menus module of Order Entry is selected:

You can now edit the source code for the EmptyShellMenu source entity.

Creating Entities

Chapter 3: Using the Repository Explorer 113

Note: If you double-click on a source code entity that is associated with an
external module, the source code for the entire external file is loaded in the
Source Code Editor—not just the source code for the current entity.

Copying Entities To copy an entity from one module to another:

1. Click on the entity in the list view pane.

2. Hold down the Ctrl key and drop-and-drag the module to the desired
module.

Now both modules contain copies of the specified entity.

Deleting Entities If you choose the Delete command from the local pop-up menu or use the Del
key, the system automatically deletes the entity from the module.

Setting Entity Properties

You can add a description for the entity, as well as set debugging and compiler
options at the entity level in CA-Visual Objects.

Description Property For example, to add a description that will appear in the Description column of
the Repository Explorer’s list view:

1. Right-click on the specified entity (for example, the EmptyShellMenu source
entity in the Standard SQL Menus module).

The local pop-up menu shown earlier appears.

Note: In this version of CA-Visual Objects, you can also access the
Properties (Entity) dialog box directly by using the Alt+Return key
combination.

2. Select the Properties command from the local pop-up menu.

The Properties (Entity) dialog box appears:

Notice that the Entity Properties tab reflects the entity's history, including
vitality, type and subtype, creation date, and so on.

Creating Entities

114 CA-Product User Guide

Note: This dialog box has been changed slightly in CA-Visual Objects 2.7.
The Debug drop-down list box has been replaced by three radio buttons:
Auto, On, and Off. Additionally, it indicates whether or not source control is
available and, if so, the source control status of the specified entity. For
detailed information about the new Source Code Control Interface, refer to
the online help.

3. Enter a description in the Description edit control.

Debug Option 4. Optionally, reset the debugging option for this entity.

Valid choices are: <Auto>, On, and Off. See Setting Debugging Options in
the “Debugging Your Applications” chapter for more information.

5. Click OK.

Compiler Options Just as you can override the system-wide, default compiler options at the
application or module level, you can do the same at the entity level.

To set entity-specific compiler options:

1. Click the Entity Compiler Options tab in the Properties dialog box:

2. Reset any of the compiler options.

Refer to Setting Compiler Options in “Working in the Desktop” for
complete descriptions of these options.

3. Click OK.

Printing in the Repository Explorer

Chapter 3: Using the Repository Explorer 115

Printing in the Repository Explorer
There are multiple print options available in the Repository Explorer. You can
either print the entire CA-Visual Objects 2.7 tree or just an individual listing of
projects, applications, modules, or entities.

Printing the CA-Visual Objects 2.7 Tree

You can print a list of all projects, applications, modules, and entities stored in
the repository using the Print toolbar button at the root level in the Repository
Explorer. Alternatively, select the Print command from the File menu.

In either case the Printing Visual Objects 2.7 Tree dialog box appears:

Refer to the online help system for more detailed information about this standard
Print dialog box.

Printing Lists

You can also select the Print command from a local pop-up menu at the
Repository Explorer's root level to print just a list of all projects within the
Repository Explorer.

Additionally, at each subsequent level of the Repository Explorer, you can select
the List command from a local pop-up menu to print a list of individual items
within the current project, application or module.

For example, if you select the List local menu command at the Default Project
level, the Printing Application List dialog box appears. Complete as desired and
choose OK. A listing of all projects defined to the Default Project will be printed.

Refer to the online help system for more detailed information about the Printing
Project List, Printing Application List, Printing Module List, and Printing Entity
List dialog boxes.

Chapter 4: Using the Window Editor 117

Chapter

4 Using the Window Editor

The Window Editor allows you to create several types of windows based on
subclassing the Window classes from the GUI Classes library. It provides
predefined forms and drag-and-drop placement of buttons, edit controls, list
boxes, combo boxes, toolbars, sliders, and other GUI and common controls. You
can then specify properties for your forms and their controls, including color,
font, annotation, online help keyword, and data server links. When you design
and save a form, the Window Editor automatically generates object-oriented
code that you can use in your application to create and activate the window.

This chapter describes how to use the Window Editor. In it, you will learn how
to:

■ Create a window by selecting a window type and customizing the
corresponding predefined form

■ Specify properties for the form (such as caption, description, type of mouse
pointer, and help keyword)

■ Place controls (such as push buttons and list boxes) on the form and specify
properties for them

■ Create predefined data and data dialog windows linked to data servers
using the Auto Layout feature

■ Make controls on data and data dialog windows data-aware, binding them to
data server fields

■ Modify form and control properties

■ Print the form using the Window Editor

■ Use the window you have created in an application

Important! The GUI Classes and System Classes libraries must be included in the
search path of your application in order to use a form generated by the Window Editor.
The proper data server library, RDD Classes or SQL Classes, must also be included if the
form is linked to a data server. See Setting the Search Path in “Using the Repository
Explorer” for more information.

Window Types

118 CA-Product User Guide

Window Types
One of the key properties of a window is its type, which you define when you
first load the Window Editor to create a new window. (See Creating a Window
later in this chapter.) The following window types are available—each one
represents a subclass of the Window class.

Note: A new window type—OLEDataWindow—was added in this version of
CA-Visual Objects. An OLE data window is essentially the same as a regular
data window, described below, except that it contains additional logic for the
deactivation of an in-place active OLE object by clicking anywhere in the
window. For more detailed information about OLE data windows, refer to the
online help.

DataWindow DataWindow defines a window that may be linked to a data server. You can link
(bind) many types of controls to data server fields using the field name as the
name of the control. Also, you must specify a field spec for a data-aware control
to inherit such properties as picture, validation rules, and description.
Consequently, data windows are often referred to as data-aware windows.

A blank data window form contains no default controls:

At runtime, the data window will contain appropriate default controls (such as
title bar, system menu, and minimize and maximize buttons), depending on how
the window is used. Scroll bars will also be added automatically at runtime
when the data window is resized and needs to be scrolled.

Note that when creating a data window, you can use the Auto Layout feature to
create controls based on the fields in the associated data server.

See Chapter 8: Creating Data-Aware Windows for detailed information about
creating data windows and using the Auto Layout feature. You may also want
to review Chapter 7: Defining Data Servers and Field Specifications for more
information about data servers and field specs, in general.

Window Types

Chapter 4: Using the Window Editor 119

DataDialog DataDialog defines a window that combines features from a data window and a
dialog window, allowing for the creation of modal data-aware windows.
Whereas a regular data window is an MDI child window, a data dialog window
behaves like a modal dialog window. This means that the end user must
respond to the window and close it before continuing with the application.

Like a data window, a blank data dialog form contains no default controls:

Similarly, at runtime the data dialog window will also contain appropriate
default controls (such as title bar, system menu, and minimize and maximize
buttons), depending on how the window is used. However, scroll bars will not
be added automatically at runtime because the data dialog window cannot be
resized.

Note that when creating a data dialog window, you can also use the Auto Layout
feature to create controls based on the fields in the associated data server.

See Chapter 8: Creating Data-Aware Windows for more detailed information
about creating data dialog windows and using the Auto Layout feature.

DialogWindow DialogWindow defines a secondary, usually transient subwindow—a dialog or a
dialog box—used to collect or display data. The program creates either modal
dialog boxes that require the user to respond before the application can proceed,
or modeless dialog boxes.

Note: Neither modal dialog boxes nor modeless dialog boxes are data-aware.

Window Types

120 CA-Product User Guide

A blank dialog window form includes a predefined title bar and a Close button,
both of which are fully functional:

Titlebar
Closebutton

ShellWindow ShellWindow defines the main window within an MDI application.

A blank shell window form includes a predefined title bar, system menu, and
Minimize, Maximize, and Close buttons, all of which are fully functional:

Systemmenu

Titlebar

Minimizebutton

Maximizebutton

Closebutton

Workspace Overview

Chapter 4: Using the Window Editor 121

Workspace Overview
The Window Editor is the primary workspace in the IDE for creating, viewing,
and modifying windows. When you are in the Window Editor, you can:

■ Create, edit, cut, copy and paste window controls, and print the form

■ Define properties for forms and their controls

■ Access other browsers and editors, including the Source Code Editor for
defining actions associated with push button controls

The Window Editor has its own toolbar, status bar, client area, tool palette, and a
Properties window. For example, when first loaded for a new data window, it
looks like this:

WindowEditortoolbar

PropertieswindowWindowform

Toolpalette

Statusbar

Clientarea

Window Forms

When you create a new window, the Window Editor’s client area contains a
blank, prepainted window template, or form, based on the window type you
have selected. This form can then be customized. (These forms were shown
earlier in this chapter.) For example, a ShellWindow form contains a title bar, a
system menu button, and minimize and maximize buttons as defaults, whereas a
DialogWindow form has only a default title bar and system menu button.

Workspace Overview

122 CA-Product User Guide

The Tool Palette

Note: In CA-Visual Objects 2.7, there are new Windows common controls—
ComboBoxEx control, date time picker, IP address, and month calendar—and a
new CA-Visual Objects custom control, data list view. Naturally, the Window
Editor’s tool palette has been updated to reflect these additions. For detailed
information, see the online help.

The Window Editor’s tool palette contains a set of icons that allow you to quickly
and easily place controls on your forms:

Row1: Pointer,Push
Button,CheckBox,

RadioButton,

Single-lineEditControl

Row3: GroupBox,

RadioButtonGroup,

FixedText,FixedIcon,

FixedBitmap

Row2: Multi-lineEdit

Control,ListBox,Combo

Box,VerticalScrollBar,

HorizontalScrollBar

Row4: Sub-dataWindow,

ProgressBar,Horizontal

Slider,VerticalSlider,

VerticalSpinner

Row6: AnimationControl,

HotkeyEdit,OLEObject
Row5: Horizontal

Spinner,TabControl,

ListView,TreeView,

RichEditControl

Note: The tool palette is not available for shell windows because shell windows,
by convention, do not have controls.

The Toolbar

The Window Editor’s toolbar contains the following buttons:

Open Print Execute Cut Paste AutoLayout

Save Build Copy

Show/HideGridTraceExpression

Browse/FormView

All of the buttons except Build, Execute, and Trace Expression are discussed in
this chapter. See Chapter 2: Working in the Desktop and Chapter 11:
Debugging Your Applications for information about these buttons.

Workspace Overview

Chapter 4: Using the Window Editor 123

Tip: For a quick description of each toolbar button, look at the tooltip
windows as the mouse pointer passes over the buttons.

The Properties Window

Note: See the online help for detailed information about new and updated
window properties.

When the Window Editor is launched, a modeless, or floating, Properties
window, shown below, is automatically opened. Initially, this window allows
you to specify properties for the current form:

PropertiesValuecells

Tabs

Historylistbox

The Property column lists all properties that can be specified for the currently
selected form or control, and the Value column contains the corresponding cells
where you specify a value. For example, you can specify text that should appear
in the status bar, a keyword for use in a context-sensitive help system, or the type
of mouse pointer. The available properties vary depending on the window type,
and are grouped logically within tabbed pages, such as HyperLabel and Mouse
Events.

The history list box at the top of the Properties window allows you to switch
easily to any other control already defined to your form.

Workspace Overview

124 CA-Product User Guide

Tip: You can change both the layout of the tabbed pages in any Properties
window and the defaults for all of their properties by modifying the
CAVOWED.INF file. For detailed information about the CAVOWED.INF
and CAVOWED.TPL files, refer to the CA-Visual Objects 2.7 Software
Development Kit.

As you design the form, the Properties window takes on different roles,
depending on the currently selected item in the workspace. For example, if you
place a combo box control in the form, the Properties window is used to specify
properties for the combo box control when it is selected:

Comboboxcontrol

Notice that the title bar and the contents of the History list box change, and
different tabs appear based on what is currently selected.

Note: See the online help for detailed information about new and updated
control properties.

Regardless of what is currently displayed in the Properties window, it behaves in
the same manner. To use it, simply highlight a property by clicking on it, then
use one of the following techniques for specifying its value:

■ Enter a new value by typing directly into a single-line edit control or combo
box

■ Click on the arrow button and choose a new value from a drop-down list

Creating a Window

Chapter 4: Using the Window Editor 125

■ Click on the Ellipsis button (shown below) and

– Enter a value using the Source Code Editor or

– Fill in a corresponding dialog box

Ellipsisbutton

The Properties window is discussed in greater detail in the Specifying Window
Properties and Specifying Control Properties and Styles sections later in this
chapter.

Note: The Properties window always remains open until explicitly closed (using
the system menu or the Show Properties Window command) or until its owner,
the Window Editor window, is closed or deactivated. If explicitly closed, reopen
it at any time using the Show Property Window command on the Window
menu. Also, because it is a child window, the Properties window is affected by
actions to its owner. For example, if the owner window is minimized to an icon,
the Properties window will also be minimized.

Creating a Window
Now that you have a general overview of what you can do with the Window
Editor, you are ready to use it to define a new window. In this section, you will
learn how to:

■ Create a window by selecting a window type and predefined form

■ Specify properties for the form

■ Place controls on the form and specify properties for them

■ Modify form properties and controls

This section gives you a complete description of all possible properties for all
window and control types and discusses creating a window in a general sense.
The “Creating Data-Aware Windows” chapter later in this guide gives you more
detailed information about defining data and data dialog windows in particular.

Creating a Window

126 CA-Product User Guide

Basic Steps To create a window, perform the following steps:

1. Start the Window Editor.

Like all CA-Visual Objects tools, the Window Editor is accessed using the
Tools menu or the New Entity toolbar button.

For all new forms that you create, you must first define the window type.
The Window Editor dialog box automatically appears, allowing you to
choose a window type and enter a name for the form:

Note: This dialog box has been updated in this version of CA-Visual Objects
to reflect the addition of the new window type, OLEDATAWINDOW.

Note: You can choose to edit an existing form instead
of creating a new one by clicking Open. When clicked, the Window Editor
dialog box changes so that it contains an Open Window list box, from which
you can choose an existing form entity. Note that there are also a New
button and a Clone button. The New button, when clicked, toggles you back
to the above dialog box. The Clone button creates a duplicate of an existing
form in the current module, appending an underscore and a number to the
original form’s name. For example, if you clone the Standard Application’s
HelpAbout window, the Window Editor is launched with a cloned form,
HelpAbout_1.

2. Choose the type of window you want to define from the New Window Type
list box (for example, DIALOGWINDOW).

3. Enter a name for the new form in the Name edit control (for example, Splash
Screen).

Blank spaces within the name will be converted to underscores. This name
will be used in the source code generated by the Window Editor to create a
class entity (among others) that is a subclass of the window type that you
selected above; therefore, it must not conflict with other entity names in your
application. The OK button is disabled until you enter a name.

4. Choose OK to launch the Window Editor.

Creating a Window

Chapter 4: Using the Window Editor 127

A predefined form corresponding to the window type is displayed in the
Window Editor. For example:

5. Specify properties for the form. For example, enter Order Entry in the
Caption property’s value cell.

See Specifying Window Properties later in this chapter for more information.

6. Customize the form by selecting controls from the tool palette (or using the
Select from Palette menu commands), placing them in the desired locations
on the blank form. For example, place three Fixed Text controls in the center
of the sample Order Entry splash screen.

You will also need to add action code; and you can add other controls, like a
fixed icon for your company logo, or even an animation control to amuse the
end user while the application is loading. See Placing Controls on a Form
later in this chapter for more information.

Note: For a data-aware window, you can also use the Auto Layout feature
to place predefined controls on the form. See Chapter 11: Debugging Your
Applications for more information.

7. Specify properties for each control.

For example, enter the following text, respectively, in the Caption property
for each of the Fixed Text controls: Order Entry, A CA-Visual Objects
Application, and Beta Version.

Of course, you can define other properties for the text, such as font style,
size, and color. See Specifying Control Properties and Style Settings later in
this chapter for more detailed information. Also, refer to the online help for
new and updated properties.

8. Choose the Save toolbar button to save the form. (Later you can edit the
form, adding the necessary code to actually invoke Order Entry.)

Note: This last step can be repeated whenever you make changes to the
form and want to save your work without closing the Window Editor.

Creating a Window

128 CA-Product User Guide

9. Choose the Test Mode command from the View menu to view the splash
screen as it will appear to the end user. For example:

Note: The new Application Gallery can automatically create splash screens and
Help About dialog boxes for your applications. For detailed information about
these application options that are exclusive to the Application Gallery, see the
online help.

Tip: The Open toolbar button can be used at any time to begin editing
another form without shutting down the Window Editor. Unless you save
the form you are currently working with before starting a new session, you
will be prompted to do so before the Window Editor opens the new form for
editing.

Specifying Window Properties

You define properties for a form using the Properties window mentioned earlier.
The Properties window for a data window is shown again below:

Left/rightarrowbuttons

Creating a Window

Chapter 4: Using the Window Editor 129

As mentioned earlier, the Property column in each tab of the Properties window
lists the properties that can be specified for the currently selected form, and the
Value column contains the corresponding cells where you specify a value. The
HyperLabel, Mouse Events, Window Events, Control Events, Common Control
Events, and Menu Events tabs are common to all window types. Furthermore, the
CommonControl Events, TreeView Events, and ListView Events tabs are
common to all windows except shell windows. Unique to each window type,
however, is a namesake tab; and Dialog Windows also has a Styles tab.

Tip: Use the Left and Right arrow buttons to access any tabs that may be
hidden from view.

Common Properties

Many of the window properties—such as Caption, Name, Description, Help
Context, as well as mouse, window, control, and menu event controls—are
common to all windows. Others are specific to each window type. Descriptions
of the common properties in tab order follow immediately. (Properties that are
unique to each window type are described afterwards.)

Note: In this version of CA-Visual Objects, data windows and data dialog
windows have several new properties, including Browser Inherits From,
Columns Inherit From, Defer USE, Allow Server Close, and Quit on Close. Other
common properties have been updated. For example, the Background Color
property now gives you immediate access to CA-Visual Objects standard Color
dialog box for defining a form’s background color. Therefore, refer to the online
help for detailed information about all window properties.

HyperLabel Tab

Caption Enter the text that will appear in the form’s title bar.

Name Enter the name of your form. This property value is required and is
automatically filled in with the name you entered in the initial dialog box when
you first create the form. The form name is used in the source code generated by
the Window Editor to create a class entity, a form entity, and any resource
entities needed to create the window; therefore, it must be unique.

Description Enter the description text. This text will not appear in the application’s status
bar, but may be accessed since it is part of the hyperlabel for a form.

Creating a Window

130 CA-Product User Guide

Help Context Enter a unique keyword for the form that can be used to identify it in a context-
sensitive help system. This property can consist of letters, digits, and the
underscore character (_), but it cannot contain any other characters, including
blanks or punctuation. (For more information on creating a help file,
refer to the “GUI Classes” chapter in the Programmer’s Guide.)

Mouse Events Tab

Enter source code that you want to run when a specific mouse-related event
occurs. For example, you can specify event action code for the following events:
MouseButtonDoubleClick, MouseButtonDown, MouseButtonUp, MouseDrag,
and MouseMove.

To enter the source code for an undefined event in any of the Events tabs, click
the Ellipsis button in the appropriate Value cell. The Source Code Editor will be
launched with a skeleton method for the event (for example,
MouseButtonDown):

Entereventsourcecodehere...

You can write the code for the event and exit the Source Code Editor to save your
changes. Your source code will be saved, along with the other code generated by
the Window Editor; and the appropriate Value cell in the Properties window is
updated from “Not Defined” to “Defined.”

Tip: You can modify the generated code by changing the CAVOWED.INF
and CAVOWED.TPL files. For detailed information about these files, refer
to the CA-Visual Objects 2.7 Software Development Kit.

Window Events Tab

Enter source code that you want to run when a specific window-related event
occurs. For example, you can specify event action code for the following events:
Activate, Close, Deactivate, Draw, Expose, FocusChange, HelpRequest, Move,
QueryClose, and Resize.

Creating a Window

Chapter 4: Using the Window Editor 131

Control Events Tab

Enter source code that you want to run when a specific control-related event
occurs. For example, you can specify event action code for the following events:
ButtonClick, ButtonDoubleClick, EditChange, EditFocusChange, EditScroll,
Keydown, Keyup, ListBoxClick, ListBoxSelect, HorizontalScroll, and
VerticalScroll.

CommonControl Events Tab

Enter source code that you want to run when a specific common control-related
event occurs. For example, you can specify event action code for the following
events: AnimationStart, AnimationStop, RichEditDropFiles, RichEditProtected,
RichEditSelChange, RichEditUndoLost, TabSelect, TabSelChanging, and
TabKeyDown.

Note: The CommonControl Events tab is not available for shell windows.

TreeView Events Tab

Enter source code that you want to run when a specific tree view control-related
event occurs. For example, you can specify event action code for the following
events: TreeViewMouseDown, TreeViewMouseDoubleClick, TreeViewItemDrag,
TreeViewItemEdit, TreeViewItemDelete, TreeViewItemExpanded,
TreeViewItemExpanding, TreeViewKeyDown, TreeViewSelChanged, and
TreeViewSelChanging.

Note: The TreeView Events tab is not available for shell windows.

ListView Events Tab

Enter source code that you want to run when a specific list view control-related
event occurs. For example, you can specify event action code for the following
events: ListViewItemDrag, ListViewItemEdit, ListViewColumnClick,
ListViewItemDelete, ListViewKeyDown, ListViewItemMouseDown, and
ListViewMouseDoubleClick.

Note: The ListView Events tab is not available for shell windows.

Menu Events Tab

Enter source code that you want to run when a specific menu-related event
occurs. For example, you can specify event action code for the following events:
MenuCommand, MenuInit, and MenuSelect.

Creating a Window

132 CA-Product User Guide

Shell Window Properties

The ShellWindow tab, shown below, allows you to define the physical
appearance of your shell window—including its icon and mouse style—and to
choose a binary menu entity and a help file to be associated with it.

Note: Refer to the online help for detailed information about new and updated
shell window properties.

The ShellWindow tab contains the following properties:

Inherit from Class Select the Window class or subclass from which the shell window will inherit its
basic characteristics. Valid choices are <Auto>, STANDARDSHELLWINDOW,
and all classes derived from the ShellWindow class that are in the current search
path. The default setting is <Auto>.

Icon Name Enter or choose the name of the Icon subclass defining the icon to be displayed
when a shell window is minimized. Choices include all icon entities defined for
the current application. The default value is <Auto>, which means a default icon
is displayed. See Chapter 10: Using the Image Editor for information on
defining icons.

Mouse Pointer Enter or choose the name of the Pointer subclass defining the mouse style for a
shell window. Choices include all cursor entities defined for the current
application. The default value is <Auto>, which means the system pointer is
used. See Chapter 10: Using the Image Editor for information on defining
cursors.

Menu Enter or choose the name of the menu to associate with a shell window. Valid
choices are <Auto>, EMPTYSHELLMENU, STANDARDSHELLMENU, and all
classes derived from Menu class that are in the current search path. The default
value is <Auto>, which means no menu is used. See Chapter 5: Using the
Menu Editor for information on defining menus.

Creating a Window

Chapter 4: Using the Window Editor 133

Context Menu Enter or choose the name for a local pop-up menu to be accessed by right-
clicking. Valid choices are <Auto>, EMPTYSHELLMENU,
STANDARDSHELLMENU, and all classes derived from the Menu class that are
in the current search path. The default value is <Auto>, which means no menu is
used.

Help File Name The path and file name for the .HLP file you want to use with the form. Then
you can assign a help topic to the form using the Help Context property. The
designated help file will also be used to provide context help for the controls on
the form. If no help file is assigned, the help file for the owner window will be
used. (For more information on creating a help file, refer to the “GUI Classes”
chapter in the Programmer’s Guide.)

Width Enter the horizontal size of the shell window in pixels. The default is 400.

Height Enter the vertical size of the shell window in pixels. The default is 300.

Data Window Properties

The DataWindow tab, shown below, allows you to define the physical
appearance of your data window—including its icon, background color, and
font—and to choose a binary menu entity, help file, and data server to be
associated with it.

Note: Refer to the online help for detailed information about new and updated
data window properties.

Creating a Window

134 CA-Product User Guide

The DataWindow tab contains the following properties:

Inherit from Class Select the Window class or subclass from which the data window will inherit its
basic characteristics. Valid choices are <Auto>, STDDATAWINDOW, and all
classes derived from the DataWindow class that are in the current search path.
The default setting is <Auto>.

Icon Name Enter or choose the name of the Icon subclass defining the icon to be displayed
when a data window is minimized. Choices include all icon entities defined for
the current application. The default value is <Auto>, which means a default icon
is displayed. See Chapter 10: Using the Image Editor for information on
defining icons.

Accelerator Table This property is available for data-aware windows only. If you do not want a
menu to be associated with the form, you may still want to designate a table of
accelerator keys that can be used. Valid choices are: <Auto>,
EMPTYSHELLMENU, STANDARDSHELLMENU, and all classes derived from
the Menu class that are in the current search path.

Note: If a menu is associated with the form, then the accelerator keys defined in
the Menu Editor will be used; in this case the default <Auto> setting should be
used.

Background Color Enter or choose the color for a data window background from a drop-down list
box. The default value is <Auto>, which means the currently selected system
color is used.

Menu Enter or choose the name of the menu to associate with a data window. Choices
include <Auto>, EMPTYSHELLMENU, STANDARDSHELLMENU, and all
classes derived from the Menu class that are in the current search path. The
default value is <Auto>, which means the no menu is used. See Chapter 5:
Using the Menu Editor for information on defining menus.

Context Menu Enter or choose the name for a local pop-up menu to be accessed by right-
clicking. Valid choices are <Auto>, EMPTYSHELLMENU,
STANDARDSHELLMENU, and all classes derived from the Menu class that are
in the current search path. The default value is <Auto>, which means no menu is
used.

Help File Name The path and file name for the .HLP file you want to use with the form. Then
you can assign a help topic to the form using the Help Context property. The
designated help file will also be used to provide context help for the controls on
the form. If no help file is assigned, the help file for the owner window will be
used. (For more information on creating a help file, refer to the “GUI Classes”
chapter in the Programmer’s Guide.)

Creating a Window

Chapter 4: Using the Window Editor 135

View As This property is available for data-aware windows only. Choose the default
view to use when the data window is initially accessed. Every data window can
operate in either form view, displaying multiple fields for a single record as fixed
text and data controls, or browse view, using a spreadsheet-like data browser that
displays multiple fields and records in a table in the data window. The available
choices for this property, therefore, are #FormView or #BrowseView.

The default value is <Auto>, which means #BrowseView is used for all data
windows placed as controls, such as a detail window nested within another data
window, and #FormView is used for all other data windows.

Note: Clicking the Browse/Form View toolbar button changes the Window
Editor display to a different view, as well as changing the value of this property.

Tip: Data windows are different from other windows in that they can be
placed on other forms as controls (similar to a check box or push button).
When used as controls, they are referred to as sub-data windows. (See
Chapter 8: Creating Data-Aware Windows for more information about sub-
data window controls.)

Note: You can give the end user the option of switching back and forth between
form and browse view at runtime by associating a standard menu with the data
window using the Menu property. The commands for switching between
browse and form view are part of the View menu defined in the default
StandardShellMenu binary menu entity, which is included automatically in
every GUI application that you create based on the Standard Application. See
Chapter 8: Creating Data-Aware Windows for more information on
customizing these two views.

Clipper Keys If True, allows the user to navigate through a form by using the Direction and
Return keys. Otherwise the Windows default navigation keys (Tab key) are
effective. Valid values are: <Auto>, True, and False. The default is <Auto>.

Data Server This property is available for data-aware windows only. In it, you enter or
choose the name of the data server that is associated with this form. This
property is required and is automatically filled in when you choose the Edit Auto
Layout menu command. See Chapter 8: Creating Data-Aware Windows for
more information.

Font Choose a font to use for the form text. A standard Font dialog box appears,
displaying those fonts available on your system. The default value is <Auto>,
which means the system font is used.

StatusBar If Yes, adds a status bar to the data window. The default value is <Auto>.

Creating a Window

136 CA-Product User Guide

Notify Event Optionally enter additional source code for the skeleton Notify event. The
default setting is Not Defined.

See the online help system for detailed information about the Notify event.

PreValidate Event Optionally enter additional source code for the skeleton PreValidate event. The
default setting is Not Defined.

See the online help system for detailed information about the PreValidate event.

PreInit Actions Optionally enter additional source code for the skeleton PreInit method. The
default setting is Not Defined.

See the online help system for detailed information about the PreInit method.

PostInit Actions Optionally enter additional source code for the skeleton PostInit method. The
default setting is Not Defined.

See the online help system for detailed information about the PostInit method.

Width Enter the horizontal size of the data window in pixels. The default is 420.

Height Enter the vertical size of the data window in pixels. The default is 320.

Creating a Window

Chapter 4: Using the Window Editor 137

DataDialog Window Properties

The DataDialog tab, shown below, allows you to define the physical appearance
of your data dialog window—including its icon, background color, and font—
and to choose a binary menu entity, help file, and data server to be associated
with it.

Note: Refer to the online help for detailed information about new and updated
data dialog window properties.

The DataDialog tab contains the following properties:

Inherit from Class Select the Window class or subclass from which the data dialog window will
inherit its basic characteristics. Valid choices are <Auto>,
DATADIALOGWINDOW, and all classes derived from the DataDialog class that
are in the current search path. The default setting is <Auto>.

Icon Name Enter or choose the name of the Icon subclass defining the icon to be displayed
when a data dialog window is minimized. Choices include all icon entities
defined for the current application. The default value is <Auto>, which means a
default icon is displayed. See Chapter 10: Using the Image Editor for
information on defining icons.

Accelerator Table This property is available for data-aware windows only. If you do not want a
menu to be associated with the form, you may still want to designate a table of
accelerator keys that can be used. Valid choices are: <Auto>,
EMPTYSHELLMENU, STANDARDSHELLMENU, and all classes derived from
the Menu class that are in the current search path.

Creating a Window

138 CA-Product User Guide

Note: If a menu is associated with the form, then the accelerator keys defined in
the Menu Editor will be used; in this case the default <Auto> setting should be
used.

Background Color Enter or choose the color for a data dialog window’s background from a drop-
down list box. The default value is <Auto>, which means the currently selected
system color is used.

Context Menu Enter or choose the name for a local pop-up menu to be accessed by right-
clicking. Valid choices are <Auto>, EMPTYSHELLMENU,
STANDARDSHELLMENU, and all classes derived from the Menu class that are
in the current search path. The default value is <Auto>, which means no menu is
used.

Help File Name The path and file name for the .HLP file you want to use with the form. Then
you can assign a help topic to the form using the Help Context property. The
designated help file will also be used to provide context help for the controls on
the form. If no help file is assigned, the help file for the owner window will be
used. (For more information on creating a help file, refer to the “GUI Classes”
chapter in the Programmer’s Guide.)

View As This property is available for data-aware windows only. Choose the default
view to use when the data dialog window is initially accessed. Every data dialog
window can operate in either form view, displaying multiple fields for a single
record as fixed text and data controls, or browse view, using a spreadsheet-like
data browser that displays multiple fields and records in a table in the data
dialog window. The available choices for this property, therefore, are
#FormView or #BrowseView.

The default value is <Auto>, which means #BrowseView is used for all data
dialog windows placed as controls and #FormView for all other data dialog
windows.

Note: Clicking the Browse/Form View toolbar button changes the Window
Editor display to a different view, as well as changing the value of this property.

Note: You can give the end user the option of switching back and forth between
form and browse view at runtime by associating a standard menu with the data
dialog window using the Menu property. The commands for switching between
browse and form view are part of the View menu defined in the default
StandardShellMenu binary menu entity, which is included automatically in
every GUI application that you create based on the Standard Application. See
Chapter 8: Creating Data-Aware Windows for more information on
customizing these two views.

Clipper Keys If True, allows the user to navigate through a form by using the Direction and
Return keys. Otherwise the Windows default navigation keys (Tab key) are
effective. Valid values are: <Auto>, True, and False. The default is <Auto>.

Creating a Window

Chapter 4: Using the Window Editor 139

Data Server This property is available for data-aware windows only. In it, you enter or
choose the name of the data server that is associated with this form. This
property is required and is automatically filled in when you choose the Edit Auto
Layout menu command. See Chapter 8: Creating Data-Aware Windows for
more information.

Font Choose a font to use for the form text. A standard Font dialog box appears,
displaying those fonts available on your system. The default value is <Auto>,
which means the system font is used.

StatusBar If Yes, adds a status bar to the data dialog window. The default value is <Auto>.

Notify Event Optionally enter additional source code for the skeleton Notify event. The
default setting is Not Defined.

See the online help system for detailed information about the Notify event.

PreValidate Event Optionally enter additional source code for the skeleton PreValidate event. The
default setting is Not Defined.

See the online help system for detailed information about the PreValidate event.

PreInit Actions Optionally enter additional source code for the skeleton PreInit method. The
default setting is Not Defined.

See the online help system for detailed information about the PreInit method.

PostInit Actions Optionally enter additional source code for the skeleton PostInit method. The
default setting is Not Defined.

See the online help system for detailed information about the PostInit method.

Width Enter the horizontal size of the data dialog window in pixels. The default is 400.

Height Enter the vertical size of the data dialog window in pixels. The default is 240.

Dialog Window Properties

The Properties window for dialog windows has two additional tabs that are
unique: DlgWindow and Styles.

Creating a Window

140 CA-Product User Guide

DlgWindow Tab

The DlgWindow tab, shown below, allows you to define the physical appearance
of your dialog window—including its font, background color, and mouse style—
and whether it is to be modal or modeless.

Note: Refer to the online help for detailed information about new and updated
dialog window properties.

This tab contains the following properties:

Inherit from Class Select the Window class or subclass from which the dialog window will inherit
its basic characteristics. Valid choices are: <Auto>, _FORMDIALOGWINDOW,
MODELESSDIALOG, HELPABOUT, and all classes derived from the
DialogWindow class that are in the current search path. The default is <Auto>.

Font Choose a font to use for the form text. A standard Font dialog box appears,
displaying those fonts available on your system. The default value is <Auto>,
which means the system font is used.

Modeless This property is available for dialog windows only. A value of Yes creates a
modeless dialog box. The default value is <Auto>, which means a modal dialog
box will be created.

Background Color Enter or choose the color for a dialog window background from a drop-down list
box. The default value is <Auto>, which means the currently selected system
color is used.

Mouse Pointer Enter or choose the name of the Pointer subclass defining the mouse style for a
dialog window. Choices include all cursor entities defined for the current
application. The default value is <Auto>, which means the system pointer is
used. See Chapter 10: Using the Image Editor for information on defining
cursors.

Creating a Window

Chapter 4: Using the Window Editor 141

Clipper Keys If True, allows the user to navigate through a form by using the Direction and
Return keys. Otherwise the Windows default navigation keys (Tab key) are
effective. Valid values are: <Auto>, True, and False. The default is <Auto>.

Help File Name The path and file name for the .HLP file you want to use with the form. Then
you can assign a help topic to the form using the Help Context property. The
designated help file will also be used to provide context help for the controls on
the form. If no help file is assigned, the help file for the owner window will be
used. (For more information on creating a help file, refer to the “GUI Classes”
chapter in the Programmer’s Guide.)

PreInit Actions Optionally enter additional source code for the skeleton PreInit method. The
default setting is Not Defined.

See the online help system for detailed information about the PreInit method.

PostInit Actions Optionally enter additional source code for the skeleton PostInit method. The
default setting is Not Defined.

See the online help system for detailed information about the PostInit method.

Type Select the type of dialog window to be created. Valid choices are: Popup Dialog,
a standard dialog window, and Tab Page, a dialog window that will become a
page within a tab control. The default is Popup Dialog.

Width Enter the horizontal size of the dialog window in pixels. The default is 400.

Height Enter the vertical size of the dialog window in pixels. The default is 240.

Styles Tab

The Styles tab, shown below, is available only for dialog windows. It allows you
to define various style settings.

Creating a Window

142 CA-Product User Guide

Note: Refer to the online help for detailed information about new and updated
dialog window properties.

This tab contains the following options:

Disabled Creates a dialog box that is initially disabled, if True. The default setting is False.

Caption Bar Specifies whether a caption bar should be added to the dialog box and, if so,
defines its contents. Valid choices are: No Caption Bar, Caption Bar Only,
System Menu, Minimize Box, Maximize Box, and Both Boxes. The default setting
is System Menu.

Clip Siblings Clips “sibling” windows from the area occupied by another child window that
currently has focus, if True. The default setting is False.

Clip Children Clips child windows from the area occupied by the window that currently has
focus, if True. The default setting is False.

Absolute Align If True, aligns the dialog box coordinates relative to the upper-left corner of the
screen instead of the current form. The default setting is False.

System Modal If True, the dialog window utilizes the WN_EX_TOPMOST style which keeps it
on top of all other windows while open. The default setting is False.

No Idle Message If True, suppresses Windows idle messages while a system-modal dialog box is
displayed. This option is effective only if the System Modal option is selected.
The default setting is False.

Resizable If True, the dialog box may be resized by dragging one of the borders. When this
type of dialog box loses focus, its thick border does not change. The default
setting is False.

Position Specifies the position of the dialog window in relation to the workspace or
current window. Valid values are:

■ <Auto>

The dialog window is positioned as designed.

■ Center

The dialog box is centered within the workspace.

■ Center Mouse

The dialog box appears under the mouse.

The default setting is <Auto>.

Control Types

Chapter 4: Using the Window Editor 143

Generating Code

When you save a form, the Window Editor automatically generates:

■ A form entity for the window; you can double-click on this entity in the
Repository Explorer’s list view pane to begin editing it with the Window
Editor

■ A subclass using the window name and the appropriate subclass of the
Window class: DataWindow, DialogWindow, DataDialog Window, or
ShellWindow

■ Other default source code that can be modified, including instance variables
related to the controls on the form (code will be generated to declare an
instance variable for each control object unless its Generate Code property is
set to No)

Note that for an MDI application, the generated code automatically supports the
ability to open the same window multiple times.

Also, the Init() methods for all generated forms take an additional parameter,
<uExtra>. This allows you to pass additional data to a window or dialog. For an
example using these extra parameters, see the OptionDlgs module in the Private
Eye sample application (CAVO27\SAMPLES\WINSDK\PE). These same
parameters are also passed to the PreInit() and PostInit() methods of these
windows, if defined.

Tip: You can modify the generated code by changing the CAVOWED.INF
and CAVOWED.TPL files. For detailed information about these files, refer
to the CA-Visual Objects 2.7 Software Development Kit.

Control Types
Other key properties of a window are its controls, which the end user
manipulates while interacting with the graphical user interface (GUI).
Experienced users of CA-Visual Objects are already familiar with the following
GUI control types: check box, combo box, list box, single-line edit control, multi-
line edit control, push button, radio button, radio button group, group box, fixed
text, fixed icon, fixed bitmap, vertical scroll bar, horizontal scroll bar, and sub-
data window.

Placing Controls on a Form

144 CA-Product User Guide

Newer GUI control types are the Windows common controls, shown below, which
are actually specialized, predefined child windows:

Progressbar

Tabcontrol

Listview

Hotkeyedit

Animationcontrol

Richeditcontrol

Treeview

OLEobject

Horizontalspinner

Horizontalslider

Verticalslider

Verticalspinner

Note: As mentioned earlier, there are new common controls in CA-Visual
Objects 2.7, including ComboBoxEx control, date time picker, IP address, and
month calendar. There is also a new CA-Visual Objects custom control, data list
view. For detailed information, see the online help.

These controls are supported by CA-Visual Objects new classes, and they allow
you to provide advanced I/O features for the end user. See Specifying Control
Properties and Style Settings for more detailed information about each of the
common controls, and refer to the online help system for information about the
new common control classes.

Placing Controls on a Form
To place controls on a form in the Window Editor, you can use either the tool
palette or the Select from Palette menu commands.

Using the Tool Palette

The tool palette supports two methods of control placement:

■ Place the mouse pointer on an icon in the tool palette, press the left mouse
button, hold it down and drag the mouse to the desired position on the form.
When you reach the desired location, release the left mouse button.

Placing Controls on a Form

Chapter 4: Using the Window Editor 145

This is the easiest and fastest method, and it is known as drag-and-drop. Note
that as you start to drag the mouse, a positioning icon in the form of cross
hairs appears: +

■ Place the mouse pointer on an icon in the tool palette and press the left
mouse button, this time releasing the button. Move the mouse pointer to the
desired position in the form and then click the mouse again.

After either method, note how the Properties window changes focus so that you
can now specify properties for the newly created control.

Tip: If you want to create multiple occurrences of a control on a form, hold
the Shift key down while placing the control on the form. Release the Shift
key when finished.

Using the Select from Palette Menu Commands

As an alternative to using the tool palette to place controls, you can use the Edit
Select from Palette menu command and its pop-up menu:

Placing Controls on a Form

146 CA-Product User Guide

Note: Just as the Window Editor’s tool palette has been updated to reflect the
new CA-Visual Objects 2.7 controls, so too has the Edit menu. See the online
help for detailed information about the corresponding Select from Palette menu
commands for the ComboBoxEx, date time picker, IP address, month calendar,
and data list view controls.

After choosing the menu command that corresponds to the type of control you
want, move the mouse pointer to the desired position in the form and click the
mouse to place the new control.

Using the Grid

When placing/arranging controls on a form, you might find it useful to use a
grid. Turning on the grid allows you to quickly and easily align controls with
accurate placement.

To enable the grid, click the Show/Hide Grid toolbar button:

Show/HideGridbutton

Grid

This button acts as a toggle. You can click it again to hide the grid when you are
finished using it.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 147

Note that you can also customize the grid display. To do so, choose the Grid
Settings command from the File menu. Selecting this command displays the
following dialog box:

Spacing To override the default spacing between grid dots:

1. Enter different values in the Width and Height edit controls.

The default setting for both is 5. The minimum width or height is 2, and the
maximum is 12.

2. Select OK.

Snap to Grid The Snap to Grid option, when selected, causes the controls to align or “snap”
precisely to the grid dot settings as you place them within the form.

Note: Turning off the grid also turns off the Snap to Grid feature.

Specifying Control Properties and Style Settings
After you have placed a control on your form, the next step is to define its
properties and style settings. Properties define how the control will behave. As
mentioned earlier, the role of the Properties window changes depending on the
currently selected item in the workspace. For example, the following Push
Button Properties window is displayed when a push button control is selected in
the current form:

Specifying Control Properties and Style Settings

148 CA-Product User Guide

The Window Editor will generate default settings for many of the property and
style settings when you place the control on a form. These defaults are sufficient
to save the form; however, there are other properties that you must define to
make certain a control is fully operational at runtime.

Note: An object variable is associated with each control, unless the control is
already associated with a field (such as a single-line edit). The control name
appears as part of the object name in the Init() method for the variable.

Common Properties

Note: See the online help for detailed information about new common
properties, such as Left, Right, and Use for Tooltip. Other common properties
have been updated. For example, the Background Color property gives you
immediate access to CA-Visual Objects standard Color dialog box for defining a
control’s background color. Additionally, all text controls are now data aware
(see the AWARE.AEF application in the
CAVO27\SAMPLES\CONTROLS\AWARE directory for examples). For
detailed information about all control properties, refer to the online help.

Many of the control properties—such as Generate Code and Tab Stop—are
common to all controls, and others—such as Caption and Inherit from Class—are
common to all with the exception of the sub-data window control. Still others,
such as Background Color, are common to a majority of the controls. Therefore,
descriptions of these common properties in tab page order follow immediately.
(Properties that are unique to a specific type of control are described later in this
chapter.)

HyperLabel Tab

The HyperLabel tab contains the following options, common to all controls:

Caption Enter the caption text that identifies a control in the form display. This property
is available for all controls except sub-data windows, and is used differently,
depending on the control type.

For a push button, for example, this is the label that is displayed on the button.

For a fixed icon, the caption is used to specify the icon file to associate with the
control. Icon files are identified as resource entities in your application. The icon
is assigned a name or number. You enter the resource name or its number
(which must be preceded by a # symbol) as the caption.

Note: It is typical to have code similar to the following to define an icon
resource:

DEFINE MY_ICON := 101
RESOURCE MY_ICON ICON myicon.ico

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 149

In this case, the icon resource is defined using a number, and you would enter
#101 as the caption because the Window Editor would not recognize the constant
MY_ICON.

If you use an icon created with the Image Editor, you will use the name you gave
the icon. To gain a better understanding of how icons are declared in CA-Visual
Objects, you may want to take a look at the code generated for an icon.

For other controls, such as scroll bars, the caption text is not used; you can use
the caption property to store information that can be accessed from your
application. The default value is defined by the control type when you place it
on the form (for example, the default caption for all push buttons is “Push”).
This property is available for all controls except sub-data windows.

Tip: Push buttons and other controls sometimes feature a single underlined
letter indicating how to select the control with the keyboard. To add this
functionality to your controls, simply preface the letter that is to be
underlined with an ampersand (&).

Note: The Caption property has a hierarchical nature like the Description
property described below.

Name Enter the name of the control. This property value is required for all controls and
is automatically filled in with a default name when you place a control on a form.
For example, when you place the first push button on a form, it is named
“PushButton1.”

Every type of control has a Name property that is used in the generated source
code to identify individual controls within the form. For push buttons, this name
also determines the method, Window, or ReportQueue name that is invoked
when the control is clicked. Therefore, control names must be unique within a
single form design.

Note: For sub-data window controls only, this property can be found on the
General tab of its Properties window.

Description The Description property is available for all controls except sub-data windows.
Enter the text that should appear in the status bar when the control has focus in
the form display. If a control cannot have focus, the description will not be
displayed in the status bar; instead, it may be accessed through the control’s
hyperlabel. Note that a control may use either its own descriptive text or that of
an associated field specification or field. Therefore, the default value of <Auto>
means that the system should use a description from a lower level of the
hierarchy.

Specifying Control Properties and Style Settings

150 CA-Product User Guide

For example, assume that you already have a field specification named
X_CUSTNO that has the cryptic description, CUSTID. Also assume that you
already have a field called ID that has an equally cryptic description,
VENDNUM/CUSTNUM, and is used for both vendor and customer numbers.

If you now create a data window for maintaining customer information that has
a single-line edit control with the caption, CUSTNO, you have three choices for
the status bar text:

1. The text entered in the Description value cell for the edit control—for
example, The customer ID, maximum of 10 characters.

2. The text entered in the FS Description value cell (available in the DB Server
Editor or Field Spec Editor) for the field specification (for example, CUSTID).

3. The text entered in the Description value cell (available in the DB Server
Editor) for the field (for example, VENDNUM/CUSTNUM).

(This last choice is poor, as the end user might confuse the field and enter a
vendor ID.)

CA-Visual Objects searches sequentially through the hierarchy for a value for the
Description property and associates the first definition it encounters with the
control. That is, if it finds a description at the control level, that description is
used in the status bar. If, instead, it finds the default <Auto> value, then the
system searches for a definition at the field specification level, and so on. If the
default <Auto> value is specified for all levels, then no description appears in the
status bar.

The following diagram illustrates the hierarchical nature of the Description
property:

DataWindow

FieldSpec

Field

FSName:

FSDescription:

Name:

Description:

CUSTNO

maximumof10characters.

VENDNUM/CUSTNUM

X_CUSTNO

CUSTID
Statusbartext

Control

Name:

Description:

Edit1

ThecustomerID,

ID

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 151

See Specifying Control Properties and Style Settings in “Defining Data Servers
and Field Specs” for more information about field and field specification
properties.

Help Context The Help Context property is available for all controls except sub-data windows.
Enter a unique keyword for the control. This keyword will be used to identify
the control in a context-sensitive help system. A help file can be specified using
the Help File Name property for the form. See the Help Context and Help File
Name properties in Specifying Window Properties earlier in this chapter for
specifics.

Note: The Help Context property has a hierarchical nature like the Caption and
Description properties.

General Tab

The General tab contains the following properties that are common to all controls
with the exception of sub-data window controls. Other options that are specific
to each control type are described later under the General tab for the
corresponding control.

Inherit from Class Select the Control class or subclass from which the specified window control will
inherit its basic characteristics. For example, a value of <Auto> for a push button
generates an instance of CA-Visual Objects PushButton class. If, however, you
have a derived, specialized class (for example, OKButton), this class also appears
in the Inherit from Class list box and you can use it instead.

The default value is <Auto>.

Context Menu Enter or choose the name for a local pop-up menu to be accessed by right-
clicking a control. Valid choices are <Auto>, EMPTYSHELLMENU,
STANDARDSHELLMENU, and all classes derived from the Menu class that are
in the current search path. The default value is <Auto>, which means no menu is
used.

Generate Code Specify whether certain source code will be generated for the control. This is a
Yes/No option that you change by selecting a value from a drop-down list. The
default value of Yes indicates that source code will be generated.

Changing this property to No can cut down on the resources needed to use the
window, but you can only do this if you do not need access to the control in your
application. For example, controls that are not data-aware (such as fixed text and
fixed icon) are seldom referenced in your application source code, so you can
change the Generate Code property to No to prevent the Window Editor from
generating unnecessary code.

Note: The code to display a control is always generated, regardless of the status
of this property.

Specifying Control Properties and Style Settings

152 CA-Product User Guide

Width Enter a value for the horizontal size of the specified window control.

Height Enter a value for the vertical size of the specified window control.

Note: See the online help system for the default Width and Height settings for
each specific control type. Also, refer to the CA-Visual Objects 2.7 Software
Development Kit for information about changing the default settings for Width
and Height for any control type, as well as any other property.

Additionally, the following two options are common to the push button, check
box, radio button, radio button group, list box, group box, fixed text, single-line
edit, multi-line edit, and rich edit controls:

Font Enter or choose the name of the font used to display text directly associated with
the control (for example, a push button label or an item in a list box). The
available fonts are the same as those for the window Font property (see
Specifying Window Properties).

Input Method Editor If set to #ON, allows foreign language users to edit fields using an independent
editor. Valid choices are: <Auto>, #ON, and #OFF.

See the Microsoft Win32 Software Development Kit for more information.

The following option, Text Color, is common to the check box, combo box, list
box, radio button, radio button group, group box, fixed text, single-line edit,
multi-line edit, and rich edit controls:

Visible If Yes, specifies that the control be displayed. If set to No, the control is hidden
from view. The default value is Yes.

Text Color Enter or choose the color used to display text directly associated with the control.
The default value is <Auto>, which means the currently selected system text
color is used. If you click on the right side of this cell, you can select a color from
a list of choices.

Note: Text for push buttons and some of the new common controls—such as list
views, tree views, tab controls, and hot key edit controls—use the default system
text color.

Background Color Choose the color to be used for shading the background of the control display.
The default value is <Auto>, which means the currently selected system
background color is used.

Note: This option is common to all window controls except push button,
horizontal scroll bar, vertical scroll bar, sub-data window, and OLE object
controls.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 153

Tip: In the case of radio buttons, check boxes, group boxes, and radio button
group boxes, only the character area is shaded. Therefore, for aesthetic
purposes you may want to use spaces to pad the character area of each radio
button or check box within a group.

Styles Tab

The Styles tab contains the following options that are common to all controls,
with the exception of the sub-data window control:

Disabled If True, creates a control that is initially disabled, or grayed. The default setting
is False.

Tab Stop If True (the default option), allows the user to press the Tab key to move through
any number of controls defined with this option.

Note: By default, the cursor tabbing order follows a left-to-right, top-to-bottom
progression, based on the position on the controls on the form. You can,
however, change the tab order using the Control Order dialog box. (See
Changing Tab Order by Reordering Controls later in this chapter for more
information.)

Group If True, indicates the first control in a group of controls that can be accessed
using the Direction keys. Successive controls belong to the same group until
another control is defined with the Group option. That is, the next control
specified with the Group option defines the end of the previous style group and
the beginning of a new style group. The default setting is False.

ExStyles Tab

The ExStyles tab contains the following extended window options that are
common to all controls:

Right-To-Left Reading If True, specifies that form text be displayed using left-to-right reading order
properties. The default setting is False.

No Parent Notify If True, specifies that a child window not send the WM_PARENTNOTIFY
message to its parent window when it is created or destroyed. The default
setting is False.

Specifying Control Properties and Style Settings

154 CA-Product User Guide

Accept Files Specifies that a window or control accept drag-and-drop files, if True. That is, in
the case of a drop event (WM_DROPFILES), the Drop method of the control’s
parent window is called and a DragEvent object containing the file names is
passed as a parameter. (See the DragDropClient:Drop access/assign topic in the
online help system for additional information.)

The default setting is False.

Transparent If True, specifies that a window or control be transparent (that is, the current
window should not obscure any windows beneath it). The default setting is
False.

Client Edge Specifies that a window or a control have a border with a “sunken” edge, if True.
For example:

The default setting is False.

Note: Rich text controls and hot key edit controls will always have Client Edge
set to True.

Note: If you want a control to have a “deep sunken” edge, set both Client Edge
and Static Edge to True. For example:

Static Edge If True, specifies that a window or a control have a three-dimensional border
style to indicate that its items do not accept user input. For example:

The default setting is False.

Note: Progress bars will always have Static Edge set to True.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 155

Note: In the case of sub-data window controls, the Client Edge and Static Edge
properties are applicable in form view only.

Modal Frame If True, creates a window that has a double border. This window can, optionally,
be created with a title bar by specifying the WS_CAPTION style in the dwStyle
parameter. The default setting is False.

Note: If you want a control to appear raised on the form, set both Static Edge
and Modal Frame to True. For example:

Note: If you want a raised border around a control, set Client Edge, Static Edge,
and Modal Frame all to True. For example:

Check Box Properties and Style Settings

A standard check box is used to display a logical TRUE/FALSE status for a field
or variable, as well as allow the user to change the status. You can bind a check
box to a logical field in a database. When a user clicks on a check box, the
Checked and Value accesses for the related object are changed. You can also
change the state using the Checked or Value assigns in your source code.

If you wish, you can write custom code to respond to events for a specific check
box using the Window:ButtonClick() or Window:ButtonDoubleClick() methods;
see the online help system for details. You can also create a 3-state check box to
display a TRUE/FALSE/UNDETERMINED status.

Specifying Control Properties and Style Settings

156 CA-Product User Guide

General Tab

The General tab, shown below, allows you to specify a check box’s general
properties, including physical appearance and class inheritance:

Note: Refer to the online help for detailed information about new and updated
check box properties.

All of these properties have been described previously under Common
Properties, with the exception of the following properties that are specific to this
type of control:

Field Spec Enter or choose a field specification to associate with the control.

When you associate a field specification with a control, all properties defined for
the field specification (such as validation rules and picture) are automatically
inherited and used by the control. For more information on these properties,
refer to Chapter 7: Defining Data Servers and Field Specifications for more
information.

This property is available for check boxes, single- and multi-line edit controls,
rich edit controls, list and combo boxes, scroll bars, columns, radio button
groups, and OLE objects.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 157

Image Optionally, assign a bitmap image or icon object to the check box. The image
displays at runtime. Below are examples from the PIZZA.AEF application in the
CAVO27\SAMPLES directory:

Note: To display an image object with a check box, the Image Type property
must also be set. See the related properties, Image Type and Push Like, described
below under Styles Tab.

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your
check box control:

Note: Refer to the online help for detailed information about new and updated
check box properties.

All of these properties have been described previously under Common
Properties, with the exception of the following properties that are specific to this
type of control:

Text Left If True, creates a check box with its caption displayed to the left. If False, the
caption is displayed to the right of the check box. This is a valid option for all
check box styles.

Specifying Control Properties and Style Settings

158 CA-Product User Guide

Selection This property is used to define a check box’s state. Valid options are:

■ AutoSelect

If selected, creates a check box as an option button that allows the user to
automatically toggle between checked and unchecked states. Unlike radio
buttons, any number of check boxes can be selected at the same time.
AutoSelect is the default setting for the Check Box Styles option.

■ No AutoSelect

If selected, creates a check box that will not accept any input from the user.
That is, it will not retain the checked status when clicked.

■ 3 State

If selected, creates a check box that can be dimmed, or grayed, as well as
checked and unchecked. The grayed state indicates that the state of the
check box is undetermined. The state can be changed only by code events,
not by the user clicking the check box. If the check box is bound to a logical
field in a server, the third state will not be reflected in the database.

■ AutoSelect 3 State

If selected, creates a check box identical to the 3 State option above, except
that the state of the box changes when selected. The status of the check box
cycles through the checked, grayed, and normal states.

Multiline If True, button text is wrapped, allowing multiple lines of text. The default
setting is False.

Flat If True, the button appears flat (non-3D). The default setting is False.

Horizontal Alignment Specifies the horizontal alignment of the button text. Valid values are: Auto,
Left, Center, and Right. The default is Auto.

Vertical Alignment Specifies the vertical alignment of the button text. Valid values are: Auto, Top,
Center, and Bottom. The default is Auto.

Push Like If True, the check box appears like a push button. The default setting is False.

Image Type Specifies the type of image button. Valid values are: No Image (text only), Icon,
or Bitmap. The default is No Image.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 159

List Box Properties and Style Settings

A list box allows users to select from a list of choices. You can bind a list box to a
field in a database. When a user selects a different choice, the TextValue and
Value accesses for the related object are changed. You can write custom code to
respond to events for a specific list box object using the Window:ListBoxSelect()
or Window:ListBoxClick() methods; see the online help system for details.

General Tab

The General tab, shown below, allows you to specify a list box’s general
properties, including physical appearance and class inheritance:

Note: Refer to the online help for detailed information about new and updated
list box properties.

All of these properties have been described previously under Common
Properties, with the exception of the following properties that are specific to this
type of control:

Fill Using This property allows you to define the items in a list box using the contents of
any array expression, data server, or customized method.

See Defining Arrays for List and Combo Boxes later in this chapter for detailed
information about this option and the Fill Using dialog box that appears.

Specifying Control Properties and Style Settings

160 CA-Product User Guide

Field Spec Enter or choose a field specification to associate with the control.

When you associate a field specification with a control, all properties defined for
the field specification (such as validation rules and picture) are automatically
inherited and used by the control. For more information about these properties,
refer to Chapter 7: Defining Data Servers and Field Specifications for more
information.

This property is available for check boxes, single- and multi-line edit controls,
rich edit controls, list and combo boxes, scroll bars, columns, radio button
groups, and OLE objects.

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your list
box control:

Note: Refer to the online help for detailed information about new and updated
list box properties.

The Styles tab contains the following properties that are specific to this type of
control:

Border Creates a border around the list box (if True). True is the default setting for the
Border option.

Sort Sorts list box items alphabetically (if True). True is the default setting for the Sort
option.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 161

Notify Parent If True, notifies the owner window with an input message whenever the user
selects a list box item. True is the default setting for the Notify option.

Vertical Scrollbar If True, adds a vertical scroll bar to the list box if the number of items exceeds the
border of the list box. True is the default setting.

Horizontal Scrollbar Adds a horizontal scroll bar to the list box if the width of the items exceeds the
list box’s border, if True.

Use Tab Stops If True, enables a list box to recognize and expand tab characters when items are
added.

Note: Windows default tab positions are 32 dialog box units, which are
computed based on the height and width of the current system font. One
horizontal dialog box unit is equal to one-fourth of the current dialog box base
width unit.

No Redraw Specifies that the list box should not be redrawn when changes are made (if
True).

Multi Column If True, defines the list box as multi-columnar.

No Integral Height If True, specifies that the size of the list box remain exactly the same size as when
it was created. Normally, Windows resizes a list box after being filled, so that it
does not display partial items.

Want Keyboard Input If True, specifies that the list box’s owner window receive notification messages
whenever the list box has focus and the user enters or selects an item(s) from the
list box.

Extended Selection If True, allows the user to choose multiple list box items by highlighting them
using the mouse and the Shift key or special key combinations.

Disable If No Scroll If True, displays the list box’s vertical scroll bar as disabled when there are not
enough items in the list box to scroll. Otherwise, the scroll bar is hidden.

Owner Draw Specifies whether or not the owner window is responsible for drawing the
contents of the list box in the child window.

Valid choices are:

■ No Ownerdraw

No Ownerdraw is the default for the Owner Draw option, meaning the
owner window is not responsible for drawing the contents of the list box.

■ Fixed

Specifies that the owner window is responsible for drawing the contents of
the list box, ensuring that the items in the list box are the same height.

Specifying Control Properties and Style Settings

162 CA-Product User Guide

■ Variable

Specifies that the owner window is responsible for drawing the contents of
the list box and that the items in the list box vary in height.

Combo Box Properties and Style Settings

A combo box allows users to select from a list of choices or type in their own
choice. A combo box can be bound to a field in a database. When a user changes
the displayed choice, the TextValue and Value accesses for the related object are
changed. You can write custom code to respond to events for a specific combo
box object using the Window:ListBoxSelect() or Window:ListBoxClick() methods;
see the online help system
for details.

General Tab

The General tab, shown below, allows you to specify a combo box’s general
properties, including physical appearance and class inheritance:

Note: Refer to the online help for detailed information about new and updated
combo box properties.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 163

All of these properties have been described previously under Common
Properties, with the exception of the following properties that are specific to this
type of control:

Fill Using This property allows you to define the items in a combo box using the contents of
any array expression, data server, or customized method.

See Defining Arrays for List and Combo Boxes later in this chapter for detailed
information about this option and the Fill Using dialog box that appears.

Field Spec Enter or choose a field specification to associate with the control.

When you associate a field specification with a control, all properties defined for
the field specification (such as validation rules and picture) are automatically
inherited and used by the control. For more information on these properties,
refer to Chapter 7: Defining Data Servers and Field Specifications for more
information.

This property is available for check boxes, single- and multi-line edit controls,
rich edit controls, list and combo boxes, scroll bars, columns, radio button
groups, and OLE objects.

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your
combo box control:

Note: Refer to the online help for detailed information about new and updated
combo box properties.

Specifying Control Properties and Style Settings

164 CA-Product User Guide

The Styles tab contains the following properties that are specific to this type of
control:

ComboBox Type This property is used to define a combo box’s style. Valid options are:

■ Simple

If selected, creates a simple combo box that displays its list box component at
all times with the current item displayed in its edit control component.

■ Drop Down

If selected, creates a drop-down combo box that displays only the current
item in a single-line edit control but allows the user to display its list box by
clicking on a drop-down arrow button to the right of its edit control.

This option also allows the user to start typing in text which, if matched by
the system, is highlighted in the list box component of the control. The user
then clicks on the highlighted item to complete the selection.

■ Drop Down List

If selected, creates a combo box with a drop-down list box that is similar to
the Drop Down option except that the user cannot type in the edit control.

Drop Down is the default setting.

Sort Sorts the items in the combo box alphabetically, if True.

Vertical Scrollbar If True, adds a vertical scroll bar to the combo box.

Auto HScroll If True, any text in the edit control component of the combo box is automatically
scrolled to the right as the user types a character at the end of the line.
Otherwise, only text that fits within the physical boundaries of the edit control is
allowed.

No Integral Height If True, specifies that the size of the combo box remain the same as when it was
created. Normally, Windows resizes a combo box after being filled so that it
does not display partial items.

OEM Convert If True, converts any user-entered text in the edit control from the Windows
character set to the OEM character set and back again.

Tip: The OEM Convert style option is especially useful for any type of edit
control that contains a file name, because it ensures that a correct conversion
from Windows or Windows NT to the OEM character set is possible.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 165

OwnerDraw Specifies whether or not the owner window is responsible for drawing the
contents of the combo box in the child window.

Valid choices are:

■ No Ownerdraw

No Ownerdraw is the default for the Owner Draw option, meaning the
owner window is not responsible for drawing the contents of the combo box.

■ Fixed

Specifies that the owner window is responsible for drawing the contents of
the combo box, ensuring that the items in the combo box are the same height.

■ Variable

Specifies that the owner window is responsible for drawing the contents of
the combo box and that the items in the combo box vary in height.

Push Button Properties and Style Settings

A push button (also called a command button) allows users to interactively trigger
actions by activating the button. Either a key press or mouse click can be used to
initiate a window, report, or other related source code that you specify using the
push buttons Click Event property.

You can also write custom code to respond to events for a specific push button
using the Window:ButtonClick() or Window:ButtonDoubleClick() methods. See
Push Button Controls and Actions later in this chapter for more information.
Also, refer to the online help system for complete information about the
Window:ButtonClick() or Window:ButtonDoubleClick() methods.

Specifying Control Properties and Style Settings

166 CA-Product User Guide

General Tab

The General tab, shown below, allows you to specify a push button’s general
properties, including physical appearance and class inheritance:

Note: Refer to the online help for detailed information about new and updated
push button properties.

All of these properties have been described previously under Common
Properties, with the exception of the following properties that are specific to this
type of control:

Click Event This property is available for push buttons only and allows you to define what
happens when the button is clicked. Click the Ellipsis button to launch the
Source Code Editor and enter the source code for a method that will be executed
when the button is clicked.

The default value is Not Defined.

See Push Button Controls and Actions later in this chapter for more information.

Image Optionally, assign a bitmap image or icon object to the push button. The image
displays at runtime. Below are examples from the PIZZA.AEF application in the
CAVO27\SAMPLES directory:

See the related property, Image Type, described below under Styles Tab.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 167

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your
push button control:

Note: Refer to the online help for detailed information about new and updated
push button properties.

The Styles tab contains the following properties that are specific to this type of
control:

Default Button If True, creates a push button that appears as the default option for the window.
The default push button has focus when the window is initially displayed and
continues to have focus unless the user highlights another push button (for
example, by tabbing to it). Therefore, the user can normally select the default
push button by simply pressing the Enter key. The push button also appears
with a heavy black border, indicating that it is the default option.

If False, creates a push button that does not appear as the default option for the
window. False is the default setting.

Multiline If True, button text is wrapped, allowing multiple lines of text. The default
setting is False.

Flat If True, the button appears flat (non-3D). The default setting is False.

Horizontal Alignment Specifies the horizontal alignment of the button text. Valid values are: Auto,
Left, Center, and Right. The default is Auto.

Vertical Alignment Specifies the vertical alignment of the button text. Valid values are: Auto, Top,
Center, and Bottom. The default is Auto.

Image Type Specifies the type of image button. Valid values are: No Image (text only), Icon,
or Bitmap. The default is No Image.

Specifying Control Properties and Style Settings

168 CA-Product User Guide

Radio Button Properties and Style Settings

A radio button is used to display a logical TRUE/FALSE status, as well as allow
the user to change the status. Radio buttons are generally grouped into a radio
button group, which allows one of several mutually exclusive choices to be
selected. When a user clicks on a radio button, the Pressed and Value accesses
for the related object are changed.

You can also change the state using the Pressed or Value assigns in your source
code. Additionally, you can write custom code to respond to events for a specific
radio button using the Window:ButtonClick() or Window:ButtonDoubleClick()
methods. (See the online help system for complete information about these
methods.)

General Tab

The General tab, shown below, allows you to specify a radio button’s general
properties, including physical appearance and class inheritance:

Note: Refer to the online help for detailed information about new and updated
radio button properties.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 169

All of these properties have been described previously under Common
Properties, with the exception of the following properties that are specific to this
type of control:

Group Value This property is available for radio buttons only. In it, you enter the value to be
returned to the associated radio button group when the radio button is selected.
The value can be numeric or string.

A radio button used by itself returns its actual value (for example, T or F, 1 or 0,
or Yes or No). On the other hand, if you create a group box of five radio buttons,
the value 1 indicates that RadioButton1 is selected, 2 that RadioButton2 is
selected, and so on.

Image Optionally, assign a bitmap image or icon object to the radio button. The image
displays at runtime. See the related properties, Image Type and Push Like,
described below under Styles Tab.

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your
radio button control:

Note: Refer to the online help for detailed information about new and updated
radio button properties.

The Styles tab contains the following properties that are specific to this type of
control:

Text Left If True, creates a radio button with its caption displayed to the left. If False, the
caption is displayed to the right of the check box.

Specifying Control Properties and Style Settings

170 CA-Product User Guide

AutoSelect If True, creates an option radio button that automatically highlights itself and
clears any other buttons in the same group of related but mutually exclusive
choices. True is the default setting for the AutoSelect option.

If False, creates a radio button that will not accept any input. That is, it will not
retain the selected status when clicked.

Multiline If True, button text is wrapped, allowing multiple lines of text. The default
setting is False.

Flat If True, the button appears flat (non-3D). The default setting is False.

Horizontal Alignment Specifies the horizontal alignment of the button text. Valid values are: Auto,
Left, Center, and Right. The default is Auto.

Vertical Alignment Specifies the vertical alignment of the button text. Valid values are: Auto, Top,
Center, and Bottom. The default is Auto.

Push Like If True, the radio button appears like a push button. The default setting is False.

Image Type Specifies the type of image button. Valid values are: No Image (text only), Icon,
or Bitmap. The default is No Image.

Radio Button Group Properties and Style Settings

A radio button group is used to allow one selection out of a set of related, but
mutually exclusive, choices. Each radio button in the group is assigned a Group
Value as one of its properties. Then, the Value access for the radio button group
indicates which of the button values has been selected.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 171

General Tab

The General tab, shown below, allows you to specify a radio button’s general
properties, including physical appearance and class inheritance:

Note: Refer to the online help for detailed information about new and updated
radio button group properties.

All of these properties have been described previously under Common
Properties, with the exception of the following property that is specific to this
type of control:

Field Spec Enter or choose a field specification to associate with the control.

When you associate a field specification with a control, all properties defined for
the field specification (such as validation rules and picture) are automatically
inherited and used by the control. For more information on these properties,
refer to Chapter 7: Defining Data Servers and Field Specifications for more
information.

This property is available for check boxes, single- and multi-line edit controls,
rich edit controls, list and combo boxes, scroll bars, columns, radio button
groups, and OLE objects.

Styles Tab

All of the style settings for a radio button group have been described previously
under Common Properties.

Specifying Control Properties and Style Settings

172 CA-Product User Guide

Single-Line Edit Properties and Style Settings

A single-line edit control is used to display and modify text on a single line. This
type of control can be bound to a field in a database. Its efficient use of space on
a data window makes this a very useful edit control.

General Tab

The General tab, shown below, allows you to specify a single-line edit control’s
general properties, including physical appearance and class inheritance:

Note: In this version of CA-Visual Objects, single-line edit controls have two
new properties, Focus Select and Scroll Mode. Refer to the online help for
detailed information about these properties, as well as other updated properties.

All of these properties have been described previously under Common
Properties, with the exception of the following properties that are specific to this
type of control:

Field Spec Enter or choose a field specification to associate with the control.

When you associate a field specification with a control, all properties defined for
the field specification (such as validation rules and picture) are automatically
inherited and used by the control. For more information on these properties,
refer to Chapter 7: Defining Data Servers and Field Specifications for more
information.

This property is available for check boxes, single- and multi-line edit controls,
rich edit controls, list and combo boxes, scroll bars, columns, radio button
groups, and OLE objects.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 173

Text Limit Enter the maximum number of characters an end user may enter in the
single-line edit control.

Picture Optionally, enter a picture string for the single-line edit control. If there is a field
specification with a picture string already associated with the control, the
SingleLineEdit:Picture access/assign overwrites the field specification’s picture
string.

OverWrite If the Picture property is defined for the single-line edit control, select a constant
value for SingleLineEdit:Picture. Valid values are:

■ OVERWRITE_NEVER

If selected, specifies that the single-line edit control always be in INSERT
mode.

■ OVERWRITE_ONKEY

If selected, specifies that the mode depends on the state of the INSERT key.

■ OVERWRITE_ALWAYS

If selected, specifies that the single-line edit control always be in
OVERWRITE mode.

■ <Auto>

If selected, specifies that the single-line edit will use its inherited mode. By
default, this will be OVERWRITE_NEVER.

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your
single-line edit control:

Specifying Control Properties and Style Settings

174 CA-Product User Guide

Note: The single-line edit control does not have an alignment property as does
the multi-line edit control; by default it has left alignment. If you want a control
with center or right alignment, use the multi-line edit control with its height set
appropriately.

Note: Refer to the online help for detailed information about new and updated
single-line edit control properties.

The Styles tab contains the following properties that are specific to this type of
control:

Border Creates a single-line edit control with a border (if True). True is the default
setting for the Border option.

Password If True, displays all characters as asterisks (*) as they are entered in the single-
line edit control.

Retain Selection If False, the highlighting will be removed when the edit control loses focus (for
example, if you Tab to another control). When the edit control regains focus, the
previous selection will not be highlighted. False is the default choice.

If True, the highlighted or selected text will remain highlighted when you Tab to
another control. In this fashion, any edit control you have edited stays marked
(until you move to another record in a database or close the window).

OEM Conversion If True, converts any user-entered text in the single-line edit control from the
Windows character set to the OEM character set and back again.

Auto HScroll If True, any text in the edit control is automatically scrolled 10 characters to the
right when the user reaches the end of the line while typing. True is the default
setting for the Auto HScroll option.

Tip: If you want a horizontal scroll bar to assist in scrolling the text, then
create a multi-line edit control with the Horz. Scroll style setting checked.
Adjust the height of the multi-line edit control to display the single line of
text.

Read Only If True, this option stops the user from entering/editing text in the single-line
edit control.

Conversion Specifies whether or not characters are converted to uppercase or lowercase.
Valid choices are:

■ No Conversion

If No Conversion is selected (the default option), characters are not
converted.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 175

■ Uppercase

If Uppercase is selected, all characters are changed to uppercase as they are
entered in the single-line edit control.

■ Lowercase

If Lowercase is selected, all characters are changed to lowercase as they are
entered in the single-line edit control.

Numbers Only If True, allows numerical input only. The default setting is False.

Multi-Line Edit Properties and Style Settings

A multi-line edit control is used to display and modify text on one or more lines.
You can use the Home, End, or Direction keys to navigate within this control.
This type of control can be bound to a field in a database. The wide variety of
style settings makes this a very versatile control. In fact, you can set its height to
simulate that of a single-line edit control and make use of its additional style
settings (such as the Alignment choice and Horz. Scroll).

General Tab

The General tab, shown below, allows you to specify a multi-line edit control’s
general properties, including physical appearance and class inheritance:

Note: Refer to the online help for detailed information about new and updated
multi-line edit control properties.

All of these properties have been described previously under Common
Properties, with the exception of the following properties that are specific to this
type of control:

Specifying Control Properties and Style Settings

176 CA-Product User Guide

Field Spec Enter or choose a field specification to associate with the control.

When you associate a field specification with a control, all properties defined for
the field specification (such as validation rules and picture) are automatically
inherited and used by the control. For more information on these properties,
refer to Chapter 7: Defining Data Servers and Field Specifications for more
information.

This property is available for check boxes, single- and multi-line edit controls,
rich edit controls, list and combo boxes, scroll bars, columns, radio button
groups, and OLE objects.

Text Limit Enter the maximum number of characters the end user may enter in the
multi-line edit control. The maximum is 65,535.

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your
multi-line edit control:

Note: Refer to the online help for detailed information about new and updated
multi-line edit control properties.

The Styles tab contains the following properties that are specific to this type of
control:

Border Creates a multi-line edit control with a border (if True). True is the default
setting for the Border option.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 177

Password If True, displays all characters as asterisks (*) as they are entered in the multi-line
edit control.

Retain Selection If False, the highlighting will be removed when the edit control loses focus (for
example, if you Tab to another control). When the edit control regains focus, the
previous selection will not be highlighted. False is the default choice.

If True, the highlighted or selected text will remain highlighted when you Tab to
another control. In this fashion, any edit control you have edited stays marked
(until you move to another record in a database or close the window).

OEM Conversion If True, converts any user-entered text in the multi-line edit control from the
Windows character set to the OEM character set and back again.

Vertical Scrollbar Creates a multi-line edit control with a vertical scroll bar (if True).

Horizontal Scrollbar Creates a multi-line edit control with a horizontal scroll bar, where all the text is
on the first line. In effect, this can be used to create a single-line edit control with
a horizontal scroll bar.

Auto VScroll If True, text is automatically scrolled up or down one line when the cursor
reaches the beginning or end of a line.

Auto HScroll If True, any text in the multi-line edit control is automatically scrolled 10
characters to the right when the user reaches the end of the line while typing.

Return Key If True, the Enter key acts as a return key, moving the cursor to the next line of
the multi-line edit control. If False, the Enter key activates the default push
button for the window and has no effect on the edit control.

Read Only If True, this option stops the user from entering/editing text in the multi-line edit
control.

Conversion Specifies whether or not characters are converted to uppercase or lowercase.
Valid choices are:

■ No Conversion

If No Conversion is selected (the default option), characters are not
converted.

■ Uppercase

If Uppercase is selected, all characters are changed to uppercase as they are
entered in the multi-line edit control.

■ Lowercase

If Lowercase is selected, all characters are changed to lowercase as they are
entered in the multi-line edit control.

Specifying Control Properties and Style Settings

178 CA-Product User Guide

Alignment This property is used to defined how the text is to be aligned. Valid options are:

■ Left

If selected, left-justifies text in the multi-line edit control. Left is the default
setting for the Alignment option.

■ Center

If selected, centers text in the multi-line edit control.

■ Right

If selected, right-justifies text in the multi-line edit control.

Group Box Properties and Style Settings

A group box is a passive single-line box that visually groups other controls on a
form. The caption appears along the top border. Unlike a radio button group, a
group box does not have application within your source code.

General Tab

All of the general properties for a group box have been described previously
under Common Properties.

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your
group box control:

Note: Refer to the online help for detailed information about new and updated
group box properties.

All of these properties have been described previously under Common
Properties, with the exception of the following property that is specific to this
type of control:

Flat If True, the group box appears flat (non-3D). The default setting is False.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 179

Fixed Icon Properties and Style Settings

A fixed icon object provides a static display of an image on a form. The caption
is used to specify the name or number of the icon resource to be displayed.

General Tab

All of the general properties for a fixed icon control have been described
previously under Common Properties.

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your
fixed icon control:

Note: Refer to the online help for detailed information about new and updated
fixed icon properties.

All of these properties have been described previously under Common
Properties, with the exception of the following property that is specific to this
type of control:

Border Creates a border around the fixed icon control, if True. True is the default setting
for the Border option.

Fixed Text Properties and Style Settings

A fixed text object provides a static display of text on a form. You can modify the
text to be displayed by using the TextValue assign in your source code.

General Tab

All of the general properties for fixed text have been described previously under
Common Properties.

Specifying Control Properties and Style Settings

180 CA-Product User Guide

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your
fixed text control:

Note: Refer to the online help for detailed information about new and updated
fixed text properties.

The Styles tab contains the following properties that are specific to this type of
control:

Border If True, creates a border around the text. The default setting for the Border
option is False.

No Prefix If True, allows the use of ampersands (&) as part of the fixed text caption. If
False, an ampersand in a caption text string is used to indicate that the next
character is to be interpreted as the underlined mnemonic character used to
activate the control with the keyboard.

Tip: If you want to use both ampersands and underlined mnemonic
characters, set No Prefix to False and use two ampersands (&&) where you
want the ampersand character to appear. For example, “&Visual
&&Objects” becomes Visual &Objects at runtime.

Alignment This property is used to defined how the text is to be aligned. Valid options are:

■ Simple

If selected, left-justifies the fixed text and displays it on a single line. The line
of fixed text is not shortened or altered in any way.

■ Left No Wrap

If selected, left-justifies the control’s fixed text without wrapping. Text that
exceeds the width of the control is clipped.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 181

■ Left

If selected, left-justifies and wraps the fixed text to fit within the physical
boundaries of the control. Wrapping means that any text extending beyond
the end of the line—that is, exceeds the horizontal size of the control—is
brought over to the beginning of the next line.

Left is the default setting for the Alignment option.

■ Center

If selected, centers and wraps the fixed text within the control’s boundaries.

■ Right

If selected, right-justifies and wraps the fixed text within the control’s
boundaries.

Fixed Bitmap Properties and Style Settings

A fixed bitmap object provides a static display of an image on a form. The
caption is used to specify the name or number of the bitmap resource to be
displayed.

General Tab

All of the general properties for a fixed bitmap control have been described
previously under Common Properties.

Note: Refer to the online help for detailed information about new and updated
fixed bitmap properties.

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your
fixed bitmap control:

Border Creates a border around the fixed bitmap control, if True. True is the default
setting for the Border option.

Specifying Control Properties and Style Settings

182 CA-Product User Guide

Horizontal Scroll Bar Properties and Style Settings

A horizontal scroll bar allows users to interactively select a number from a range
by dragging the thumb position or using the up or down arrow buttons. A
horizontal scroll bar can be bound to a field in a database. The number selected
can be keyed to specific choices, to rows in an array, and so on.

When a user changes the thumb position, the TextValue, ThumbPosition, and
Value accesses for the related scroll bar are changed. You can also change the
thumb position from your source code using the ThumbPosition assign. You can
write custom code to respond to events for a specific horizontal scroll bar object
using the Window:HorizontalScroll() method (see the online help system for
details).

General Tab

The General tab, shown below, allows you to specify a horizontal scroll bar’s
general properties, including physical appearance and class inheritance:

Note: Refer to the online help for detailed information about new and updated
horizontal scroll bar properties.

All of these properties have been described previously under Common
Properties, with the exception of the following properties that are specific to this
type of control:

Field Spec Enter or choose a field specification to associate with the control.

When you associate a field specification with a control, all properties defined for
the field specification (such as validation rules and picture) are automatically
inherited and used by the control. For more information on these properties,
refer to Chapter 7: Defining Data Servers and Field Specifications chapter for
more information.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 183

This property is available for check boxes, single- and multi-line edit controls,
rich edit controls, list and combo boxes, scroll bars, columns, radio button
groups, and OLE objects.

Min Value Enter a number that corresponds to the extreme left or top position of the thumb
control in the scroll bar. The maximum range (Max Value less Min Value) for a
scroll bar is 65,535.

Max Value Enter a number that corresponds to the extreme right or bottom thumb position,
or scroll box, of the scroll bar.

Note: CA-Visual Objects automatically generates scroll bars for your data
windows when they are resized. The vertical and horizontal scroll bar icons on
the tool palette, therefore, are used to create additional scroll bars for specific
controls. If you add your own scroll bars using the tool palette, you must enter
source code manually via the Source Code Editor to manipulate them. (See
Chapter 8: Creating Data-Aware Windows for more detailed information about
data windows.)

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your
horizontal scroll bar control:

Note: Refer to the online help for detailed information about new and updated
horizontal scroll bar properties.

All of these properties have been described previously under Common
Properties, with the exception of the following property that is specific to this
type of control:

AutoSize If True, automatically sizes the scroll bar using the system default size. The
default is False.

Specifying Control Properties and Style Settings

184 CA-Product User Guide

Vertical Scroll Bar Properties and Style Settings

A vertical scroll bar allows users to interactively select a number from a range by
dragging the thumb position, or using the up or down arrow buttons. A vertical
scroll bar can be bound to a field in a database. The number selected may be
keyed to specific choices, to rows in an array, etc. When a user changes the
thumb position, the TextValue, ThumbPosition, and Value accesses for the
related scroll bar are changed. You can also change the thumb position from
your source code using the ThumbPosition assign. You can write custom code to
respond to vertical scroll bar events using the Window:VerticalScroll() method;
see the online help system for details.

General Tab

The General tab, shown below, allows you to specify a vertical scroll bar's
general properties, including physical appearance and class inheritance:

Note: Refer to the online help for detailed information about new and updated
vertical scroll bar properties.

All of these properties have been described previously under Common
Properties, with the exception of the following properties that are specific to this
type of control:

Field Spec Enter or choose a field specification to associate with the control.

When you associate a field specification with a control, all properties defined for
the field specification (such as validation rules and picture) are automatically
inherited and used by the control. For more information on these properties,
refer to Chapter 7: Defining Data Servers and Field Specifications chapter for
more information.

This property is available for check boxes, single- and multi-line edit controls,
rich edit controls, list and combo boxes, scroll bars, columns, radio button
groups, and OLE objects.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 185

Min Value Enter a number that corresponds to the extreme left or top position of the thumb
control in the scroll bar. The maximum range (Max Value less Min Value) for a
scroll bar is 65,535.

Max Value Enter a number that corresponds to the extreme right or bottom thumb position,
or scroll box, of the scroll bar.

Note: As mentioned earlier, CA-Visual Objects automatically generates scroll
bars for your data windows when they are resized. The vertical and horizontal
scroll bar icons on the tool palette, therefore, are used to create additional scroll
bars for specific controls. If you add your own scroll bars using the tool palette,
you must enter source code manually via the Source Code Editor to manipulate
them.

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your
vertical scroll bar control:

Note: Refer to the online help for detailed information about new and updated
vertical scroll bar properties.

All of these properties have been described previously under Common
Properties, with the exception of the following property that is specific to this
type of control:

AutoSize If True, automatically sizes the scroll bar using the system default size. The
default is False.

Sub-Data Window Properties and Style Settings

A data window can be placed on another data window in an owner-child
relationship using a sub-data window control. Sub-data windows are often used to
display the detail table in a master-detail data window. When a data window is
“nested” within another data window in this way, it is referred to as a sub-data
window. There is no difference between a sub-data window and a data window
other than the sub-data window control defaults to browse view.

Specifying Control Properties and Style Settings

186 CA-Product User Guide

Note: For a complete discussion of data windows, data dialog windows, and
sub-data windows, refer to Chapter 8: Creating Data-Aware Windows.

General Tab

The General tab, shown below, allows you to specify a sub-data window
control’s general properties, including physical appearance and class inheritance:

Note: Refer to the online help for detailed information about new and updated
sub-data window properties.

The General tab contains the following properties:

Name Enter the name of the control. This property is required for all controls and is
automatically filled in with a default name when you place a control on a form.
For example, when you place the first push button on a form, it is named
“PushButton1.”

The Name property is used in the generated source code to identify individual
controls within the form. Therefore, control names must be unique within a
single form design.

Relation String Enter a relation string, i.e. the name of a field from the master data server that will
be used to perform a lookup operation in the detail data server’s controlling
order. This means that the detail server must have an open index file with a
controlling order whose key is based on a similar field.

The field name in the detail server does not have to be the same as the field name
that you use for the relation string, but in some cases it will be. For example,
#CustNum is the relation string for the CustOrd data window in the Order Entry
sample application that you replicated in the Getting Started guide. (If you have
not done this yet, see Chapter 8: Creating Data-Aware Windows for
instructions.) The important thing is that the data in the relation string field
matches the data in the key field of the detail server’s controlling order.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 187

Note: When you select a sub-data window control, it will show only the Name,
Relation String, Order, and Generate Code properties. If you double-click on the
sub-data window control, however, the program launches a new copy of the
Window Editor in which you can view and change all of the standard data
window properties described earlier in Specifying Window Properties. See
Chapter 8: Creating Data-Aware Windows for more information on using the
sub-data window control for nesting data windows.

Order Enter the name of the index file with the controlling order for the detail server (for
example, CUSTNAME.NTX). (For more information about index files and
orders, see Adding Index Files in Chapter 7: Defining Data Servers and Field
Specifications.)

Generate Code Specify whether certain source code will be generated for the control. This is a
Yes/No option that you change by selecting a value from a drop-down list. The
default value of Yes indicates that source code will be generated.

Changing this property to No can cut down on the resources needed to use the
window, but you can only do this if you do not need access to the control in your
application. For example, controls that are not data-aware (such as fixed text and
fixed icon) are seldom referenced in your application source code, so you can
change the Generate Code property to No to prevent the Window Editor from
generating unnecessary code.

Note: The code to display a control is always generated, regardless of the status
of this property.

Styles Tab

The Styles tab, shown below, allows you to add a border and to set tab stops for
a sub-data window box control:

Note: Refer to the online help for detailed information about new and updated
sub-data window properties.

Specifying Control Properties and Style Settings

188 CA-Product User Guide

The Styles tab contains the following properties:

Tab Stop If True, allows the user to press the Tab key to move through any number of
controls defined with this option.

Note: By default, the cursor tabbing order follows a left-to-right, top-to-bottom
progression, based on the position on the controls on the form. You may,
however, change the tab order using the Control Order dialog box. (See
Changing Tab Order by Reordering Controls later in this chapter for more
information.)

Border Creates a border around the sub-data control, if True. True is the default setting
for the Border option.

Column Properties Window and Styles Settings

A data window or a sub-data window control can be expanded by inserting one
or more columns and defining its properties.

Note: The Column toolbar icon and its corresponding menu command, Edit
Insert Column, are available only when the data window is in browse view. For
more detailed information, refer to Chapter 8: Creating Data-Aware Windows.

General Tab

The General tab, shown below, allows you to specify a column's general
properties, including physical appearance and class inheritance:

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 189

Note: Refer to the online help for detailed information about new and updated
column properties.

The General tab contains the following properties that are specific to this type of
control:

Block Optionally specify the code block to be associated with the column. This option
is used to filter the data in/out of the data column.

Block Owner Enter the owner of the code block associated with a column, if specified. The
owner would typically be the data server or SELF:Server .

Field Spec Enter or choose a field specification to associate with the column.

When you associate a field specification with a column control, all properties
defined for the field specification (such as validation rules and picture) are
automatically inherited and used by the control. For more information on these
properties, refer to Chapter 7: Defining Data Servers and Field Specifications
for more information.

This property is available for check boxes, single- and multi-line edit controls,
rich edit controls, list and combo boxes, scroll bars, columns, radio button
groups, and OLE objects.

Text Limit Enter the maximum number of characters allowed in the column control.

Picture Optionally, enter a picture string for the single-line edit control. If there is a field
specification with a picture string already associated with the control, the
SingleLineEdit:Picture access/assign overwrites the field specification’s picture
string.

OverWrite If the Picture property is defined for the single-line edit control, select a constant
value for SingleLineEdit:Picture. Valid values are:

■ OVERWRITE_NEVER

If selected, specifies that the single-line edit control always be in INSERT
mode.

■ OVERWRITE_ONKEY

If selected, specifies that the mode depends on the state of the INSERT key.

■ OVERWRITE_ALWAYS

If selected, specifies that the single-line edit control always be in
OVERWRITE mode.

Specifying Control Properties and Style Settings

190 CA-Product User Guide

List View Properties and Style Settings

A list view control allows the user to view, add, delete, and arrange a list of items
wherein each item consists of an icon and a label. For example, the right pane of
the Repository Explorer is a list view control:

Listviewcontrol

The contents of a list view control can be displayed in one of four view types:
Icons, Small Icons, List, and Report. (See Styles Tab below for full descriptions
of each view type.) Other options allow the end user to edit labels, scroll items,
and select more than one item at a time.

General Tab

Note: Refer to the online help for detailed information about new and updated
list view properties.

All of the general properties for a list view have been described previously under
Common Properties.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 191

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your list
view control:

Note: Refer to the online help for detailed information about new and updated
list view properties.

The Styles tab contains the following properties that are specific to this type of
control:

Border Creates a border around the list view control, if True. True is the default setting
for the Border option.

Specifying Control Properties and Style Settings

192 CA-Product User Guide

List View Type Specifies the display format for a list view. Valid choices are:

■ Icons

If selected, displays an item as a full-sized icon, with a label underneath it,
that the end user can drag to any location within the list view.

For example:

■ Small Icons

If selected, displays an item as a small icon, with a label to the right of it, that
the end user can drag to any location within the list view.

For example:

■ List

If selected, displays items as small icons with labels to the right. Items are
arranged in columnar format and cannot be manipulated by the end user.

For example:

Listtype:
Smallicons,itemsincolumns,nosubitems

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 193

■ Report

If selected, displays items as small icons with labels in the leftmost column.
Subitems, as specified by the application, are arranged on the same line in
additional columns to the right. Each column has a heading (unless the No
Header Column option is set to False).

For example:

Reportview:

Smallicons,itemsandsubitemsincolumns

Columnheadings

Scrollbar

Single Selection If True, this option limits the end user’s selection to a single item.

Show Selection Always If False, the highlighting will be removed when an item in a list view loses focus
(for example, if you Tab to another control). When the list view regains focus,
the previous selection will not be highlighted.

If True, the highlighted or selected text will remain highlighted when you Tab to
another control. In this fashion, any item in the list view stays marked (until you
move to another record in a database or close the window).

False is the default setting.

Sort The Sort option is available for all view types, and is used to specify a sort order
for the list of items. Items can be sorted by label, by subitem, or by any other
property. Valid choices are:

■ No Sort

Items in list are left unsorted.

■ Ascending

Sorts items in ascending order by label only. (No comparison function is
needed.)

Specifying Control Properties and Style Settings

194 CA-Product User Guide

■ Descending

Sorts items in descending order by label only. (No comparison function is
needed.)

The default is No Sort.

No Label Wrap If True, specifies that label text should not wrap to the next line in Icons or Small
Icons view only. Rather, text that exceeds a column’s width will not wrap.

Auto Arrange If True, repositions items on a grid at all times.

Edit Labels If True, this option allows the end user to edit the item labels. The default is
True.

No Scroll If True, the end user cannot scroll to view any items that do not fit in the client
area of the control window. The default is False.

Align Left If True, items in either the Icons or Small Icons view are aligned along the left
edge of the list view window. If False, the items are aligned along the top of the
list view window. The default is False.

No Column Header Specifies that columns in Report view do not have headings, if True. If False,
column headers appear for item and subitem. False is the default setting.

Note: Columns can be resized by the end user by dragging the column guides
between columns.

No Sort Header If False, column headers do not act like buttons. This is useful when there should
be no actions triggered by clicking on a column's header.

Tree View Properties and Style Settings

A tree view control presents the end user with a hierarchical list of items in a tree
structure that can be expanded or collapsed. Each item in the tree consists of a
label with an optional icon and may have an associated list of subitems. For
example, the left pane of the Repository Explorer is a tree view that lists projects,
applications, modules, and entities in a top-down hierarchy.

The contents of a tree view control can be displayed with buttons that expand
and collapse subitems (also called child items) and lines that link subitems to their
parent items and/or to the hierarchy’s root level. Other options allow the end
user to select more than one item at a time and to edit item labels.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 195

General Tab

Note: Refer to the online help for detailed information about new and updated
tree view properties.

All of the general properties for a tree view have been described previously
under Common Properties.

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your tree
view control:

Note: Refer to the online help for detailed information about new and updated
tree view properties.

The Styles tab contains the following properties that are specific to this type of
control:

Border Creates a border around the tree view control, if True. True is the default setting
for the Border option.

Has Buttons If True, specifies that a button be placed to the left of a parent item so that the
end user can click the button to expand or collapse its subitems.

Note: The Has Buttons by itself option does not add buttons at the root level of
the hierarchy. To do so, you must set all three options—Has Buttons, Has Lines,
and Lines at Root—to True.

Has Lines Draws lines that link subitems to their parent items in the tree hierarchy, if True.
The default is True.

Specifying Control Properties and Style Settings

196 CA-Product User Guide

Lines at Root If True, specifies that lines be drawn linking parent items to the root item, which
is an item that has no parent and is, therefore, the topmost level in the hierarchy.
The default is True.

Disabled Drag&Drop If True, does not allow the end user to use the drag-and-drop method of
manipulation items in the tree structure.

Show Selection Always If False, the highlighting will be removed when an item in a tree view loses focus
(for example, if you Tab to another control). When the tree view regains focus,
the previous selection will not be highlighted.

If True, the highlighted or selected text will remain highlighted when you Tab to
another control. In this fashion, any item in the tree view stays marked (until
you move to another record in a database or close the window).

False is the default setting.

Rich Edit Control Properties and Style Settings

Unlike a multi-line edit control which lets you only enter, edit, and delete
straight text, a rich edit control allows you to format and print text as well. You
can set tabs, use indentation, align and number text; and for characters, you can
specify font, size, text and background color, italics, and so on.

In addition to character and paragraph formatting, you can also embed OLE
objects in rich edit controls.

General Tab

The General tab, shown below, allows you to specify a rich edit control’s general
properties, including physical appearance and class inheritance:

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 197

Note: Refer to the online help for detailed information about new and updated
rich edit control properties.

All of these properties have been described previously under Common
Properties, with the exception of the following properties that are specific to this
type of control:

Field Spec Enter or choose a field specification to associate with the control.

When you associate a field specification with a control, all properties defined for
the field specification (such as validation rules and picture) are automatically
inherited and used by the control. For more information on these properties,
refer to Chapter 7: Defining Data Servers and Field Specifications for more
information.

This property is available for check boxes, single- and multi-line edit controls,
rich edit controls, list and combo boxes, scroll bars, columns, radio button
groups, and OLE objects.

Text Limit Enter the maximum number of characters allowed in the rich edit control.

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your rich
edit control:

Note: Refer to the online help for detailed information about new and updated
rich edit control properties.

Specifying Control Properties and Style Settings

198 CA-Product User Guide

The Styles tab contains the following properties that are specific to this type of
control:

Border If True, creates a rich edit control with a border.

Retain Selection If False, the highlighting will be removed when the edit control loses focus (for
example, if you Tab to another control). When the edit control regains focus, the
previous selection will not be highlighted. False is the default setting.

If True, the highlighted or selected text will remain highlighted when you Tab to
another control. In this fashion, any edit control you have edited stays marked
(until you move to another record in a database or close the window).

Vertical Scrollbar Creates a rich edit control with a vertical scroll bar (if True).

Horizontal Scrollbar Creates a rich edit control with a horizontal scroll bar, where all the text is on the
first line.

Auto VScroll If True, text is automatically scrolled up or down one line when the cursor
reaches the beginning or end of a line.

Auto HScroll If True, any text in the rich edit control is automatically scrolled 10 characters to
the right when the user reaches the end of the line while typing.

Return Key If True, the Enter key acts as a return key, moving the cursor to the next line of
the multi-line edit control. If False, the Enter key activates the default push
button for the window and has no effect on the edit control.

Read Only If True, this option stops the user from entering/editing text in the rich edit
control.

Alignment This property is used to defined how the text is to be aligned. Valid options are:

■ Left

If selected, left-justifies text in the rich edit control. Left is the default setting
for the Alignment option.

■ Center

If selected, centers text in the rich edit control.

■ Right

If selected, right-justifies text in the rich edit control.

Save Selection If True, saves the current selection when the rich edit control loses focus. When
it regains focus, the entire contents of the control appear.

Sunken Draws the rich edit control with a sunken border so that it appears recessed
within the window, if True.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 199

Disable No Scroll If True, disables the scroll bar instead of hiding it if one is not needed.

Align to Parent Aligns the rich edit control with the parent window’s client area, if True.

Animation Control Properties and Style Settings

An animation control is used to display a video clip (.AVI file), such as the one
used in Windows when a file is deleted and placed in the Recycle Bin:

Note: Only silent Audio Video Interleaved (AVI) video clips can be used with
animation controls.

General Tab

The General tab, shown below, allows you to specify an animation control’s
general properties, including physical appearance and class inheritance:

Note: Refer to the online help for detailed information about new and updated
animation control properties.

All of these properties have been described previously under Common
Properties, with the exception of the following property that is specific to this
type of control:

AVI File Enter the name of the .AVI file to be associated with this control.

Specifying Control Properties and Style Settings

200 CA-Product User Guide

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your
animation control:

Note: Refer to the online help for detailed information about new and updated
animation control properties.

The Styles tab contains the following properties that are specific to this type of
control:

Border If True, creates a border around the animation control.

Center If True, centers the video clip within the animation control’s window.

Transparent If True, specifies that the video clip will overlay the window with a transparent
background, rather than using the background color specified in the video clip.

Auto Play Starts playing the video clip as soon as the parent window is opened, if True.

Hotkey Edit Control Properties and Style Settings

A hotkey edit control enables the end user to select a valid key combination as a
shortcut for performing an operation or accessing another window—for
example, F1 to access an online help system or Ctrl+S to save data entries.

General Tab

Note: Refer to the online help for detailed information about new and updated
hotkey edit control properties.

All of the general properties for hotkey edit controls have been described
previously under Common Properties.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 201

Styles Tab

All of the style settings for hotkey edit controls have been described previously
under Common Properties.

Progress Bar Properties and Style Settings

Progress bar controls are used to visually indicate the progress of lengthy tasks,
such as installation and compilation operations. For example, below is a typical
Internet file download dialog box with a progress bar:

Every progress bar has two features: a range and a current position. The range
denotes the length of the task from start to completion, and the current position
indicates the progress made. The system uses the range and current position to
calculate progress as a percentage and colors a corresponding percentage of the
progress bar.

General Tab

The General tab, shown below, allows you to specify a progress bar’s general
properties, including physical appearance and class inheritance:

Specifying Control Properties and Style Settings

202 CA-Product User Guide

Note: Refer to the online help for detailed information about new and updated
progress bar properties.

All of these properties have been described previously under Common
Properties, with the exception of the following property that is specific to this
type of control:

Min Value Enter an unsigned integer that corresponds to the starting point in the range.
The allowable range is 0 to 65,535.

Max Value Enter an unsigned integer that corresponds to the completion point in the range.
The allowable range is 0 to 65,535.

Note: The default minimum and maximum settings are 0 and 100, respectively.

Styles Tab

All of the style settings for progress bars have been described previously under
Common Properties.

Note: Refer to online help for detailed information about new and updated
progress bar properties.

Horizontal Slider Properties and Style Settings

A horizontal slider control, or trackbar, is used to select a specific value or set of
consecutive values in a range of records or options. It typically includes a
horizontal slider, or thumb, and tick marks that indicate the incremental values in
the range. For example, Windows provides a horizontal slider control for setting
the double-click speed of your mouse.

General Tab

The General tab, shown below, allows you to specify a horizontal slider control’s
general properties, including physical appearance and class inheritance:

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 203

Note: Refer to the online help for detailed information about new and updated
horizontal slider properties.

All of these properties have been described previously under Common
Properties, with the exception of the following properties that are specific to this
type of control:

Min Value Enter a value that corresponds to the extreme left position for the selection range.
The default is 0.

Max Value Enter a value that corresponds to the extreme right position for the selection
range. For example, if the total number of increments in a range is 10, then the
maximum value would
be 11, as position 0 would be the thumb’s starting point and
1 to 10 would the range’s incremental positions.

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your
horizontal slider control:

Specifying Control Properties and Style Settings

204 CA-Product User Guide

Note: Refer to the online help for detailed information about new and updated
horizontal slider properties.

The Styles tab contains the following properties that are specific to this type of
control:

Auto Ticks If True, creates a horizontal slider control with a tick mark for each increment in
its range of values. For example:

Thumb

Tickmarks

No Ticks If True, creates a horizontal slider control without tick marks.

Enable Selection
Range

If True, creates a horizontal slider control with a selection range
that is highlighted. For example:

Highlightedselectionrange

Fixed Length If True, the length of the horizontal slider control does not vary as the selection
range changes. The default setting is False.

No Thumb If True, creates a horizontal slider control without a thumb. For example:

Horizontalsliderwithoutthumb

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 205

Vertical Slider Properties and Style Settings

A vertical slider control, or trackbar, is used to select a specific value or set of
consecutive values in a range of records or options. It typically includes a
vertical slider, or thumb, and tick marks that indicate the incremental values in the
range. For example:

Thumb

Tickmarks

General Tab

The General tab, shown below, allows you to specify a vertical slider control’s
general properties, including physical appearance and class inheritance:

Note: Refer to the online help for detailed information about new and updated
vertical slider properties.

All of these properties have been described previously under Common
Properties, with the exception of the following properties that are specific to this
type of control:

Min Value Enter a number that defines the minimum value in the slider’s selection range.

Max Value Enter a number that defines the maximum value in the slider’s selection range.
For example, if the total number of increments in a range is 10, then the
maximum value would be 11, as position 0 would be the thumb’s starting point
and 1 to 10 would the range's incremental positions.

Specifying Control Properties and Style Settings

206 CA-Product User Guide

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your
vertical slider control:

Note: Refer to the online help for detailed information about new and updated
vertical slider properties.

The Styles tab contains the following properties that are specific to this type of
control:

Auto Ticks If True, creates a vertical slider control with a tick mark for each increment in its
range of values. The default setting is True.

No Ticks If True, creates a vertical slider control without tick marks. The default setting is
False.

Enable Selection
Range

If True, creates a vertical slider control with a selection range that is highlighted.
The default setting is False.

Fixed Length If True, the length of the vertical slider control does not vary as the selection
range changes. The default setting is False.

No Thumb If True, creates a vertical slider control without a thumb. The default setting is
False.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 207

Horizontal Spinner Properties and Style Settings

A horizontal spinner control consists of a pair of Left and Right arrow buttons
that are used to increment or decrement a value, respectively. Note that a
horizontal spinner is typically paired with a companion control that allows the end
user to enter a valid value or select one from those displayed, using the arrow
buttons.

For example, the Properties window for the various window forms uses a
horizontal spinner control that allows you to scroll left to right (and right to left)
through its tab pages:

Horizontalspinnercontrol

General Tab

The General tab, shown below, allows you to specify a horizontal spinner’s
general properties, including physical appearance and class inheritance:

Note: Refer to the online help for detailed information about new and updated
horizontal spinner properties.

All of these properties have been described previously under Common
Properties, with the exception of the following properties that are specific to this
type of control:

Min Value Enter a number that defines the minimum value in the spinner's selection range.

Specifying Control Properties and Style Settings

208 CA-Product User Guide

Max Value Enter a number that defines the maximum value in the spinner's selection range.

Note: If the maximum value is less than the minimum value, the Left arrow
button actually decreases the current position as it moves towards the maximum
value.

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your
horizontal spinner control:

Note: Refer to the online help for detailed information about new and updated
horizontal spinner properties.

The Styles tab contains the following properties that are specific to this type of
control:

Wrap If True, wraps the spinner's current position to the opposite extreme if the end
user attempts to go beyond either the minimum or maximum value. The default
setting is False.

Alignment Specifies the type of alignment between the spinner and its companion control.
Valid choices are: No Alignment, Left, and Right. The default setting is No
Alignment.

Auto Buddy If True, the window control defined most recently is automatically selected as the
companion, or buddy, control for
the spinner. Companion controls are typically single-line edit controls or list
boxes. The default setting is True.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 209

Set Buddy Int If True, sets the caption of the companion, or buddy, control for
the spinner whenever the current position changes. If the companion control is a
list box, the spinner control sets its current selection instead of its caption.

The default setting is False.

Arrow Keys Specifies that keyboard equivalents (LEFT and RIGHT arrow keys) may be used
for the Left and Right arrows, if True. The default setting is False.

No Thousands Specifies that no separators be inserted in a decimal string to denote thousands,
if True. The default setting is False.

Vertical Spinner Properties and Style Settings

A vertical spinner control—sometimes called a spin control or Up-Down control—
consists of a pair of Up and Down arrow buttons that are used to increment or
decrement a value, respectively. For example, the Copies field on a standard
Print dialog box is usually a vertical spinner control:

Verticalspinner

Companioncontrol

Note that a vertical spinner is typically paired with a companion control that
allows the end user to enter a valid value or select one from those displayed,
using the arrow buttons.

Specifying Control Properties and Style Settings

210 CA-Product User Guide

General Tab

The General tab, shown below, allows you to specify a vertical spinner’s general
properties, including physical appearance and class inheritance:

Note: Refer to the online help for detailed information about new and updated
vertical spinner properties.

All of these properties have been described previously under Common
Properties, with the exception of the following properties that are specific to this
type of control:

Min Value Enter a number that defines the minimum value in the vertical spinner’s
selection range.

Max Value Enter a number that defines the maximum value in the vertical spinner’s
selection range.

Note: If the maximum value is less than the minimum value, the Up arrow
button actually decreases the current position as it moves towards the maximum
value.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 211

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your
vertical spinner control:

Note: Refer to the online help for detailed information about new and updated
vertical spinner properties.

The Styles tab contains the following properties that are specific to this type of
control:

Wrap If True, wraps the vertical spinner’s current position to the opposite extreme if
the end user attempts to go beyond either the minimum or maximum value. The
default is False.

Alignment Specifies the type of alignment between the vertical spinner and its companion
control. Valid choices are: No Alignment, Left, and Right.

Auto Buddy If True, the window control defined most recently is automatically selected as the
companion control for the vertical spinner. Companion controls are typically
single-line edit controls or list boxes. True is the default setting.

Set Buddy Int If True, sets the caption of the companion, or buddy, control for
the spinner whenever the current position changes. If the companion control is a
list box, the spinner control sets its current selection instead of its caption.

The default setting is False.

Arrow Keys If True, specifies that keyboard equivalents (UP and DOWN arrow keys) may be
used for the Up and Down arrows.

No Thousands Specifies that no separators be inserted in a decimal string to denote thousands,
if True.

Specifying Control Properties and Style Settings

212 CA-Product User Guide

Tab Control Properties and Style Settings

A tab control is used to present data or a series of choices in a multiple-page
format. It consists of one or more tabbed pages that resemble file folders. When
the end user clicks on one of the tabs, the corresponding page moves to the
forefront and allows access to its data and controls. For example, the System
Settings dialog box in CA-Visual Objects is a tab control that has five pages:

Note: When a tab control is placed on a form, it initially consists of a single
page. See Manipulating Tab Control Pages later in this chapter for information
about adding pages to a tab control and editing it.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 213

General Tab

The General Tab, shown below, allows you to specify a tab control’s general
properties, including physical appearance and class inheritance:

Note: Refer to the online help for detailed information about new and updated
tab control properties.

All of these properties have been described previously under Common
Properties, with the exception of the following properties that are specific to this
type of control:

AutoSize If True, allows the tab control to size itself to the size of its pages when created.
Otherwise, it respects the size specified in the Window Editor.

Current Tab: Data
Aware

If Yes, the current page is a data-aware control. The default
value is Yes.

Current Tab: Caption Enter the caption that should appear on the tab. The default is Page.

Current Tab: Name Enter the page name for the current tab. The default is TabControln_Page n.

Specifying Control Properties and Style Settings

214 CA-Product User Guide

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your tab
control:

Note: Refer to the online help for detailed information about new and updated
tab control properties.

The Styles tab contains the following properties that are specific to this type of
control:

Force Icon Left As a tab may have both an icon and a caption, this option forces the icon to the
left edge of the tab and centers the caption at the same time, if True.

Force Label Left If True, this option forces both a label and its icon (optional) to left edge of the
tab.

Buttons If True, creates a tab control with tabs that look like buttons. For example:

Button-styledtabs

Tabcontrol(indicatedbysizinghandles)withoutborder

Note: Button-styled tabs should be used like other button controls; that is, they
should perform a function or execute a command instead of displaying a page.
Therefore, the remaining area of the tab control is typically unused and,
consequently, is not surrounded by a border.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 215

Multiline If True, displays multiple rows of tabs rather than a single row with a vertical
spinner control that indicates to the end user that scrolling is required to view
additional tabs. (A single row of left-aligned tabs and a vertical spinner—if
necessary—is the default style.)

Focus On Button Down If True, draws the tab that currently has focus in a recessed format. In our
example just above, the “Page 1” button emulates a button that has been pressed
down by the end user. In fact, this option is customarily used only with the
Buttons option.

Has ToolTips If True, adds a tooltip control to each tab. Tooltip controls are small pop-up
windows that display descriptive text when the mouse moves over them. For
example:

Textfortip

Tooltipcontrol

Focus Never If True, specifies that a tab is never the recipient of the input focus when clicked.

OLE Object Control Properties and Style Settings

An OLE object control (OCX) allows you to seamlessly embed other applications
into the application you are currently designing. For example, if you were
creating a financial application like our Order Entry sample application and you
wanted to add spreadsheet capability to it, you could do so by inserting
Microsoft Excel as an OLE object control.

Note: You can also link OLE objects to your applications. See Linking and
Embedding OLE Objects later in this chapter for more detailed information about
using OLE objects and OCX controls in CA-Visual Objects.

Specifying Control Properties and Style Settings

216 CA-Product User Guide

General Tab

The General tab, shown below, allows you to specify an OLE object control’s
general properties, including physical appearance and class inheritance:

Note: Refer to the online help for detailed information about new and updated
OLE object properties.

All of these properties have been described previously under Common
Properties, with the exception of the following properties that are specific to this
type of control:

Field Spec Enter or choose a field specification to associate with the control.

When you associate a field specification with a control, all properties defined for
the field specification (such as validation rules and picture) are automatically
inherited and used by the control.

This property is available for check boxes, single- and multi-line edit controls,
rich edit controls, list and combo boxes, scroll bars, columns, radio button
groups, and OLE objects.

Inherit from Class Select the Control class or subclass from which the specified window control will
inherit its basic characteristics.

AllowInPlace If True, specifies that the control behave like the actual application that is
embedded as an OLE object inside the CA-Visual Objects container application
for the duration of the current editing session. During in-place activation, the
embedded application’s and the container application’s menus and toolbars are
merged, and the object can be edited inside the CA-Visual Objects container
application’s user interface context.

Specifying Control Properties and Style Settings

Chapter 4: Using the Window Editor 217

ActivateOnDblClk If True, allows the end user to double-click on the OLE object control to activate
it.

AllowResize Allows the end user to resize an OLE object control, if True.

AutoSizeOnCreate If True, allows the OLE control to size itself when created. Otherwise, it respects
the size specified in the Window Editor.

ReadOnly If True, this option prevents the end user from editing the OLE object control.

Styles Tab

The Styles tab, shown below, allows you to define the style settings for your tab
control:

Note: Refer to the online help for detailed information about new and updated
OLE object properties.

The Styles tab contains the following property that is specific to this type of
control:

Border Creates a border around the OLE object control (if True). True is the
default setting for the Border option.

Defining Arrays for List and Combo Boxes

218 CA-Product User Guide

Defining Arrays for List and Combo Boxes

Note: In CA-Visual Objects 2.7, combo boxes and list boxes can be with filled
with the contents of any array expression, not just a global array variable. See the
online help for more information about the Use Array Expression option, which
replaces the User Global Array option.

Select the Fill Using property on the General tab of the Properties window to
access the Fill Using dialog box:

This dialog box allows you to specify how a list box or combo box will be filled.
The Use Global Array and Use Server radio buttons determine whether the
dialog box will be filled with the contents of an array or a data server,
respectively. The Use Method radio button allows you to create a customized
method for filling the list box or combo box.

If you choose Use Global Array or Use Method, you must enter the name of the
array or method in the Name edit control. For example, to populate a list box of
states or provinces for customer addresses, you might use an array named
“States.”

Note: Arrays must be created manually outside the Window Editor. See the
Programmer’s Guide for detailed information about creating dynamic and
dimensioned arrays.

Push Button Controls and Actions

Chapter 4: Using the Window Editor 219

If you choose Use Server, the Options group box changes slightly, with the Name
edit control replaced by the Server combo box as shown below:

Check the Include Search Path check box if you want to choose from data servers
that are defined in your application’s search path (for example, a data server
library). Leave it unchecked if you want to choose only from data servers
defined in the current application.

In the Server combo box, specify the name of a data server. In the Display Field
combo box, specify the name of the field you want to display. In the Return Field
combo box, specify the name of the field whose value you want to return when
the user makes a selection.

Note: The names of the Display Field and Return Field will often be the same.

Click OK to close the dialog box.

Push Button Controls and Actions
The Window Editor makes it easy for you to associate actions with push button
controls. When a push button is clicked, the window always calls a predefined
event based on the push button’s Name property. First, it will attempt to invoke
a method with the same name. The Window Editor creates a skeleton for this
method; to add your own source code to the method, click the Ellipsis button for
the Click Event property. If no method by that name is defined in the current
window class or any of its superclasses, the window will look for a Window class
entity and then a ReportQueue class entity with the same name to invoke. In
cases where there is no appropriate event defined for a push button, nothing
happens when it is clicked.

Note: This same technique is used by the Menu Editor to associate events with
menu selections. See “GUI Classes” in the Programmer’s Guide for a complete
discussion of predefined menu and button events.

Manipulating Tab Control Pages

220 CA-Product User Guide

You can, therefore, use a carefully named push button control to cause a
particular event to happen when the push button is clicked. For example, if you
want a push button on a dialog window to open another dialog window, use the
name of the subordinate dialog window as the push button control name.
Similarly, if you want a push button on a data window to perform a standard
database operation, name the push button using the corresponding DataWindow
class method (for example, a push button named Skip will invoke the
DataWindow:Skip() method when clicked). See the online help system for
information about the methods of a particular class.

The system is quite flexible in that, at any time, you can override the default by
defining a customized method using the Click Event property. Doing this
invokes the Source Code Editor with a predefined METHOD declaration
statement for your particular window subclass.

You enter the source code that suits your particular needs (which may include a
call to a similar method in a superclass), and the Window Editor saves this
method in the current module along with the other code that it generates. Then,
when the push button is clicked, it will automatically invoke your customized
method.

Manipulating Tab Control Pages
As mentioned earlier in this chapter, a tab control when first placed on a form
consists initially of a single page. To create a multi-page tab control, you must
add pages to the original control. To do so:

Creating a Tab
Control

1. Use the tool palette to place a tab control on the specified form.

For example, you may want to expand the sample Order Entry application to
include a dialog window with a multi-page tab control for sales data:

Manipulating Tab Control Pages

Chapter 4: Using the Window Editor 221

2. Specify the tab control’s basic properties such as Caption and Current
Tab:Caption (for example, Sales Data and Salespersons, respectively).

See the General Tab and Styles Tab sections, as well as Common Properties,
for full descriptions of the available properties.

Adding Another Page 3. Right-click on the tab control.

A local pop-up menu appears with several commands exclusively for tab
controls, in addition to standard editing commands like Center Vertically:

Note: The Edit Page, Next Page, Previous Page, Delete Page, Insert Page,
Add Page, and Styles commands are accessible only via the local pop-up
menu, whereas the other standard editing commands are also available from
the Edit menu.

4. Choose the Add Page command.

Manipulating Tab Control Pages

222 CA-Product User Guide

Another page is added to the tab control; and when you click on its tab, it
moves to the forefront:

Newpage

FocusofPropertieswindowchangestonewpage

Note: After adding a new page to the tab control, the Next Page, Previous
Page, and Delete Page local menu commands become activated.

5. Replace the Current Tab:Caption property’s default value of “Page” with
Sales Regions, for example.

Editing a Page 6. Right-click on the Salespersons page.

The local pop-up menu reappears.

7. Select the Edit Page command from the local pop-up menu.

A new window appears for “Page1,” as well as the Dialog Window
Properties window and the tool palette. This is because each page of a tab
control is actually a modeless dialog window that you must define.

8. Add a few controls—such as single-line edit controls, fixed text controls, and
push buttons—using the tool palette, and specify their properties.

Manipulating Tab Control Pages

Chapter 4: Using the Window Editor 223

For example, you might add controls for the salesperson's name, ID, and
sales region, in addition to push buttons that allow the end user to update or
cancel any data entered:

9. Save your changes and close out of the “Page1” window.

You are returned to the Sales Data tab control.

10. Repeat steps 6 - 9 for the Sales Region page, adding controls for region code,
description, etc. in the window for “Page2.”

11. Save your changes and recompile.

Note: Separate form entities are created for each page of the tab control, as
well as for its parent window.

The new Sales Data dialog window, when completely finished, should look
something like this:

Linking and Embedding OLE Objects and Controls

224 CA-Product User Guide

Linking and Embedding OLE Objects and Controls
Object linking and embedding (OLE) is not a new technology. It has been
around before the birth of Windows, and was used mostly in Microsoft Office
applications to create compound documents or to embed one or more foreign
applications inside another application. With Microsoft OLE 2.0, a full 32-bit
technology that is a central component of Windows, OLE is now an umbrella
term that includes many subtechnologies—automation, data transfer, memory
allocation, file management, and OLE custom controls (OCXs).

Note: CA-Visual Objects 2.7 is a full-fledged OLE client/server application, and
supports all of OLE 2.0 technologies. For detailed information about creating
ActiveX controls and OLE server applications, see the
online help.

Basic Terms

Before showing you how to use OLE objects and controls in CA-Visual Objects, a
brief discussion of some basic terms is in order.

Linking and Embedding

Linking and embedding objects into compound documents or container
applications is the basic foundation of OLE. These two methods store items,
which were created by one application, inside a document of another
application. The application that created the object is called the server application
and the application that stores the object is called the container or client
application.

Embedding Embedding is the more common of the two methods, and there are several ways
of embedding an object into a container application. For example, you could
create a spreadsheet in MS Excel, and then place it inside your CA-Visual Objects
application by using the Window Editor’s Edit Paste or Paste Special menu
command and standard drag-and-drop editing techniques. You could insert it
using the Edit Insert OLE Object menu command. (The CA-Visual Objects
Window Editor fully supports OLE 2.0 features.)

After the object is placed in the container application, it is in a passive state. An
object will stay in this state until it is necessary to make modifications to it, in
which case it will become active by some user action defined by the client.
Activating the object launches the application used to create the object (for
example, MS Excel).

Linking and Embedding OLE Objects and Controls

Chapter 4: Using the Window Editor 225

The application can be launched in two ways, depending on how the client
application has implemented activation support. The first way is for the client to
start the server as a separate application in a separate window. The second way
is for the client to become the server application for the duration of the object
editing session. In this case, which is called in-place activation, the client will
change itself into the server. This change encompasses menus, toolbars, status
bars, and any palette windows.

In-place activation requires no extra user interaction; simply placing the cursor
on the object will activate it. Thus, embedded objects are indistinguishable from
the client application’s native data. This model can be used when the overhead
of activating the object is small.

Linking An object can also be linked to the client application. A linked object is a
representation of (or pointer to) the actual object which resides elsewhere (either
in the same application or in a different application).

An object can be linked by choosing the Window Editor’s Edit Paste Special
menu command and selecting the Paste Link option in the Paste Special dialog
box that appears. The Paste Link option creates a link to the source file for the
embedded object, so that changes to the source file will be reflected in your
application. The Insert Object dialog box also supports linking of objects (see
Inserting an OLE Object below).

Editing a linked object is very similar to editing an embedded object. The only
difference is that the data for a linked object remains in the application which
created the object, whereas the data for an embedded object travels with the
object to the client application. Additionally, editing a linked object is always
done “out-of-place.”

Controls and Control Containers

An OLE custom control is a special kind of embedded OLE 2.0 object that has an
extended interface that lets it behave like a Windows control. OCXs are a set of
extensions that turn simple OLE 2.0 containers and objects into more powerful
tools.

The OLE 2.0 standard for compound documents meets many of the requirements
for both controls and control containers, but not all of them. Creating a control
involves some other issues, primarily those dealing with OLE automation. A
control must expose its events, methods, and properties to a control container;
and a control container must expose ambient properties and its own events to the
control. Ambient properties are named characteristics or values of the container
itself that generally apply to all controls in the container. Some examples of
ambient properties are default colors, font, and whether the container is in design
mode or run mode.

Linking and Embedding OLE Objects and Controls

226 CA-Product User Guide

The difference between controls and simple OLE objects is that controls generally
do not need a lot of user interface components, like toolbars and menus.
However, they do have additional needs for event capture—such as focus and
keystrokes.

Note: For an in-depth discussion of utilizing OLE objects and controls, refer to
the “Object Linking and Embedding” chapter in the Programmer’s Guide.

Inserting an OLE Object

The CA-Visual Objects Window Editor is both an OLE object and an OCX
container. Consequently, it provides the following OLE features:

■ Design and runtime modes

■ Drag-and-drop placement of objects and controls

■ Embedding and linking options

■ In-place activation and editing of embedded objects

■ Ability to access all the methods, properties, and events of an OLE custom
control (OCX)

To insert an OLE object in your application, follow these basic steps:

1. Start the Window Editor.

Note: You must have the OLE library in your application’s search path in
order to embed and link OLE objects and controls. See Default Path
Options in “Working in the Desktop” for information about modifying your
application’s default search path.

Notice that the OLE icon in the Window Editor’s tool palette is now active:

2. Specify the new window’s properties, such as its Caption property.

Linking and Embedding OLE Objects and Controls

Chapter 4: Using the Window Editor 227

3. Drag-and-drop the OLE icon onto the form.

Alternatively, choose the Insert OLE Object command from the Edit Menu.

In the latter instance, the Insert Object dialog box appears:

4. Select the Create from File radio button. (Select the Create New radio button
and an object type if you wish to create a new object.)

The Insert Object dialog box changes slightly when you choose the Create
from File option:

5. Optionally, select the Link option to link the object to the selected file so that
any changes to the file will be reflected in your document.

6. Optionally, select the Display As Icon option if you want the embedded
object to appear as an icon on your form.

7. Click the Browse push button.

Linking and Embedding OLE Objects and Controls

228 CA-Product User Guide

A standard Browse dialog box appears:

8. Select a file (for example, Cars.bmp from the WINNT35 folder).

Use the Up One Level and Details toolbar buttons, respectively, in your
search for the desired drive and directory.

9. Click Open.

You are returned to the Insert Object dialog box.

10. Click OK.

You are returned to the Window Editor, and the OLE object is added your
form:

11. Specify the OLE object’s properties, such as Caption, AllowInPlace, and
ActivateOnDblClk, using the OLE Object Properties window.

12. Click the Save toolbar button to save the form entity.

Alternatively, choose the File Save menu command.

Afterwards, when the application is recompiled and up and running, you can
activate the program that created the Clipart bitmap image object.

Linking and Embedding OLE Objects and Controls

Chapter 4: Using the Window Editor 229

Inserting an OLE Control

To insert an OLE control (OCX) in your application instead of (or in addition to)
an OLE object, follow these basic steps:

1. Restart the Window Editor, if closed.

2. Choose the Insert OLE Control command from the Edit Menu.

The Insert OLE Control dialog box appears:

This dialog box displays all of the OLE controls and associated files currently
in the OLE database in the CA-Visual Objects registry. (See Setting Up OLE
Controls for information about registering an OLE control).

3. Select a control (for example, ChartFXControl), and then click OK.

The OLE control is added to your form:

4. Specify the OLE control’s properties, such as Caption, Control Properties,
and Event:LButtonDblClk, using the OLE Control Properties window.

5. Click the Save toolbar button to save the form entity.

Alternatively, choose the File Save menu command.

Linking and Embedding OLE Objects and Controls

230 CA-Product User Guide

Setting Up OLE Controls

OLE controls must be prepared, or set up, for use in your applications.
Preparation includes registering the controls and generating the CA-Visual
Objects wrapper code for their exported properties and methods. You can also
add OCXs as icons to the Window Editor’s tool palette.

To set up an OLE control:

1. Restart the Window Editor, if closed.

2. Choose the Setup OLE Control command from the Tools Menu.

The Setup OLE Controls dialog box appears:

Note: In this version of CA-Visual Objects, this dialog box has two new
options, Include Containing Objects and Remove from Palette. For detailed
information, see the online help.

This dialog box displays all of the OLE controls and associated files currently
in the OLE database in the CA-Visual Objects registry.

3. Click the Register button to register a control that is not currently displayed
in the Control/File list box.

The Register OLE Control dialog box appears:

Linking and Embedding OLE Objects and Controls

Chapter 4: Using the Window Editor 231

4. Select an .OCX file (for example, VTFL.OCX), and click Open.

5. Click OK in the Window Editor’s message box when informed that the OLE
control is successfully registered.

6. Optionally, click the Generate button.

This option is used to generate the base class source code for the OLE control
just registered.

7. If you choose the Generate option, you can also click on the Include
Description check box.

This option adds a description for the OLE control entity in the Repository
Explorer’s list view pane, as well as in the source code.

8. Select the Add to Palette option.

This option, if selected, adds the specified OCX as an icon to the Window
Editor’s tool palette.

9. Click Close.

You are returned to the Window Editor. Notice that a new icon for the OCX
has been added to the tool palette:

NewiconforOCX

OCXcontrol

Note: You can also select a control and remove it from the registry by clicking
on the UnRegister button in the Setup OLE Control dialog box.

Linking and Embedding OLE Objects and Controls

232 CA-Product User Guide

Invoking OLE Control Methods

You can set, test, and view the initial properties and functions associated with an
OLE control, including its physical appearance at runtime. To do so:

1. Choose the OLE Control Methods command from the Edit menu.

The Invoke Control Method dialog box appears:

This dialog box displays a list of Set properties, Get properties, and
Functions for the selected control.

2. Expand a branch of the tree structure in the left pane of this dialog box (for
example, Properties, Set), and select a property to be set and tested (for
example, Title).

The property’s parameter names, data types, and values appear in the
Parameter Name/Type/Value list view:

Notice that the Return group box displays the return value for the specified
method.

Linking and Embedding OLE Objects and Controls

Chapter 4: Using the Window Editor 233

3. Double-click on the index parameter.

The Edit Parameter dialog box appears:

4. Enter a value (for example, 2), and then click OK.

5. Double-click on the (Unnamed) parameter.

6. The Edit Parameter dialog box appears again.

Enter a value (for example, Sales Summary).

7. Click the Invoke button.

Both values appear in the Value column of the list view:

8. Repeat steps 3–7, entering the following pairs of values:

0, Units Sold and 3, Month.

Note: Remember to click the Invoke button after setting each parameter,
keeping in mind that a property may have any number of parameters.

9. Click the dialog box’s Close button in the upper-right corner.

Modifying a Window

234 CA-Product User Guide

The OLE control in your form now displays your test values:

You can, of course, change your initial settings for an OCX control at any time.
For example, you might want to resize it, change x and y values, edit the legend,
change fonts, and so on.

Modifying a Window
After you have defined a window, you can modify it by changing its properties
or the properties of any control associated with it. You can also move and size a
window or any of its controls, and you can cut, copy, paste, and delete
individual window controls.

Modifying a Window

Chapter 4: Using the Window Editor 235

Editing Window Properties

To make any changes to a window, you must first select it by clicking any spot
on the window that is not currently occupied. For example, you can click on the
title bar or a blank space between two controls. When a window is selected, its
perimeter is marked with several handles that are used for sizing, and the
Properties window changes to show the window’s properties:

Sizinghandles

WindowPropertieswindow

Changing Window
Properties

To change any property associated with a selected window, click the property
that you want to change in the Properties window and specify a new value. See
Specifying Window Properties for more information.

Sizing a Window To change the size of a selected window:

1. Place the mouse pointer on one of its sizing handles.

The mouse pointer will change to a double arrow.

2. Press the left mouse button and hold it down.

3. Drag the mouse to change the window to the desired size, and release the
mouse button.

Tip: You can also use the Width and Height properties to specify the size of
your window directly.

Modifying a Window

236 CA-Product User Guide

Moving a Window You can also move a selected window to a new location in the Window Editor.
This has no effect on the window itself, but it can make working with it more
convenient. However, in the case of dialog windows, moving its position in the
Window Editor will modify the position at which it displays at runtime.

1. Place the mouse pointer anywhere on the edge of the window that is not
currently occupied.

The mouse pointer will change to a four-arrow pointer

2. Press the left mouse button and hold it down.

3. Drag the mouse to move the window to the desired location, and release the
mouse button.

Editing Controls

To make any changes to a control, you must first select the control by clicking on
it. When a control is selected, its perimeter is marked with several handles that
are used for sizing, and the Properties window changes to show the control’s
properties:

Tip: When you select a control on the window template, its name,
coordinates, and size are displayed on the Window Editor status bar. For
example, a push button named OK might display as “PushButton1 (171, 19)
(53 X 14),” in which 171 and 19 are its respective row and column
coordinates in pixels, and 53 and 14 are its respective width and height in
pixels. This information is continuously updated when moving and sizing
the control and can be very useful in determining if two controls line up
properly or are the same size.

Modifying a Window

Chapter 4: Using the Window Editor 237

Changing Control
Properties

To change any property associated with a selected control, click the property
that you want to change in its Properties window and specify a new value.

Note: You must press the Enter key after modifying a control’s property,
otherwise that change will not adhere.

See Specifying Control Properties and Style Settings for complete information.

Selecting Controls To select a single control, place the mouse pointer on the control, and click the
left mouse button.

To select more than one control, click on the first control, then hold down the
Ctrl key as you click on the other controls. You can also drag a rectangle around
the controls you want to select (hold down the left mouse button and drag until a
square appears around the group of controls you want to select).

The last control selected has a different appearance; it has gray selection handles
while the other controls have white selection handles. The last control selected
plays a key role when you are using one of the Edit Arrange menu choices.

For example, if you have four controls, the first three controls will be modified to
imitate one or more of the attributes of the last one. For example, the Align Left
command would move the top three controls so their left borders align with the
left border of the bottom control. (See Arranging Size and Position of Controls
for more information.)

Sizing a Control Some controls, such as radio buttons, have a fixed size. Others, like list boxes
and push buttons, do not so you can change their size. For example, to change
the size of a push button:

1. Place the mouse pointer on one of its handles. For example:

Sizinghandle

The mouse pointer will change to a double arrow.

2. Press the left mouse button and hold it down.

Modifying a Window

238 CA-Product User Guide

3. Drag the mouse to change the control to the desired size, and release the
mouse button. The result is:

Resizedcontrol

Tip: You can also use the Width and Height properties to specify the size of
your control directly.

Moving a Control To move a selected control (or controls) to a new location in the window:

1. Place the mouse pointer anywhere on the selection.

2. Press the left mouse button and hold it down.

3. Drag the mouse to move the control(s) to the desired location, and release
the mouse button.

Copying a Control To copy a selected control (or controls) to a new location in the window:

1. Choose the Copy toolbar button.

2. Choose the Paste toolbar button.

The new control(s) will be pasted on the window. For example:

Copy

Originalcontrol

Samecaptionasoriginal,butdifferentname

Modifying a Window

Chapter 4: Using the Window Editor 239

Note: After copying one or more controls, you will want to move each one to its
proper location and assign a new caption to it—the copy will have the same
caption as the original, but a different name (for example, PushButton3).

Deleting a Control To delete a selected control (or controls) from the window, press Del or choose
Edit Delete to remove the control(s).

You can also use the Cut toolbar button, if you plan to paste the control on this or
another window.

Arranging Size and
Position of Controls

There are a number of useful commands on the Edit Arrange menu that will
allow you to arrange several controls to have the same alignment, size, or
spacing. First select several controls, making sure that the last control selected is
the one that you do not wish to change. This is the control with the gray
selection handles. Then select one of the Edit Arrange menu choices (or simply
right click on one of the controls to see the same choices in a local pop-up menu).

For example, suppose you wanted to modify the top three radio buttons to have
the same left alignment and vertical size as the bottom radio button, and also
have the same vertical spacing:

Alignthese...

withthiscontrol

Right-click on one of the selected controls. A local pop-up menu appears:

Modifying a Window

240 CA-Product User Guide

Select the Align Left command and release the mouse. Repeat this with the Same
Vertical Size command and finally select the Even Vertical Spacing command.
These commands allow you to easily arrange controls on a form, like so:

Changing Tab Order by Reordering Controls

The Edit Control Order menu command allows you to change the cursor tabbing
order for a window’s controls by reordering the controls in the source code.
When you add controls to a window, the system automatically creates a tab
order.

Note: The Tab Stop option must be selected in the appropriate Styles dialog box
for each control; otherwise, the tab key cannot be used to select the control.

The initial order is based on the vertical and horizontal position of the controls.
The control in the upper left-hand corner comes first, and subsequent controls
are ordered based on a left-to-right, top-to-bottom progression.

Modifying a Window

Chapter 4: Using the Window Editor 241

For example, if you choose the Edit Control Order command for the sample Print
dialog box, the Control Order dialog box appears:

Note: In CA-Visual Objects 2.7, this dialog box provides a new option, Use
Mouse, which allows you to modify the tab order interactively. For more
detailed information, see the online help.

This dialog box displays the names of all the controls, as well as their captions
and control types, in tab stop order as they appear in the source code.

To verify this, you can access the module’s source code by double-clicking on the
Print resource entity in the Repository Explorer’s list view pane (you must save
the dialog window before any source code is generated by the Window Editor).
The order in which controls are defined in the resource entity determines their
tab stop order:

Modifying a Window

242 CA-Product User Guide

As this tabbing order may not be user-friendly, you may want to rearrange the
controls to improve the logical flow of the cursor movement.

For example, you would most likely want the cursor to move through the radio
buttons in top-down order and then to the push buttons. To do this:

1. Select a control name.

2. Use the Up or Down arrow button to change its control order appropriately.

3. Repeat steps 1 and 2 until the Control Order dialog box reflects the desired
order:

4. Click OK.

Note: This command affects only the order in which the cursor moves from
control to control within a window; it does not alter the controls’ actual positions
on the window.

Printing Windows

Chapter 4: Using the Window Editor 243

After you save your changes in the Window Editor, the source code will reflect
the reordered controls and tab stops:

Caution! Microsoft Windows requires you to have at least one control present on any
window in order to use the Tab key. If you push Tab in an empty window or a window
containing uneditable controls, your application will freeze, requiring you to reboot your
computer. This is a behavior of Windows that is not unique to CA-Visual Objects
applications.

Printing Windows
To print a screen shot of the window you are designing, click the Print toolbar
button. Only a copy of the window form itself—and not the Window Editor
containing it—is printed.

Using the Window in an Application
Once you have created a window using the Window Editor, you need to add one
of two basic actions that will activate the window for the end user:

■ Clicking a push button

■ Using a menu command (or its equivalent toolbar selection)

Associating a window with either of these events is easy. Simply use the form
entity name in the ButtonClick event property of the push button or the Event
Name property of the menu item. Then, when you select the push button or
menu item, the window will be displayed. See Chapter 5: Using the Menu
Editor for more information on associating a window with a menu selection.

Chapter 5: Using the Menu Editor 245

Chapter

5 Using the Menu Editor

Most windows designed for use in a GUI application have an associated menu
and/or toolbar, defining the available choices for the window and the actions
associated with those choices. In a GUI application, all logic, navigation, and
database operations depend on visual controls, so naturally menus make up a
large part of the user interface.

The Menu Editor makes it easy to design custom menus, providing a host of
useful properties (such as associating action code with a menu item) and
immediate visual feedback by previewing menus as you design them. You can
easily associate a toolbar with any menu that you create and can quickly add
standard, predefined File, Edit, View, Window, and Help menus—that are fully
operational—at the click of a button.

This chapter describes how to use the Menu Editor, including how to:

■ Create a custom menu structure, complete with toolbar

■ Add predefined, standard menus at the touch of a button

■ Modify an existing menu structure

■ Print using the Menu Editor

■ Use the menu you have created in an application

Important! The GUI Classes and System Classes libraries must be included in the
search path of your application in order to use a menu generated by the Menu Editor.
See Setting the Search Path in “Using the Repository Explorer” for more information.

Menu Terms

246 CA-Visual Objects IDE User Guide

Menu Terms
A menu is a user interface element that presents a list of choices. Menus appear
in a window’s menu bar; for example, below is the CA-Visual Objects menu bar:

Menus

Selectedmenu

Typically, when a menu is selected in a menu bar (with the mouse or keyboard),
it displays a menu of items (menu commands, separators, other menus, etc.).
However, it can also immediately execute an action (for example, an Exit menu
that quits the application when selected).

The various types of menu items that you can include in a menu’s structure in
CA-Visual Objects are illustrated below:

Menucommands:

Normal

Grayed

Menuname

Acceleratorkey

Separator

Selectedsubmenu

Submenuindicator

Note: A toggle menu command, whose active state is indicated by a check mark
(), is not shown in the above diagram.

Tip: You can also use bitmaps as menus or menu items. For example,
instead of the text “Help” for a Help menu, you might use a question mark
bitmap in the menu bar. Refer to the Menu class in the online help system
for more information about adding bitmaps to menus.

Workspace Overview

Chapter 5: Using the Menu Editor 247

Workspace Overview
The Menu Editor is the primary workspace in the IDE for creating, viewing, and
modifying menus and toolbars. When you are in the Menu Editor, you can:

■ Create, modify, preview, and print a menu structure and an optional toolbar

■ Define properties for the menu structure and its entries

■ Access other browsers and editors

The Menu Editor has its own toolbar, status bar, an associated Properties
window, and an area for previewing defined menus:

MenuEditortoolbar

Propertieswindow

MenuEditorwindow

MenuEditorstatusbar

Previewmenubar

The Toolbar The Menu Editor toolbar contains the following buttons:

AutoLayout

Save

Print

Build

Execute

TraceExpression

Cut

Copy

Paste

AddItem

PromoteItem

DemoteItem

Clear

ExpandAll

CollapseAll

Workspace Overview

248 CA-Visual Objects IDE User Guide

The Clear, Save, Print, Cut, Copy, Paste, Collapse All, Expand All, Promote Item,
Demote Item, Add Item, and Auto Layout buttons are discussed in this chapter.
See Chapter 2: Working in the Desktop for information about Build and Execute
and Chapter 11: Debugging Your Applications for details on Trace Expression.

Tip: For a quick description of each toolbar button, look at the tooltip
windows as the mouse pointer passes over the buttons.

The Properties
Window

When the Menu Editor is launched, a floating Properties window opens
automatically. Initially, this window allows you to specify properties for the
current menu item:

ValuecellsProperties

Pencilbutton

The Property column lists all the properties that can be specified for the currently
selected entry, and the Value column contains the corresponding cells where you
specify a value. For example, you can specify text that should appear in the
status bar when the menu item is selected, a keyword for use in a context-
sensitive help system, or an initial state (such as checked or enabled).

At the touch of a button, you can change the Properties window to reflect the
properties of the menu structure, instead of its individual entries.

In either case, the window behaves in the same manner. To use it, simply
highlight a property by clicking on it, then use one of the following techniques
for specifying its value:

■ Click in the value cell and enter a new value by typing directly into a single-
line edit control

■ Choose a new value from a drop-down list by clicking on the down arrow
button

■ Fill in a corresponding dialog box

Defining a Menu

Chapter 5: Using the Menu Editor 249

The Properties window is discussed in greater detail in the Specifying Menu
Properties and Specifying Menu Item Properties sections later in this chapter.

Note: The Properties window always remains open until explicitly closed (using
the system menu) or until its owner, the Menu Editor window, is closed. If
explicitly closed, you can reopen it at any time using the Show Property Window
command on the Window menu. Also, the Properties window is affected by
actions to its owner window. For example, if the owner window is minimized to
an icon, the Properties window will also be minimized.

The Preview Menu Bar As you define a menu structure in the Menu Editor, each new entry is added to a
prototypical menu bar, called the preview menu bar, at the top of the Menu Editor
window just below the Menu Editor’s menu bar. The preview menu bar is
partially operational allowing submenus to be pulled down—but nothing
actually happens when you make a selection. Its purpose is to give you visual
feedback while you are designing a menu structure.

See Previewing the Menu Bar later in this chapter for details.

Defining a Menu
Now that you have a general overview of the Menu Editor workspace, you are
ready to use it to define a new menu structure. In this section, you will learn
how to:

■ Create a menu structure by manually adding entries, specifying a hierarchy
among them, and specifying properties for the menu structure and its entries

■ Create a predefined menu using the Auto Layout feature

■ Modify an existing menu structure

Defining a Menu

250 CA-Visual Objects IDE User Guide

Creating a Menu

Suppose you decide to extend the Order Entry sample application by adding a
Returns data window, shown below, for resolving returned items. (See Sub-
Data Windows in “Creating Data-Aware Windows” later in this guide for
detailed information about creating the Returns data window.)

To create a menu for a window form (for example, the Returns data window),
perform the following basic steps:

1. From within the Repository Explorer, select the specified application (for
example, Order Entry) and module.

For Order Entry, you will need to create a new module; otherwise, you can
skip steps 2 and 3.

2. Click the New Module toolbar button.

The Create Module dialog box appears:

3. Type Menus in the Enter Module name edit control, and choose OK.

Defining a Menu

Chapter 5: Using the Menu Editor 251

The Menus module is added to Order Entry in the Repository Explorer’s tree
view pane:

4. Highlight the Menus module in the tree structure, and then start the Menu
Editor.

Like all CA-Visual Objects tools, the Menu Editor is accessed using the Tools
menu or the New Entity toolbar button.

The Menu Editor appears, displaying a single, empty edit control:

Emptyeditcontrol

5. Specify a name and, optionally, a toolbar and other properties for the menu
structure.

Note: In this version of CA-Visual Objects, you can create flat toolbars with
bands as separators, like those in the Internet Explorer and other Windows
products. For detailed information, see the
online help.

See Specifying Menu Properties for more detailed information.

6. Enter the caption for each entry as you want it to appear either in the menu
bar or on the menu.

See Adding Menus and Menu Items for more detailed information.

Defining a Menu

252 CA-Visual Objects IDE User Guide

7. Promote/demote any entry necessary to create the hierarchy.

See Creating the Hierarchy for more information.

8. Optionally preview the menu bar and each of the menus that you have
defined.

See Previewing the Menu Bar for more information.

9. Customize each entry by specifying properties for it. Certain properties,
such as the captions that you have already entered, are required, while
others are optional.

See Specifying Menu Item Properties for details.

10. Choose the Save toolbar button to save the menu.

Note: This last step can be repeated whenever you make changes to the menu
design and want to save your work without closing the Menu Editor.

Tip: The Clear toolbar button can be used at any time to start a new editing
session without shutting down the Menu Editor. Unless you save the menu
you are currently working with before starting a new session, you will be
prompted to do so before the Menu Editor opens the new menu for editing.

Specifying Menu Properties

Before you get started with the menu design for the Returns data window, you
may want to go ahead and define a few properties for the menu structure,
including its name and the specifications for its toolbar (if you are planning to
have one).

Defining a Menu

Chapter 5: Using the Menu Editor 253

Menu Name At a minimum, you are required to supply a name for the menu structure before
you can save it. To do this:

1. Click on the Pencil button to the right of the 3-D bar titled “Unnamed” at
the top of the Menu Item Properties window:

Clickhere

The Menu Item Properties window becomes the Menu Properties window:

2. Enter a name in the edit control that appears (for example, Returns Menu).

The name that you enter will be used in the source code generated by the
Menu Editor to create a class entity, a binary menu entity, and any resource
entities needed to create the menu structure, so it must not conflict with
other entity names in your application.

Note: Blank spaces within the name will be converted to underscores.

Defining a Menu

254 CA-Visual Objects IDE User Guide

3. Press Enter.

“Returns_Menu” now appears in the title bar of the Menu Editor, as well as
in the 3-D bar at the top of the Menu Item Properties window:

Note: If you do not specify a name at this time, you will be prompted for a name
the first time you save. At that time, you must enter a name or the Menu Editor
will not be able to save the menu structure.

Specifying the remaining menu properties, described below, is optional.

Note: As mentioned earlier, you can create flat toolbars with bands as
separators in this version of CA-Visual Objects. Consequently, there is a new
property, Use Bands, for menus. Additionally, another property, Toolbar, has an
additional value, Flat Toolbar. For detailed information about new and updated
menu properties, see the online help.

Inherit from Class Select the Menu class or subclass from which the specified menu will inherit its
basic characteristics. Valid choices are: <Auto>, EMPTYSHELLMENU,
SYSTEMMENU, STANDARDSHELLMENU, and all classes derived from the
Menu class that are in the current search path.

The default value is <Auto>, which means a menu generates an instance of the
CA-Visual Objects Menu class.

Note: The following properties cannot be changed if Toolbar is set to No.

Toolbar Specify whether a toolbar will be associated with this menu structure. This is a
Yes/No option that you change by selecting a value from a drop-down list. The
default value of Yes indicates that a toolbar will be displayed.

Ribbon If using a predefined ribbon for the toolbar, specify the name of the ribbon entity.
(See Chapter 10: Using the Image Editor for detailed information about ribbons
and other image object entities.)

Defining a Menu

Chapter 5: Using the Menu Editor 255

Show Choose how the toolbar should be displayed. The options are: Text, Icon, or Text
and Icon. The default is Icon.

See the Button Bmp property under Specifying Menu Item Properties later in this
chapter for more information.

Gap Size Enter the distance in points between individual buttons. The default is zero (0).

Separator Size Enter the width in points between groups of buttons. The default is ten (10).

See the Button Pos property under Specifying Menu Item Properties later in this
chapter for more information.

These options specify whether you want to include a toolbar and, if so, what its
general characteristics are. See the Button Bmp and Button Pos properties under
Specifying Menu Item Properties later in this chapter for more information on
how to create the actual toolbar buttons.

Adding Menus and Menu Items

The remaining Menu Editor features are demonstrated using a simple menu
structure for the Returns data window. In it, a single View menu allows the user
to view customer records, sales orders, inventory items, and shipping records,
and to print several types of reports using a submenu.

Tip: Each menu and menu item in a Windows application typically features
a single underlined letter that indicates how to select it with the keyboard.
For example, the “F” in the CA-Visual Objects File menu and the “x” in the
Exit command are underlined, indicating that you can select the File Exit
command by pressing the Alt+F, X key combination. To add this type of
functionality to your menus, simply preface the letter that is to be underlined
with an ampersand (&).

Defining a Menu

256 CA-Visual Objects IDE User Guide

To create the View menu for our sample application:

1. Click on the first empty edit control, and type &View:

2. Press Enter.

After the Menu Item Properties window is updated using “&View” as the
caption for this menu, a new edit control appears:

Neweditcontrol

3. Type the next entry (for example, &Customers), and press Enter.

Defining a Menu

Chapter 5: Using the Menu Editor 257

Again a new line appears:

Typenextmenuhere
andpressEnter...

Aneweditcontrolisadded

4. Repeat step 3 six times, using the text Sales &Orders, &Items, &Shipping
Records, &Reports, Sales &Analysis, and Returned/&Defective Items. (Do
not press Enter after the last line.)

5. Click the Save toolbar button to save your work so far.

When you are finished, your menu structure should look something like this:

Previewmenubar

Notice that the Menu Editor automatically places corresponding entries in its
preview menu bar for each item you enter. Because no menu hierarchy has been
defined, the Menu Editor assumes that all entries are menus.

Note: In this version of CA-Visual Objects, the preview menu bar is located just
below the Window Editor’s menu bar.

Defining a Menu

258 CA-Visual Objects IDE User Guide

Creating the Hierarchy

Next, you will create the actual hierarchy of the menu structure to designate
which entries are menus, which are menu items and, among the menu items,
which have submenus. In this example, View will act as the topmost menu,
containing five menu items (four commands and a submenu). The submenu will
contain two menu items, all of which are commands.

Creating a hierarchy out of all these items is easy in the Menu Editor—simply
use the Promote Item and Demote Item buttons in the toolbar (or their
corresponding commands on the Edit menu).

To create the menu hierarchy for the Returns data window:

1. Select the Customers entry by clicking on it in the Menu Editor window,
and click the Demote Item toolbar button.

The Menu Editor immediately indents the Customers entry so that it is one
level below View, making it a child, or menu item, of View. The Customers
entry is also removed from the preview menu bar, which is continually
updated as you work, providing immediate visual feedback.

Note: As you can see, the Menu Editor represents the hierarchy of the menu
in a tree-like structure similar to that in the Repository Explorer. The +/–
button added to the left of the View entry is a Collapse/Expand toggle
button; clicking on this button allows you to alternately hide sublevels of a
menu and then restore the full menu structure. The Collapse All and Expand
All toolbar buttons, on the other hand, allow you to collapse and expand the
entire menu structure.

2. Repeat step 1 four more times to demote the Sales Orders, Items, Shipping
Records, and Reports entries.

All demoted entries are now menu items on the View menu:

You now need to demote the remaining entries so that they become child
menu items under Reports. By doing so, Reports automatically becomes a
submenu.

Defining a Menu

Chapter 5: Using the Menu Editor 259

3. Place the cursor in the Sales Analysis entry and then click the Demote Item
toolbar button twice.

The menu structure is updated as follows:

Because Reports is now a menu (albeit a submenu), it also gets a
Collapse/Expand button.

4. Repeat step 3 one more time for the Returned/Defective Items entry.

The menu structure now looks as follows:

Updatedpreviewmenubar

Note that the preview menu bar now correctly displays only the View menu.

Tip: If necessary, move the Properties window out of the way by clicking on
its title bar and dragging it to a new position.

Defining a Menu

260 CA-Visual Objects IDE User Guide

Adding Separators

Separators are commonly used to group menu items logically within a menu.
They can be added after you have created your menu hierarchy.

For example, to separate Reports from the other entries in our View menu:

1. Click on the &Shipping Records entry:

Clickhere...

2. Choose Add Separator from the Edit Add Item menu.

A new edit control with a predefined separator is added to the menu
structure:

Separator

3. Click the Save toolbar button to save the menu structure.

Defining a Menu

Chapter 5: Using the Menu Editor 261

Previewing the Menu Bar

After completing the steps outlined in the previous section, you have noticed
that the Menu Editor’s preview menu bar has been reduced to just the View
entry. At any time, you can select the entries in this menu bar (just as you would
a real menu) to preview what your menus look like. For example, click View to
display the following:

Note that the Menu Editor has added the underlining for the letters indicated
using the “&” and the symbol to indicate a submenu for the Reports menu
item.

If you then click on Reports, its submenu appears:

Specifying Menu Item Properties

Once you have added an entry to a menu structure, you can then specify
properties for it using the Menu Items Properties window. By simply typing the
name of the entry in the Menu Editor window, you have already defined one
property, the caption, but you can define additional properties using one of the
techniques described earlier in this chapter. Each property is discussed in detail
below.

Note: Refer to the online help for detailed information about new and updated
menu item properties.

Event Name Enter the name of an event to be invoked when this menu item is selected. At
runtime, the system will first look for a method with this name. If no method
can be found, it will look for a Window or ReportQueue class. If none of these
can be found, the menu selection will do nothing. (See “GUI Classes” in the
Programmer’s Guide for a complete discussion of predefined menu events.)

Defining a Menu

262 CA-Visual Objects IDE User Guide

Note: Event Name cannot be defined for a menu bar item or a menu item that
defines a submenu. Selecting this property in these cases will produce an error
message.

Caption Enter the text that will appear in the menu bar (for a menu) or on the menu (for a
menu item). This property is required and is automatically filled in when you
type a value in the Menu Editor window.

Captions can include text, blanks, punctuation, an ampersand (to underline a
letter and enable an equivalent key command), and the underscore character (_).
With the exception of the ampersand, all characters will appear exactly as typed.

Note: Accelerator key name, check mark, and the symbol to indicate a
submenu are not part of the caption. These indicators are added automatically
by the system. If, on the other hand, you want to use the standard ellipsis (...)
indicator for a menu item that opens a dialog box, you must include the ellipsis
as part of the caption.

Tip: Since you can add captions and edit them directly on the Menu Editor
window, it is never necessary to use this property value cell; however, you
can use it as an alternative means for entering and editing captions if you
prefer.

Description Enter the text that will appear in the status bar when the entry has focus.

HelpContext Enter a unique keyword for the entry that can be used to identify it in a context-
sensitive help system. This property can consist of letters, digits, and the
underscore character (_), but it cannot contain any other characters, including
blanks or punctuation. (For more information on creating a help file using this
property, refer to “GUI Classes” in the Programmer’s Guide.)

Accelerator To define an accelerator (or shortcut key), press the corresponding keys for a
modifier and the accelerator key from within this property’s Value column. For
example, press the Shift plus the F8 key to specify Shift+F8 as a menu item’s
accelerator.

Note: To activate the edit control in the Value column, click the Accelerator
property column first. Also, for this property to take effect, do not press Enter
after entering the accelerator key. Instead, move the cursor and click outside the
Value column.

At runtime, the accelerator that you define will appear to the right of the menu
item caption on the menu and will be operational (that is, the user can press the
accelerator as a shortcut to selecting the menu and then choosing the item).

Defining a Menu

Chapter 5: Using the Menu Editor 263

Init. Enabled Specify whether the initial state of an entry will be enabled or disabled. This is a
Yes/No option that you change by selecting a value from a drop-down list. The
default value of Yes indicates enabled.

Note: An enabled entry can be selected by the user. A disabled entry appears
dimmed (grayed) and cannot be selected; it remains unavailable until it is
enabled by the application.

Tip: The Menu class has methods, DisableItem() and EnableItem(), that you
can use as part of the event name method to change the status of a menu
item.

Init. Checked Specify whether a check mark is displayed to the left of an entry when it is
initially displayed. This is a Yes/No option that you change by selecting a value
from a drop-down list. The default value of No indicates that the entry will not
be checked.

Tip: The Menu class has methods, CheckItem() and UnCheckItem(), that you
can use as part of the event name method to change the status of a menu
item.

Button Bmp Define a toolbar button for an entry using the Toolbar Buttons dialog box:

The Available Functions list box allows you to choose an icon/text pair to add to
the toolbar. To define a toolbar button, you are required to choose an item from
this list box.

OK adds the selected button to the toolbar and closes the dialog box. The
Remove button removes a previously defined button from the toolbar and closes
the dialog box.

The Show property, described under Specifying Menu Properties earlier in this
chapter, controls whether the text, icon, or both are displayed on the toolbar.

Defining a Menu

264 CA-Visual Objects IDE User Guide

Button Caption Enter a caption for the specified toolbar button. The default is the text that is
paired with the selected icon in the Available Functions list box of the Toolbar
Buttons dialog box.

Button ToolTip Enter descriptive text for the specified button’s tooltip control. Tooltip controls
are small pop-up windows that display relevant text when the mouse moves
over the toolbar button.

The default is the predefined text that is associated with the selected icon in the
Available Functions list box of the Toolbar Buttons dialog box.

Button Pos Enter a number indicating the position of the button on the toolbar. When you
choose a Button Bmp, this property is automatically filled in using the next
available position on the toolbar. You can either leave it as is, or start a new
group of buttons by entering a number that is one greater than the value
displayed.

Note: The Gap Size and Separator Size properties, described under Specifying
Menu Properties earlier in this chapter, control how far apart toolbar buttons and
groups are displayed.

ID Choosing this property activates the Menu IDs dialog box, shown below, from
which you can choose one of several internally-defined resource IDs for a menu
item:

This property allows you to assign the same ID to the same menu items in
different menu structures, thereby reducing the Windows resources necessary to
display the menu.

If you do not specify an ID using this property, the Menu Editor will generate a
unique ID number and name for it.

Note: Unless the Toolbar property described under Specifying Menu Properties
earlier in this chapter is Yes, no toolbar will be displayed with the menu.

Defining a Menu

Chapter 5: Using the Menu Editor 265

Generating Code

When you save a menu and its toolbar (optional), the Menu Editor automatically
generates:

■ A binary menu entity

You can double-click on this entity in the Repository Explorer’s list view
pane to begin editing it with the Menu Editor.

■ A menu subclass using the name of the menu

■ Other default source code that can be modified

This includes resources for the menu and accelerators, and a subclass for
accelerators.

Note: In this version of CA-Visual Objects, the Menu Editor does not generate
local variables if not required. This is a behind-the-scenes time saver.

Adding Predefined Menus

The Menu Editor allows you to quickly add standard, predefined File, Edit,
View, Window, and Help menus. Each menu has default menu items and
corresponding toolbar buttons.

Tip: When adding one or more predefined menus to an existing menu, be
sure to place the cursor in the entry after which you want the menus to be
inserted.

To add one or more standard menus to your menu design:

1. Click the Auto Layout button in the Menu Editor toolbar.

The Menu Editor Auto Layout dialog box appears with all menus selected:

2. Make sure that all menus you want to add are checked.

3. Choose OK.

Defining a Menu

266 CA-Visual Objects IDE User Guide

For example, if the File, Edit, Window, and Help standard menus are added to
the end of the Returns_Menu created earlier for the Order Entry sample
application, the result would be:

Standardmenusaddedtopreviewmenubarandmenustructure

Modifying a Menu

After you have defined a menu structure, you can modify it by changing its
properties or the properties of any entry associated with it. You can also delete
existing entries and add new ones.

Note: The Cut, Copy, and Paste commands apply only to the caption property.
This means, for example, that if you copy the currently highlighted entry and
paste it elsewhere on the menu, all properties other than Caption will be reset to
the original defaults for the newly pasted entry.

Editing Menu Properties

To change any property associated with the menu structure, click the Pencil
button in the Menu Items Properties window to the right of the menu name.
The Properties window will change to show the properties for the menu
structure, and you can change any property you want. See Specifying Menu
Properties.

Defining a Menu

Chapter 5: Using the Menu Editor 267

Editing Menus and Menu Items

To make changes to an entry on the Menu Editor window, you must first select it
by clicking on it. When an entry is selected, it is highlighted, and the Properties
window changes to show its properties.

Changing Menu Item
Properties

You can change the caption by simply editing the currently highlighted entry
directly on the Menu Editor window. You can also change any property in the
Properties window. See Specifying Menu Item Properties for more
information.

Adding a Sibling To add an entry at the sibling (or same) level after the currently selected entry:

1. Select the Add Item toolbar button.

Alternatively, choose the Edit Add Item command and select Add Sibling.

2. When the new edit control appears, type the caption name.

3. Define the menu properties for the new entry as discussed in Specifying
Menu Item Properties earlier in this chapter.

Adding a Child To add an entry at the child (or submenu) level after the currently selected entry:

1. Choose the Edit Add Item command and select Add Child.

2. When the new edit control appears, type the caption name.

3. Define the menu properties for the new entry as discussed in Specifying
Menu Item Properties earlier in this chapter.

Deleting To delete the currently selected entry, including all its properties and child
entries, use the Edit Delete Item menu command.

If you want to delete the caption only, choose the Edit Delete command (or press
the Del key).

Printing Menus

268 CA-Visual Objects IDE User Guide

Printing Menus
Use the Print toolbar button to print copies of your menu designs.

Using the Menu in an Application
Menus that you create using the Menu Editor must be attached to a window
form of some type. The easiest way to make this connection (and to create the
form itself) is using the Window Editor. There, the menu name is a property of
the form that you can choose from a drop-down list. See Chapter 5: Using the
Menu Editor and Chapter 8: Creating Data-Aware Windows for more
information.

Tip: The Standard Application contains two predefined binary menu
entities: EmptyShellMenu and StandardShellMenu. These are located in a
separate module, and you can easily customize them using the Menu Editor
to meet the specifications of your application.

Chapter 6: Using the Source Code Editor 269

Chapter

6 Using the Source Code Editor

The Source Code Editor provides a powerful environment for writing and
editing code, drawing much of its strength from its close integration with the
CA-Visual Objects repository. It can even complete a partially entered statement
with the parameters defined in the prototype of the function or method. (This a
very useful feature if you have forgotten the correct syntax!)

This chapter describes how to use the Source Code Editor, including how to:

■ Create new entities

■ Modify selected entities within a module

■ Modify all entities within a module

■ Import source code from a text file for editing

■ Use some of its special editing features, such as inserting prototypes, finding
matching tokens, and presetting breakpoints for debugging sessions

■ Print copies of your source code

Workspace Overview
The Source Code Editor is the primary workspace in the IDE for viewing,
creating, and modifying source code entities, such as functions, classes, methods,
and resources. When you are in the Source Code Editor, you can:

■ Perform standard editing features such as cut, copy, paste, delete, search for
text, replace text, undo, and redo using standard Windows techniques for
any entity currently loaded

■ Create new entities

■ Go immediately to a specific entity for editing

■ Insert a prototype for incomplete statements

■ View a source code entity’s definition while editing and jump to its
prototype in the appropriate class library

■ Import and export text-based files

■ Print the source code for all entities currently loaded

Workspace Overview

270 CA-Visual Objects IDE User Guide

■ Save or discard the changes that you have made

Note: As mentioned earlier in Setting System-Wide Options in the “Working in
the Desktop” chapter, there are several new options available for the Source
Code Editor: Use Spaces for Tabs, Show Parameter Tips, and Activate IDE on
Break. Additionally, the Automatic Method Insertion option is now enabled by
default. For more detailed information, see the online
help.

The Source Code Editor has its own toolbar and status bar. When first loaded for
a new source code entity in a new module, an empty Source Code Editor
window is displayed:

SourceCodeEditor

SourceCodeEditor

Statusbar

toolbar

The Toolbar The Source Code Editor toolbar contains the following buttons:

Import
Print Execute

Clear Save

Build
TraceExpression

Cut Paste
Find

Replace
ExpandAll

Undo Copy

GotoEntity

FindNext
CollapseAll

Set/ResetBreakpoint

All of the above buttons except Build, Execute, and Trace Expression are
described in this chapter. See Chapter 2: Working in the Desktop for
information about Build and Execute and Chapter 11: Debugging Your
Applications for details on Trace Expression.

Workspace Overview

Chapter 6: Using the Source Code Editor 271

Tip: For a quick description of any toolbar button, simply point to it—a
tooltip window with descriptive text pops up right next to the button.

The Status Bar To facilitate your editing session, the status bar in the Source Code Editor
displays the line and column number of the current cursor position, as well as
related file information such as the file name and path of an associated external
source file. It also indicates whether the contents of the editor have been
changed or not.

Collapsing/Expanding When you are using the Source Code Editor, you will notice that each entity
displayed in the editor has a – button to the right of its declaration statement as
illustrated below:

Expandedentity
-button

CollapseAlltoolbarbutton

ExpandAlltoolbarbutton

By default, each entity is displayed in its entirety. Clicking on the – button
collapses the entity, so that only its declaration statement can be seen, and
changes the – button to a + button.

Workspace Overview

272 CA-Visual Objects IDE User Guide

For example, the Close() method entity in the Standard Shell module of Order
Entry below is collapsed:

Collapsedentity
+button

The + button indicates that the entity is collapsed. Clicking on it expands the
entity, showing all of its source code.

Tip: Instead of collapsing and expanding one entity at a time, you can use
the Collapse All and Expand All toolbar buttons to collapse and expand the
entire contents of the Source Code Editor at once.

Markers If you use the Source Code Editor to edit several entities at once, you will notice
another feature—the markers displayed between entities to visually delimit one
from the next:

Markers

Accessing the Source Code Editor

Chapter 6: Using the Source Code Editor 273

You can toggle these markers on or off by alternately checking and unchecking
the Entity Markers command on the View menu. The +/- buttons for collapsing
and expanding the entities remain on display in either case.

Color Coding Additionally, the Source Code Editor continually parses each keystroke to color-
code text based on its structure. Keywords, literals, and comments, for example,
are all displayed in different colors for immediate visual feedback, based on the
colors you selected when setting up your system. See Setting Editor Options in
“Working in the Desktop” earlier in this guide for detailed information about the
System Settings dialog box and the color, auto indentation, keyword casing, case
synchronization, and other options for the Source Code Editor.

Accessing the Source Code Editor
Now that you have a general overview of what you can do with the Source Code
Editor, you are ready to use it to create and edit source code entities. In this
section, you will learn how to:

■ Create one or more new source code entities

■ Load individual entities for editing

■ Load all entities defined in a module for editing

■ Import a text file for editing

Creating New Entities

To create a new source code entity, you need to perform the following basic
steps:

1. In the Repository Explorer’s tree view pane, select the desired application
and module (for example, Standard SQL Menus in Order Entry).

2. Right-click on the Standard SQL Menus module and select Edit All Source in
Module from the pop-up menu.

Accessing the Source Code Editor

274 CA-Visual Objects IDE User Guide

The Source Code Editor appears:

Notice that the Source Code Editor is not empty in this instance, as this is one
of the Standard Application’s predefined modules.

3. Scroll to the bottom of the window and place the cursor after the last entry:

Placecursorhere...

4. Press Enter.

The cursor moves to a new line.

5. Begin typing the source code for the new entity, starting with its declaration
statement. For example, enter Method.

Accessing the Source Code Editor

Chapter 6: Using the Source Code Editor 275

CA-Visual Objects automatically adds a marker and a
- button to indicate the new entity:

Markerand-buttonaddedautomatically

Notice also that CA-Visual Objects recognizes the word “Method” as a
keyword as you type! It changes its case (if you selected the Case
Synchronization option and the Upper Case option for keywords when
setting up your system) and color codes it. (See Setting Editor Options in
“Working in the Desktop” for more information about case synchronization
and color coding of syntactic elements.)

6. At the end of each line, press Enter to start a new line.

7. Click the Save toolbar button to save the new entity.

Accessing the Source Code Editor

276 CA-Visual Objects IDE User Guide

Loading Single Entities

There are three ways to edit existing entities using the Source Code Editor. The
first is to choose individual entities from the Repository Explorer’s list view
pane. To do this:

1. Start the Source Code Editor by double-clicking on the entity that you want
to edit (for example, FileOpen() in the Standard Shell module of Order
Entry):

Double-clickhere...

The Source Code Editor appears as follows:

Singleentity

Note: Double-clicking on an entity in a module that is associated with an
external file loads all source code for that module rather than just the source
code for the current entity. See Creating Modules in “Using the Repository
Explorer” for more information on working with external modules.

Accessing the Source Code Editor

Chapter 6: Using the Source Code Editor 277

2. To load another entity from the same module, minimize the Source Code
Editor and then double-click on another entity in the Repository Explorer
(for example, FileExit()).

Its contents are added to the Source Code Editor when it reappears:

Note: Double-clicking on a non-source code entity, such as a window or
menu, will invoke the appropriate editor for that entity type rather than the
Source Code Editor. Double-clicking on an entity in another module will
start a new copy of the Source Code Editor for that module.

3. Repeat step 2 to load as many entities as you like from the same module.

Loading All Entities

The second method for editing existing entities in the Source Code Editor is to
load them all at once using the Edit All Source in Module menu command. For
example:

1. Right-click on the Standard SQL Menus module in the Order Entry sample
application.

A local pop-up menu appears:

2. Select the Edit All Source in Module command from the local pop-up menu.

Accessing the Source Code Editor

278 CA-Visual Objects IDE User Guide

The following code appears:

Tip: When you have several entities loaded in the Source Code Editor, use
the Go to Entity toolbar button to go directly to a particular entity that you
wish to edit. See Going Directly to an Entity later in this chapter for more
information.

Importing a File

Lastly, another alternative is to import source code from a text file while in the
Source Code Editor. To do this, use either the File Import toolbar button or the
File Import menu command and choose the file you want to import. Its
contents will be added to the current contents of the Source Code Editor.

Tip: You can also export the current contents of the Source Code Editor as a
text file. For more information on importing and exporting, see Chapter 12:
Importing and Exporting Applications.

Editing and Saving

Regardless of which technique you use, once the source code is loaded in the
Source Code Editor, you can:

1. Create as many new entities as you want by entering declaration statements
and source code for them as described earlier under Creating New Entities.

2. Edit it using standard Windows editing techniques.

See Editing Source Code later in this chapter for information on editing
techniques unique to the Source Code Editor.

Editing Source Code

Chapter 6: Using the Source Code Editor 279

3. Choose the Save toolbar button to save the source code. Any new entities
that you have created during the editing session will be added to the
Repository Explorer’s List View pane for the appropriate module.

Note: This last step can be repeated whenever you make changes to the source
code and want to save your work without closing the Source Code Editor.

Tip: The Clear toolbar button can be used at any time to start a new editing
session without shutting down the Source Code Editor. Unless you save the
source code you are currently working with before starting a new session,
you will be prompted to do so before the Source Code Editor is cleared.

Editing Source Code
The Source Code Editor provides you with all of the standard editing features
that you have come to expect. For example, there are toolbar buttons for cut,
copy, paste, undo, find, find next, and replace. All of these operations are
performed using standard Windows techniques, like drag-and-drop, and are,
therefore, not described in this section.

If you are unfamiliar with standard editing techniques such as the operations
mentioned above, cursor movement, toggling between insert and overwrite
mode, and selecting text, refer to the online help system for more information.

The following editing features, however, are unique to the Source Code Editor
and are described in this section:

■ Deleting individual lines of code

■ Inserting a new line

■ Going directly to an entity

■ Filling in prototypes

■ Matching tokens

■ Presetting breakpoints

Note: In CA-Visual Objects 2.7, there are a number of very useful aids for
editing source code, like automatic insertion of methods, parameter tips, and
bookmarks. Additionally, the Source Code Editor’s Find dialog box displays its
search history, making it easier to repeat a recent search for specified text. For
more detailed information, see the the online help.

Editing Source Code

280 CA-Visual Objects IDE User Guide

Deleting Lines of Code

Within the Source Code Editor, you can delete individual lines of code. To delete
a single line of code, move the cursor to the line and press Ctrl+Y (or choose the
Edit Delete Line menu command).

You can also delete several contiguous lines of code at once by selecting them
and pressing the Del key (or choosing the Edit Delete menu command).

Inserting a New Line

Use the Edit Insert Line menu command to insert a new line before the one in
which the cursor is currently located.

Going Directly to an Entity

Since you may be editing many entities within the same module in the Source
Code Editor, the Go to Entity feature enables you to access a particular entity
quickly. To use this feature:

1. Select the Go to Entity toolbar button.

Alternatively, choose the Go To command from the Edit menu.

The List of Entities dialog box appears, showing the total number of entities
currently loaded and their names:

This example displays all of the entities defined for the Standard SQL Menus
module in Order Entry.

2. By default, the Sort by Name check box is checked and entities are displayed
in alphabetical order by type and then by name. If you like, you can uncheck
Sort by Name to view the entities in the order that they appear in the List
View pane of the Repository Explorer.

Editing Source Code

Chapter 6: Using the Source Code Editor 281

3. Highlight the entity you want to view, and select the Choose button.

Alternatively, double-click on the entity.

When the dialog box closes, you are returned to the Source Code Editor with
the cursor located on the line of source code where the specified entity
begins.

Viewing Prototypes

CA-Visual Objects close integration with the repository allows you to view a
source code entity’s definition. Simply right-click on the specified entity (for
example, RegisterItem() in Standard SQL Menus):

Right-clickhere...

The method’s definition displays in a local GOTO pop-up menu:

If you now click on the pop-up menu (or alternatively, press F11), you will jump
to the prototypical code in the relevant class library (and owner application, if
appropriate):

Editing Source Code

282 CA-Visual Objects IDE User Guide

Filling in Prototypes

The Source Code Editor’s close integration with the repository also allows you to
easily insert a prototype for incomplete statements, such as functions and
methods. To do this:

1. Type the name of the function or method followed by an open parenthesis—
for example, Abs(on line 1 in the sample code below:

Placecursorhere...

Incompletestatement

2. Place the cursor just to the right of the open parenthesis.

3. Choose the Insert Prototype command from the Edit menu or, alternatively,
click the right mouse button.

A local pop-up menu appears:

4. Select the Expand Prototype command from the local pop-up menu.

The Source Code Editor inserts comment lines showing the prototype for all
valid parameters, commas to separate the arguments, and a closing
parenthesis:

5. Edit the prototype using valid expressions for the function or method.

6. Click the Save toolbar button to save your changes.

Editing Source Code

Chapter 6: Using the Source Code Editor 283

Finding Matching Tokens

The Source Code Editor also enables you to search easily for missing tokens in
your source code, using the Edit menu’s Find Matching Token command. This is
a great aid especially when coding nested statements. To use this feature:

1. Place the cursor just before or inside the token (for example, IF in the
DoOpenFile() method in the Standard Shell module of Order Entry).

2. Choose the Edit Find Matching Token menu command.

The Source Code Editor indicates that a matching token was not found:

3. Enter the missing token (for example, ENDIF).

Note: The ENDIF token in the DoOpenFile() method in this instance of the
Standard Shell module was deleted only for the purposes of illustration.

4. Click the Save toolbar button to save your changes.

Presetting Breakpoints

CA-Visual Objects allows you to preset breakpoints in your source code as you
develop or expand an application. Breakpoints allow you to stop running an
application at a predetermined line of code where you anticipate a possible error
in logic.

For example, perhaps you are expanding the functionality of an existing
application that has compiled successfully in the past. As you add new
methods to its modules, you can also preset breakpoints within these modules
using the Set/Reset Breakpoint toolbar button. When you rebuild the modules
or the application later on, you can quickly step through the code at these
points as you debug the module or application.

Note: The preset breakpoints remain within the source code until you remove
them.

Printing Source Code

284 CA-Visual Objects IDE User Guide

Refer to Chapter 11: Debugging Your Applications for detailed information
about using breakpoints and correcting errors using the Debugger.

Printing Source Code
Use the Print toolbar button to print all of the source code in the current Source
Code Editor window.

Chapter 7: Defining Data Servers and Field Specifications 285

Chapter

7
Defining Data Servers and Field
Specifications

One of the primary tasks of any GUI database application is to enter, modify,
view, and utilize the information stored in databases. This is facilitated by the
use of ancillary information, like filters and index files in the Xbase model and
WHERE and ORDER BY clauses in the SQL model.

CA-Visual Objects provides a set of editors—the DB Server Editor and the SQL
Editor—that let you create and modify data servers. A data server is a high-level,
abstract entity designed to give you a consistent object-oriented interface for
your database. The DB Server Editor creates data servers based on the
traditional Xbase model of a database file, while the SQL Editor creates data
servers based on the SQL model of a table or view.

This chapter explains how to create and modify data servers, providing
instructions on how to accomplish these tasks in both the DB Server Editor and
the SQL Editor. You will also learn how to define field specifications using the
FieldSpec Editor.

Note: Many of the properties that you define for a data server and its field
specifications are designed to be used by data windows that you design and link
to the data server. See Chapter 4: Using the Window Editor for more
information on creating data windows and how to link field specification
properties to data controls.

What Is a Data Server?

286 CA-Visual Objects IDE User Guide

What Is a Data Server?
A data server is a high-level, abstract entity designed to give you a consistent,
object-oriented interface for your database. It is like an abstract definition of a
database, acting as a database describer, defining its file (or table) name, its fields
(or columns), the order in which it is accessed, and so on.

A Single, Compatible
Protocol

Using data servers in your CA-Visual Objects applications allows you to access
both Xbase and SQL databases using a single, compatible protocol:

DBServerClass

SQLSelectClass

DataServerClasses

Although SQL and Xbase databases use different logic, the SQLSelect class
provides an interface compliant with DBServer and other data server classes,
allowing an application to operate the same way regardless of the kind of
database it uses.

Such compliance is accomplished via a common set of methods (like Append(),
Commit(), and Zap()) and a consistent way of referring to fields as properties
using ACCESS and ASSIGN methods. These methods make it easy for you to
manage different data servers with the same code, regardless of their type. In
addition, with these methods, all the capabilities of the traditional Xbase
approach are provided, but have been enhanced to fit the event-driven,
multitasking nature of GUI applications.

Note: A data server should not be confused with a database catalog, which
describes the structure of files on disk. While a catalog describes a file as it exists,
a data server describes how the application intends to use the file.

As you work your way through the development cycle, you can make “on-the-
fly” changes to a data server (for example, changing the validation or formatting
rules for one or more fields). CA-Visual Objects ensures that these changes are
reflected in all appropriate places, such as a window that is associated with that
data server.

What Is a Field Specification?

Chapter 7: Defining Data Servers and Field Specifications 287

Tip: You may want to refer to the “Data Server Classes” chapter in the
Programmer’s Guide for an overview of the various built-in data server
classes. You may also want to refer to the entries for the DBServer,
FieldSpec, HyperLabel, and SQLSelect classes in the online help system to
learn more about the methods and properties defined for these classes.

What Is a Field Specification?
A field specification is a unique, independent entity in the CA-Visual Objects
architecture. It allows you to specify and store a wide variety of properties for an
item in your application, all in a single, manageable location. (Note that it is
derived from the FieldSpec class.)

Typically, a field specification is “associated” with a field in a data server. Some
of the properties you might define for such a field specification are type, length,
picture clause, validation checks, etc. In fact, when you create a data server in
the DB Server Editor or the SQL Editor, the system automatically generates a
field specification for every field in that server.

However, field specifications do not need to be associated with data server fields.
For example, when designing a form in the Window Editor, you might add an
edit control for which you want to specify a picture clause, a required flag, and a
validation check. Even though the control is not linked to a data server field, you
can attach a field specification to it to define these properties.

Field specifications, therefore, are useful in a variety of ways. And, because of
the nature of repository-based development, field specifications can easily be
selected and reused throughout the system.

For example, multiple data servers can access the same property values for
common fields: If you create a Salary field specification, you can simply reuse its
properties when creating an EmpSalary field in a data server for an Employee
database. You can then reuse its properties again when creating a similar field for
a data server for a Payroll database.

Using field specifications, therefore, saves you both time and resources. Another
advantage is that any changes made to a field specification are automatically
propagated to all the appropriate places. For example, if you add extra
validation to the AcctNum field specification to require that its second digit must
be zero or 5, then all data servers that use that field specification would perform
that validation.

What Is a Hyperlabel?

288 CA-Visual Objects IDE User Guide

What Is a Hyperlabel?
A hyperlabel (derived from the HyperLabel class) stores information about
another object in an application. Using hyperlabels enables your application to
display appropriate messages and help topics for the end user about the various
objects in the application.

CA-Visual Objects automatically creates a hyperlabel for each data server you
create in the DB Server and the SQL Editors. In fact, many of the properties you
can set for a data server—like its Name, Caption, Description, and Help
Context—are part of its associated hyperlabel.

Similarly, CA-Visual Objects creates a hyperlabel for each data server field or
column included, and several of the field properties (Name, Caption,
Description, and Help Context) are actually part of its associated hyperlabel. All
other field properties are associated with the field specification, which also has a
hyperlabel.

The Data Server Editors
With both the DB Server and the SQL Editors, you can import an existing
database structure and generate a default set of field specifications that you can
optionally modify. This is probably the easiest way to create a data server for an
existing database.

The DB Server Editor also lets you generate a database file (and index files) from
the data server definition. Thus, you can design a data server “from scratch” and
create new files, or you can import existing files and make modifications to them,
such as adding a new field to the database file structure, changing a key
expression, or creating an additional index file. When you select the File Export
menu command, the DB Server Editor will generate the new database and index
files.

Warning! The File Export command overwrites existing files. When working with an
existing database file, you should make a backup of the file before using this command.

When you save the data server, CA-Visual Objects automatically generates
object-oriented code within the current module using the appropriate class—
DBServer or SQLSelect. (The system also generates object-oriented code for field
spec entities based on the FieldSpec class.) The data server is an abstract entity—
it is not written to disk as a database file or table, although you can generate files
from within the DB Server Editor, as mentioned above.

Using the DB Server Editor

Chapter 7: Defining Data Servers and Field Specifications 289

Using the DB Server Editor
In this section, you will learn how to:

■ Define a data server based on the traditional Xbase model of a .DBF file

■ Add new fields to a data server and specify properties for them

■ Add index files to a data server and specify properties for them

■ Modify a data server by editing its properties, fields, and index files

■ Import the structure of an existing database file and associated index files

■ Create a database file and index files by exporting a data server definition

Important! The following libraries must be included in the search path defined for your
application in order to use a data server created using the DB Server Editor: RDD
Classes and System Classes. (For more information on setting a search path, see Setting
the Search Path in “Using the Repository Explorer.”)

The DB Server Editor

Similar to the Window or Menu Editor, the DB Server Editor has its own toolbar
and an associated Properties window, in addition to the menu commands
available on the CA-Visual Objects menu bar.

Using the DB Server Editor

290 CA-Visual Objects IDE User Guide

When first loaded for a new data server entity, the DB Server Editor looks as
follows:

DBServerEditortoolbar

CA-VisualObjectsmenubar

Findbuttons

Checkmarkbuttons
Propertieswindow

The Toolbar The DB Server Editor toolbar contains the following buttons:

Clear
Save Build

TraceExpression

Print ExecuteImport

All of the buttons except Build, Execute, and Trace Expression are discussed in
this chapter. See Chapter 2: Working in the Desktop for information about
Build and Execute and “Debugging Your Applications” for details on Trace
Expression.

Tip: For a quick description of any toolbar button, simply point to it—a
tooltip window with descriptive text pops up right next to the button.

Using the DB Server Editor

Chapter 7: Defining Data Servers and Field Specifications 291

The Properties
Window

When the DB Server Editor is launched, a modeless, floating, Properties
window, shown below, is automatically opened. Initially, this window allows
you to specify properties for the current data server.

Note: Refer to the online help for detailed information about new and updated
data server properties.

When a new data server is opened, the Property column lists all properties that
can be specified for the new data server; the value cell to the right of each
property is used to enter a value for the property. For example, you can specify
the replaceable database driver (RDD) to associate with the current data server.
(See Specifying Data Server Properties for complete details.)

As you develop the data server, this window takes on different roles depending
on the current focus of the editor. When creating or modifying the fields of the
data server, it changes to the FieldSpec Properties window; when creating or
modifying indexes, it changes to the Index Properties window.

See Specifying Data Server Properties, Specifying Field Properties, and
Specifying Index File and Order Properties later in this chapter for more
information about this window.

Note: The Properties window always remains open until explicitly closed (using
the system menu or the Show Properties Window menu command) or until its
owner, the DB Server Editor window, is closed. If explicitly closed, reopen it at
any time using the Show Properties Window command on the Window menu.
Also, because it is a child window, the Properties window is affected by actions
to its owner. For example, if the owner window is minimized to an icon, the
Properties window will also be minimized.

Other Options The remainder of the options in the DB Server Editor workspace allow you to
specify various properties for the current data server, such as a descriptive data
server name and a database file name. See the Defining a Data Server in the
DB Server Editor section next for details.

Using the DB Server Editor

292 CA-Visual Objects IDE User Guide

Defining a Data Server in the DB Server Editor

Defining a data server in the DB Server Editor requires you to:

■ Create the data server and specify its properties

■ Add fields to it and specify their properties

■ Optionally set indexes and specify their properties

Importing a Data Server

In the Getting Started guide, you were shown how to access the predefined data
server for the CUSTOMER.DBF file by importing the OE Data Servers library.
The Customer data server was created for you using the DB Server Editor, and it
resides in a separate library on disk as an external file.

Note: The applications and libraries you create in CA-Visual Objects can be
stored external to the repository as Application Export Format (.AEF) files using
the File Export menu command. When desired, you can import them back into
the repository using the File Import menu command. See Chapter 12:
Importing and Exporting Applications for more detailed information.

If you have not already imported this library and loaded the Customer data
server in the DB Server Editor, the steps are repeated here:

1. Click on Default Project in the Repository Explorer.

2. Choose the File Import menu command.

The Import Application dialog box appears:

3. Double-click on the SAMPLES folder in the CAVO27 directory, and then
double-click on the GSTUTOR folder that appears.

Using the DB Server Editor

Chapter 7: Defining Data Servers and Field Specifications 293

Use the Up One Level and Details toolbar buttons, respectively, in your
search for the desired drive and directory.

4. Select Oesrvr in the GSTUTOR folder.

Oesrvr is added to the File Name edit control:

5. Click Open.

The OE Data Servers library is added to the Repository Explorer’s tree
structure:

6. Compile the OE Data Servers library by clicking on the Build toolbar
button.

7. Now expand OE Data Servers to display its Customer module, and then
double-click on the Customer module to display its entities in the Repository
Explorer’s list view pane.

Using the DB Server Editor

294 CA-Visual Objects IDE User Guide

8. Double-click on the Customer DB server entity:

Double-clickhere

The Customer data server is loaded in the DB Server Editor:

Notice that this predefined data server has two indexes, CUSTNUM.NTX
and CUSTNAME.NTX, defined to it and that the check mark to the left of
CUSTNUM.NTX indicates that this index file contains the controlling order.
Also notice that all of the fields in the Customer data server are listed in the
Include list box in the Fields group box. (All of these components and the
Properties window are discussed in detail in the next section, Creating a
New Data Server.)

9. Click the Close button to exit the DB Server Editor.

Creating a New Data Server

To create a new data server—in this instance, the Orders data server for the
Order Entry sample application—you need to perform the following steps:

Using the DB Server Editor

Chapter 7: Defining Data Servers and Field Specifications 295

Accessing the OE
Data Servers Library

1. Select the OE Data Servers library in the Repository Explorer’s tree view
pane, and then click on the New Module toolbar button:

NewModuletoolbarbutton

OEDataServerslibraryselected

The Create Module dialog box appears:

2. Type Orders in the Enter Module Name edit control.

3. Click OK.

The new module is added to the Repository Explorer’s tree structure:

Note: To create an Xbase-style data server without accessing a data servers
library, you would skip steps 1 through 3 and begin by starting the
DB Server Editor (next step).

Using the DB Server Editor

296 CA-Visual Objects IDE User Guide

Starting the DB Server
Editor

4. From within a specified module (in this instance, the Orders module of OE
Data Servers), select the DB Server Editor command from the Tools menu.

Alternatively, click the New Entity toolbar button and then select the
DB Server Editor command from the local pop-up menu.

The DB Server Editor appears:

5. In the Name edit control, type the name of the data server. This information
is included in the data server’s automatically generated hyperlabel.

You can enter a name using a maximum of 64 characters. The first character
must be alphabetic or an underscore; the other characters can be
alphanumeric and can include the underscore character.

Note: Blanks within the name will be changed to underscores when you
save the data server.

This name is used to create the DB server entity and to subclass the data
server in the code generated later by the DB Server Editor. For example:

CLASS Customer_Order INHERIT DBServer

It is also the name used to refer to this data server in your program code. For
example:

oDBCust := Customer_Order{}

Importing a
Database File

6. Alternatively, you can import an existing database file, and then add new
fields to the data server or make modifications to the existing fields.

To do so, click on the Find button to the right of the File Name edit control
(or click on the Import toolbar button).

Using the DB Server Editor

Chapter 7: Defining Data Servers and Field Specifications 297

A standard Import dialog box appears:

7. Select ORDERS.DBF in the GSTUTOR folder.

Use the Up One Level and Details toolbar buttons, respectively, in your
search for the desired drive and directory.

8. Click Open.

The ORDERS.DBF file is loaded in the DB Server Editor:

Defaultdataservername

Pathandfilenameofunderlying.DBFfile

AllfieldsinORDERS.DBFarelistedhere

For the Orders data server, accept the default name.

9. In the File Name edit control, type the name of an existing database file,
including an optional drive, directory, and extension, with which this data
server is to be associated.

Using the DB Server Editor

298 CA-Visual Objects IDE User Guide

Alternatively, use the default path and file name of an imported .DBF file.

Note: To create a data server and generate a new database file, enter a new
file name. You can generate the corresponding .DBF file (and optionally
index files) later, using the File Export menu command.

For the Orders data server, accept the default path and file name,
C:\CAVO27\SAMPLES\GSTUTOR\ORDERS.DBF.

10. Optionally set additional data server properties using the DB Server
Properties window.

See the next section, Specifying Data Server Properties, for details.

11. Define one or more fields for the data server.

You can click the Browse Data button to browse an existing database as an
aid in determining which fields you want to include and/or exclude from
your data server. For example:

See Adding Fields later in this chapter for more detailed information.

12. Optionally define one or more index files for the data server.

See Adding Index Files later in this chapter for more detailed information.

13. Choose the Save toolbar button to save the data server.

See Generating Code later in this chapter for more detailed
information.

Note: This step can be repeated whenever you make changes to the data
server and want to save your work without closing the DB Server Editor.

14. If you are using a data server library, you must include the library in the
application’s search path. For example, add the OE Data Servers library now
to Order Entry’s search path, so that the sample application has access to
both the Customer and Orders data servers.

See Setting the Search Path in “Using the Repository Explorer” for
modifying an application’s path and other properties.

Using the DB Server Editor

Chapter 7: Defining Data Servers and Field Specifications 299

Tip: The Clear toolbar button can be used at any time to clear the DB Server
Editor workspace and start a new editing session. Unless you save the data
server you are currently working with before starting a new session, you will
be prompted to do so before the workspace is cleared.

Specifying Data Server Properties

You can define additional properties for a data server using the DB Server
Properties window, a two-column list box with properties listed on the left and
the corresponding current value for each property on the right:

Note: In this version of CA-Visual Objects, there are several new data server
properties, including PreInit Action, PostInit Action, and No Access/Assign.
Refer to the online help for detailed information about new and updated data
server properties.

Caption Optionally enter the caption text to be associated with this data server. This text
is included in the data server’s hyperlabel and may be used subsequently in a
window’s title bar, for example.

Inherit from Class Select the DBServer class or subclass from which the data server will inherit its
basic characteristics. Valid choices are <Auto> and all classes derived from the
DBServer class that are in the current search path. The default setting is <Auto>.

Help Context Optionally enter a unique keyword for the data server that can be used to
identify it in a context-sensitive help system. This property can consist of letters,
digits, and the underscore character (_), but it cannot contain any other
characters, including blanks or punctuation. This information is included in the
data server’s automatically generated hyperlabel. (For more information on
creating a help file, refer to the “GUI Classes” chapter in the Programmer’s Guide.)

Description Optionally enter the descriptive text to be associated with this data server. This
text is included in the data server’s hyperlabel, and may be used subsequently in
a window’s status bar.

Using the DB Server Editor

300 CA-Visual Objects IDE User Guide

Shared Specify whether the data server will open the associated database in shared (Yes)
or exclusive (No) mode. The default is <Auto>, which enables you to waive an
explicit setting and let the open mode be determined by the application’s
SetExclusive() flag. See the online help system for more information about the
SetExclusive() function.

Read Only Choose whether the data server will open the associated database file as a read-
only (Yes) or read-write (No). The default is <Auto>, which means the system
default setting, read-write, is used as the file open mode.

Driver Choose the name of the database driver to be used with this data server. The
drop-down list displays the RDDs currently installed on your system; the default
is the DBFNTX driver.

Adding Fields

Techniques Once a data server’s properties are specified, you can continue defining the data
server by adding fields to it. When creating fields, there are a number of
techniques you can use, such as:

■ Creating a new field, specifying all required properties and, optionally,
additional properties

The DB Server Editor generates a default field specification for the new field.

■ Creating a new field and associating it with an existing field specification

Instead of specifying properties for the new field, you can use those of the
associated field specification.

■ Creating a new field, associating it with an existing field specification, and
then customizing the properties automatically imported with the field
specification

These three techniques are described in greater detail in the following sections.

Note that no matter which technique you use, there are several required
properties that must be specified. The steps described below focus on the
requirements; additional properties are summarized in the next section,
Specifying Field Properties.

Using the DB Server Editor

Chapter 7: Defining Data Servers and Field Specifications 301

Creating a New Field To add a new field to a data server and fully specify all required properties:

1. In the Include list box, click on any entry.

If there are no fields included in the data server, the DB Server Editor
indicates the selected, empty entry with a dotted gray line.

For example, if you were creating a new data server called Parts for the
OE Data Servers library, the Include list box would be empty initially. To
begin to define the first field, you would click in the Include list box:

Clickhereforanewfieldentry

Using the DB Server Editor

302 CA-Visual Objects IDE User Guide

2. Choose the Add Item command from the Edit menu.

The DB Server Editor opens an edit control for the new entry:

Openeditcontrol

3. Type the name of the field (for example, PART_NUM).

Using the DB Server Editor

Chapter 7: Defining Data Servers and Field Specifications 303

4. Press Enter.

Note that as soon as you press Enter, the DB Server Editor automatically fills
in the FieldSpec Properties window with default values for some of the
properties:

Note: Refer to the online help for detailed information about new and
updated field properties.

These default values can be changed at any time. Most of these properties
are optional and are explained in greater detail in the Specifying Field
Properties section below. However, there are two required properties—Type
and Length—that you may want to change.

Note: This field-specific Properties window is almost identical to the
FieldSpec Editor you will learn about later in this chapter.

5. Scroll down to the Type property and double-click on its value cell.

Select a field type from the combo box that appears. Valid choices are:
Character, Numeric, Date, Logic, or Memo.

6. Use the Length property to specify the length of the new field.

Using the DB Server Editor

304 CA-Visual Objects IDE User Guide

Using a Field
Specification

To create a new field that uses all of the properties of an existing field
specification:

1. Add a new field according to steps 1-3 above.

2. Double-click on the FieldSpec property’s value cell, and choose the desired
field specification from the combo box that appears.

The DB Server Editor fills in the FieldSpec Properties window with the
values assigned to the selected field specification.

Customizing a
Field Specification

To create a new field that uses only some of the properties of an existing field
specification, follow the steps outlined in the previous section, Using a Field
Specification. Then, simply customize any of the properties pulled in with the
selected field specification.

Important! If you are customizing an existing field specification, you may want to use
a different name for the modified version and leave the existing field specification intact.
To do this, type a new FieldSpec name in the FieldSpec Properties window before saving
the customized field specification.

No matter which technique you used to create the field, at this point all
requirements have been met and the new field is complete. You can specify
additional properties for this field by referring to the Specifying Field Properties
section below.

You can also define additional fields by repeating the steps in one of the three
preceding sections. Each subsequent field is added to the end of the list and will
be included in the database file structure if you issue a File Export menu
command. See the Editing Fields section for details on repositioning the order of
the fields in the Include list box.

Specifying Field Properties

The FieldSpec Properties window allows you to specify the following properties
for fields. Unless indicated otherwise, these properties are optional.

Note: In CA-Visual Objects 2.7, there are many new field properties, including
Length Diagnostic, Length Help, Min Length Diagnostic, Min Length Help,
Range Diagnostic, and Range Help. Refer to the online help for detailed
information about new and updated field properties.

Name The name of the currently selected field. (This is a required property.)

If you newly created this field, this property contains the name you entered
when creating the field. If this field was imported, this property contains the
name of the field as it was defined in the DBF file structure (see Importing
Database and Index Files later in this chapter).

Using the DB Server Editor

Chapter 7: Defining Data Servers and Field Specifications 305

Field names must be 1 to 10 characters in length, the first character cannot be a
number, and the rest can only contain letters, numeric digits, and the underscore
character.

If you later use the File Export menu command to create a .DBF file from this
data server definition, this name will be used to create this field.

Caption The text used to label the field. (For example, if you use Auto Layout in the
Window Editor for this server, the system will use the caption to create the fixed
text control for this field.)

This property is initially set to <Auto>, which means that, by default, the system
will use the value in the FS Caption property for this field’s caption. You should
enter a value in the Caption property only if you wish to override the value
defined in FS Caption without changing it. If you do not care about modifying
the value held in FS Caption, simply enter the desired text there.

Note: Refer to Specifying Control Properties and Style Settings in the “Using
the Window Editor” chapter for an example and accompanying diagram of the
hierarchical nature of the Caption, Description, and Help Context properties.

Description The text displayed in a window’s status bar when this field has focus in your
application (for example, in a data window). (See the Data-Aware Windows
section in “Using the Window Editor” for information on creating data
windows.)

This property is initially set to <Auto>, which means that, by default, the system
will use the value in the FS Description property for this field’s description. You
should enter a value in the Description property only if you wish to override the
value defined in FS Description without changing it. If you do not care about
modifying the value held in FS Description, simply enter the desired text there.

Help Context The unique keyword to be associated with this field for use in a context-sensitive
help system. See the Help Context entry in Specifying Data Server Properties
earlier in this chapter for specifics.

This property is initially set to <Auto>, which means that, by default, the system
will use the value in the FS Help Context property for this field’s help keyword.
You should enter a value in the Help Context property only if you wish to
override the value defined in FS Help Context without changing it. If you do not
care about modifying the value held in FS Help Context, simply enter the desired
keyword there.

FieldSpec The name of the field spec entity associated with this field, if any. If you
designate a field specification, then all of the properties listed below will be
saved to that entity. All entities must have unique names to be stored in the
repository. Therefore, the entity name generally includes the name of the server
as well as the field.

Using the DB Server Editor

306 CA-Visual Objects IDE User Guide

By default, the system creates a unique field specification for every field you
create or import (using the pattern <DataServerName>_<FieldName>). When you
save a data server, this name is used to create the field spec entity and to subclass
the field specification in the code generated by the DB Server Editor. For
example:

CLASS ZipCodeSpec INHERIT FieldSpec

If desired, you can use this property to associate a different, existing field
specification, instead of the default, unique one automatically associated by the
system. To do this, click on this property, click on the Down arrow button that
appears, and then choose the desired field specification from the displayed list.

For example, if you created an LNAME field in your Customer data server, it
would be associated with a field specification of CUSTOMERS_LNAME by
default. Assuming you had a LASTNAME field specification you preferred to
use for this field, you could import it here by choosing it from the drop-down list
box.

Inherit from Class Select the FieldSpec class or subclass from which the field will inherit its basic
characteristics. Valid choices are <Auto> and all classes derived from the
FieldSpec class that are in the current search path. The default setting is <Auto>.

FS Name The name of the field described in the field specification. (All entities must have
unique names to be stored in the repository.)

Initially, for newly created or imported fields, this property contains the same
value as the Name property.

FS Caption The text used to label the field. (For example, if you use Auto Layout in the
Window Editor for this server, the system will use the caption to create the fixed
text control for this field.)

By default, the value in this property will be used for this field’s caption, unless
you enter a value in the Caption property (in which case the value in that
property will be used instead).

Initially, for newly created or imported fields, this property contains a mixed-
case version of the value in the Name property.

Note: Refer to Specifying Control Properties and Style Settings in the “Using
the Window Editor” chapter for an example and accompanying diagram of the
defaulting behavior of the FS Caption, FS Description, and FS Help Context
properties.

FS Description The text displayed in a window’s status bar when this field has focus in your
application (for example, in a data window).

By default, the value in this property will be used for this field’s description,
unless you enter a value in the Description property (in which case the value in
that property will be used instead).

Using the DB Server Editor

Chapter 7: Defining Data Servers and Field Specifications 307

FS Help Context The unique keyword to be associated with this field in the specified field
specification. This keyword is intended for use in a context-sensitive help
system. See the Help Context entry in Specifying Data Server Properties earlier
in this chapter for specifics.

By default, the value in this property will be used for this field’s help keyword,
unless you enter a value in the Help Context property (in which case the value in
that property will be used instead).

For newly created or imported fields, the default keyword for this property is
created using the pattern <DataServerName>_<FieldName>.

Type The data type of the field. You can choose Character, Numeric, Logical, Date,
OLE, or Memo. (This is a required property).

If you newly created this field, the type is initially set to Character. If this field
was imported, this property contains the type of the field as defined in the .DBF
file structure.

Type Diagnostic The message that should appear in the status bar when an error occurs related to
this field’s type.

Type Help The unique keyword for use in a context-sensitive help system that identifies the
help message for the Type property. See the Help Context entry in Specifying
Data Server Properties earlier in this chapter for specifics.

Length The length of the field. (This is a required property).

If you newly created this field, the length is initially set to 10. If this field was
imported, this property contains the length of the field as defined in the DBF file
structure.

Note: For new fields, the different types you might choose have different
default lengths associated with them. They are as follows: Character = 10,
Numeric = 12 with 2 decimals, Date = 8, Logic = 1, OLE=10, and Memo = 10.

Length Diagnostic The message that should appear when an error occurs related to this field’s
length.

Length Help The unique keyword for use in a context-sensitive help system that identifies the
help message for the Length property. See the Help Context entry in Specifying
Data Server Properties earlier in this chapter for specifics.

Using the DB Server Editor

308 CA-Visual Objects IDE User Guide

Decimals The number of decimal places to be used for this field if it is numeric.

If you newly created this field and you specified a type of Numeric, this property
is initially set to 2. If this field was imported as a Numeric, this property contains
the decimal of the field as defined in the DBF file structure.

Note: For all other types, this property is unused (set to 0).

Picture The picture clause to be used to format this field. This is a standard Xbase
picture clause, such as “@!” or “999-99-9999”. Note that the quotation marks are
optional.

Min Length The minimum number of characters that can be entered in the field (for example,
a state field can be defined with Length and Min Length of 2, while a password
field can have a Length of 10 and a Min Length of 4).

Required Select Yes or No, respectively, to indicate whether the field is required or not. By
default, this property is set to No.

Required Diagnostic The message that should appear when an error occurs related to a required field.

Required Help The unique keyword for use in a context-sensitive help system that identifies the
help message for the Required property. See the Help Context entry in
Specifying Data Server Properties earlier in this chapter for specifics.

Minimum A minimum value for a numeric or date field.

Maximum A maximum value for a numeric or date field.

Validation The rule to be used to determine if entered data is valid. This is a code block that
takes the field name as an argument. The code block must return a logical value
that must evaluate to TRUE before the data entered will be accepted in the field.
You might, for example, use a table lookup function to determine if a key value is
valid, as in {|KeyField| ValKeys->DBSeek(KeyField)}.

Validation Diagnostic The message that should appear when an error occurs related to the validation
rule.

Validation Help The unique keyword for use in a context-sensitive help system that identifies the
help message for the Validation property. See the Help Context entry in
Specifying Data Server Properties earlier in this chapter for specifics.

Using the DB Server Editor

Chapter 7: Defining Data Servers and Field Specifications 309

Note: Field properties are inherited when you create a data window designed to
work with the data server. Then, when the data server is accessed via the data
window at runtime, the appropriate description is displayed in the window’s
status bar and all data validation (such as type, range, and picture) is performed
automatically as data is entered in the individual data controls. See Chapter 8:
Creating Data-Aware Windows for information about linking data servers to a
data window and linking associated field specifications to data controls in the
window.

Adding Index Files

CA-Visual Objects allows you to create and set multiple index files for data
servers created with the DB Server Editor. Both the single-order and multi-order
index file paradigms are supported. Index files provide a means of effectively
using and maintaining the information stored in a database by allowing you to
logically order the records according to a key value. The use of index files
greatly speeds data access time when searching for a key value.

Creating a New
Index File

The process for creating an index file is similar to the process for adding a new
field:

1. In the Indexes list box, click on any entry.

The Properties window changes so that it relates to indexes. If there are no
index files included in the data server, which is the case for the Orders data
server, the DB Server Editor indicates the selected, empty entry with a dotted
gray line.

2. Choose the Add Item command from the Edit menu.

The DB Server Editor opens an edit control for the new entry:

Typehere(orusetheFindbutton)

Using the DB Server Editor

310 CA-Visual Objects IDE User Guide

Notice that the Properties window has changed to the Index Properties
window.

3. Type the name of a new index file (for example, ORDCUST.NTX) and press
Enter.

4. Repeat steps 2 and 3, entering ORDERNUM.NTX.

As soon as you press Enter, the DB Server Editor automatically fills in the
Index Properties window and adds the indexes to the Orders list box.

Importing Index Files However, you can just as easily import the index files associated with
ORDERS.DBF. To do this:

1. Click the Find button to the right of the Indexes list box.

A standard Browse dialog box for indexes appears:

2. Choose ORDCUST.NTX and ORDERNUM.NTX from the GSTUTOR folder:

Clickhere...

PressShiftkeyandclickhere

3. Click Open.

Using the DB Server Editor

Chapter 7: Defining Data Servers and Field Specifications 311

The DB Server Editor automatically fills in the Index Properties window and
adds the indexes to the Orders list box:

Notice that the Index Properties window displays just three properties:
Name, Filename, and Order Tags. The last property, Order Tags, indicates
the number of orders within the selected index. In this case, we defined the
actual index file as an .NTX file; therefore, the number of Order Tags is 1,
and only a single order is listed in the Orders list box.

Also notice the check marks (√) next to ORDCUST.NTX name in the Indexes
list box and next to the ORDCUST order in the Orders list box. These check
marks define the logical order in which the database file is processed, and
this is called the controlling order.

4. Now click on ORDCUST in the Orders list box.

The Properties window changes, displaying default values for some of the
order-related properties:

5. Enter the key expression for the order (for example, CustNum).

6. Press Enter.

7. Close the DB Server Editor and save your changes.

Using the DB Server Editor

312 CA-Visual Objects IDE User Guide

At this point all requirements have been met and the index file specification is
complete. You can specify additional properties for this order by referring to the
Specifying Index File and Order Properties section below. You can also add
additional index files by repeating steps 1–6. Each subsequent index file is added
to the end of the list.

Adding an Order When working with multi-order index files, the process for creating the first
order is the same as described above. To add subsequent orders to a multi-order
index file:

1. In the Orders list box, click on any entry. Then, choose the Edit Add Item
menu command.

The DB Server Editor opens an edit control for a new entry.

2. Type the name of the order (for example, ORDNUM) and press Enter.

3. Enter the key expression for the order (for example, OrdNum).

Note: Whether an index file supports single or multiple orders per file depends
on the RDD, which you determine using the data server’s Driver property.
Unless the driver you have specified supports multiple orders, you will not be
able to define more than one order. See Specifying Data Server Properties earlier
in this chapter for more information.

Specifying Index File and Order Properties

Index files can have the following properties in the DB Server Editor:

Name A unique name for the index, such as ORDERS_ORDCUST.

Filename The path (drive, directory, and file name) of the actual index file. This file name
will be used, for example, by the File Export or File Export Index menu
commands.

Order Tags Displays the total number of orders (or tags) defined in an index file. This is a
read-only field.

An index file’s orders can have the following properties in the DB Server Editor:

Name A unique name for the order, such as ORDCUST.

Duplicate Allowed Indicates whether the order will have unique key values. The default is Yes,
indicating that all records will be included in the order. If you change it to No,
only records with unique key values will be included in the order.

Ascending Indicates whether the key values in the order will be sorted as ascending or
descending. The default is Yes, indicating ascending order. If you change it to
No, the key values will be sorted in descending order.

Using the DB Server Editor

Chapter 7: Defining Data Servers and Field Specifications 313

Key Expression The key expression on which the order is based. Its resultant key value
determines the logical position of the associated record in the database when this
is the controlling order (for example, CustNum).

For Expression A condition on which to base this order (for example, Amount_Due > 1000.00).
By default, none is specified and all records are included in the order. If you
specify a For Expression, only records that meet the condition are included in the
order.

Generating Corresponding Files

After creating a new data server according to the instructions in this section, the
next logical step is to generate the associated database and index files. To
generate all associated files at once, choose the File Export menu command. To
generate only one index file, highlight it in the Indexes list box and choose the
File Export Index menu command. (For more information, see Exporting
Database and Index Files later in this chapter.)

Generating Code

When you save a data server, CA-Visual Objects automatically generates:

■ A DB server entity for the data server

You can double-click on this entity in the Repository Explorer’s list view
pane to begin editing it with the DB Server Editor.

■ A DBServer subclass using the data server name

■ A field spec entity for each field specification defined for the data server

You can double-click on any field spec entity in the Repository Explorer’s list
view pane to begin editing it with the FieldSpec Editor.

■ A FieldSpec subclass for each field specification in the data server

■ Other default source code that can be modified

Note: Code generation in the DB Server Editor is now template-based. For
complete details, refer to the CA-Visual Objects 2.7 Software Development Kit.

Using the DB Server Editor

314 CA-Visual Objects IDE User Guide

Modifying a Data Server

After you have defined a data server, you can modify it by changing its
properties or the properties of any fields or index files associated with it. You
can also change the data server name and its associated database file. Certain
changes that you make may be reflected in the associated index files and
database file structures if you issue a File Export menu command, all of which
are explained in the following sections.

Editing Data Server Properties

Name To change the name of the data server, click on the Name edit control and type a
new name.

File Name To change the associated database file, click on the File Name edit control and
either type a new name or import a new file using the Find button.

Other Properties To change any other property associated with a data server:

1. Click on the Name or File Name edit controls.

The Properties window changes so that it relates to the data server.

2. Click on the property that you want to change in the Properties window and
specify the new value.

See Specifying Data Server Properties for more information.

Editing Fields

If there are fields in the Include list box, you can change their properties, change
their order, delete them from the list, or exclude them from use by the data
server.

Changing Field
Properties

To change any property associated with a field, follow these basic steps:

1. Click on the field name in the Include list box.

The DB Server Editor highlights the field and updates the Properties window
accordingly.

2. Click on the property that you want to change in the FieldSpec Properties
window and specify the new value.

Using the DB Server Editor

Chapter 7: Defining Data Servers and Field Specifications 315

Order Entry Examples For example, if you did not follow the tutorial in the Getting Started guide, you
should modify some of the field properties now for the Order Entry sample
application.

First, you will reuse field specifications already defined for the Customer data
server in the new data server, Orders, instead of defining them over again:

1. Double-click on the Orders DB server entity in the Repository Explorer’s list
view pane.

The DB Server Editor appears.

2. Select the CUSTNUM field in the Include list box:

CUSTNUMselectedinOrdersdataserver

As this field is identical to the CUSTNUM field in the Customer data server,
you can take advantage of some of its field property definitions.

3. Click on the FieldSpec property in the FieldSpec Properties window:

FieldSpecpropertyselected

Clickhere...

4. Click on the Down arrow that appears in its value cell, and select
CUSTOMER_CUSTNUM from the list of all field specifications defined to
the OE Data Servers library.

In this step, you are importing properties from the field specification defined
for the CUSTNUM field in the Customer data server and simply reusing
them in the Orders data server.

Using the DB Server Editor

316 CA-Visual Objects IDE User Guide

For example, the FS description property in this data server is updated with
the text defined in the Customer data server (this property was blank before):

The same is true for the Required and Validation properties.

5. Repeat the above steps to associate the SHIP_STATE field with the
CUSTOMER_STATE field specification and the SHIP_ZIP field with the
CUSTOMER_ZIP field specification.

6. Click on the Save button in the DB Server Editor toolbar to save your work
so far.

Now you need to modify some properties for several other fields in the Orders
data server:

1. First, select ORDERNUM in the Include list box.

The DB Server Editor highlights the field and displays the appropriate
FieldSpec Properties window.

2. Click on the FS Caption property in the FieldSpec Properties window,
replace the current contents of its value cell with Order #, and press Enter.

3. Click on the FS Description property, type Enter the order number
(required) in its value cell, and press Enter.

4. Select the Required property, click on the Down arrow that appears in its
value cell, and choose Yes from the list box:

Changing this property to Yes will require the end user to type a value for
this field in the Order Entry application.

5. Click on the Required Diagnostic property just below, type You must enter
an order number, and press Enter.

Using the DB Server Editor

Chapter 7: Defining Data Servers and Field Specifications 317

If the end user attempts to skip the OrderNum field, this message will
display.

6. Scroll down to the Validation property, type
{ |OrderNum| OrderNum > 0} in its value cell, and
press Enter.

This validation rule—in the form of a code block—will require the end user
to enter a positive number. (See the “Code Blocks” chapter in the
Programmer’s Guide for more information.)

7. Click on the Validation Diagnostic property just below, type The order
number must be positive, and press Enter.

Your FieldSpec Properties window for ORDERNUM should now look
something like this:

8. Click on the Save toolbar button.

Similarly, make the following changes to the ORDERPRICE field if you have not
done so already:

1. Select the ORDERPRICE field in the Include list box.

2. Click on the FS Caption property, edit the current contents of its value cell to
read Order Price, and press Enter.

3. Click on the FS Description property, type Enter the order price in its value
cell, and press Enter.

Using the DB Server Editor

318 CA-Visual Objects IDE User Guide

4. Scroll down to the Picture property, click on its value cell, type $$$$$$$.99,
and press Enter.

The specified picture clause will cause the value to display with leading
dollar signs.

5. Click on the Save toolbar button.

See Specifying Field Properties for more information about each available
property.

Ordering Fields To change the order of the fields within the Include list box:

1. Click on the field name in the Include list box.

2. Click the Up arrow button to move the currently highlighted field up one
position in the Include list, or click the Down arrow button to move the
currently highlighted field down one position in the Include list.

The order in which the fields appear in the Include list box determines the order
in which they will appear when you use the Auto Layout feature to define a data
window for this data server. (See Chapter 8: Creating Data-Aware Windows
for information about the Window Editor’s Auto Layout feature.) This Include
list box order also determines the order in which the fields are created if you
generate a .DBF file using the File Export menu command.

Deleting a Field To delete a field from the Include list box:

1. Click on the field name in the Include list box.

2. Choose the Edit Delete Item menu command.

Alternatively, press Esc and then press Del.

Excluding a Field Deleting the field from the Include list box, however, is not necessary. You can
simply exclude the field from use by this data server:

1. Click on the field name in the Include list box.

2. Click the Right arrow button to move the currently highlighted field to the
Exclude list.

This process works the other way around using the Left arrow button to move a
highlighted field from the Exclude list to the Include list. As a shortcut, you can
move all fields from one list to the other by clicking the appropriate double
arrow button.

Fields that are in the Exclude list box will be inaccessible when using this data
server. A reference to an excluded field in your application will result in a
runtime error.

Using the DB Server Editor

Chapter 7: Defining Data Servers and Field Specifications 319

Note: Changes that you make to the Name, Type, Length, and Decimals field
properties, as well as deletions from the Include list box, will be reflected in the
database file structure if you issue a File Export menu command. Excluded
fields, however, will not.

Editing Index Files and Orders

You can change the properties of an index file, delete an index file from the
Indexes list box, change the controlling order, change the properties of an order,
and delete an order from an index file. This section describes each of these
processes.

Changing Index File
and Order Properties

To change any property associated with an index file or one of its orders:

1. Click on the index file name in the Indexes list box.

The DB Server Editor highlights the file and updates the Properties window
accordingly.

2. Click on the property that you want to change in the Properties window, and
specify the new value.

See Specifying Index File and Order Properties for more information.

Changing the
Controlling Order

As stated earlier in this chapter, CA-Visual Objects allows you to set multiple
index files for a single data server and, depending on the RDD, several orders
can be defined for a single index file. All index files that are set will be opened
automatically whenever you access the associated database file via this data
server, and all orders in all of these index files will be properly maintained as
changes to the database file are made.

However, there can only be one controlling order (indicated with a √ in the
Indexes and Orders list boxes). If you want, you can change the logical order in
which the database file is processed by changing the controlling order. To do
this:

1. In the Indexes list box, select the index file that defines the order you want to
make the controlling order (either click on it with the mouse or scroll to it
with the Direction keys).

2. Click on the check mark button next to the Indexes list box.

The system will place a √ next to that index.

3. If the index defines only one order, it will automatically become the
controlling order. If the index has multiple orders, the first order in the
index will be the default controlling order. Optionally highlight a different
order in the Orders list box.

4. Click on the check mark button to the right of the Orders list box.

The system will place a √ next to the new controlling order.

Using the DB Server Editor

320 CA-Visual Objects IDE User Guide

Deleting an Index File To delete a file from the Indexes list box so that it will no longer be used by this
data server:

1. Click on the index file name in the Indexes list box.

2. Choose the Edit Delete Item menu command.

Alternatively, press Esc and then press Del.

Deleting an Order To delete a file from the Indexes list box so that it will no longer be used by this
data server:

You can remove individual orders from a multi-order index file:

1. Click on the order name in the Orders list box.

2. Choose the Edit Delete Item menu command.

Alternatively, press Esc and then press Del.

Note: Changes that you make to orders, including Key Expression, For
Expression, deletions, and additions will be reflected in the index file if you issue
a File Export or File Export Index menu command. Deleting an index file from
the Indexes list box, however, does not delete it from the disk, it simply prevents
this data server from accessing the index file.

Importing Database and Index Files

So far, you have learned how to create data servers, fields, and indexes using the
DB Server Editor, with the idea in mind that you could later generate the
corresponding database and index files based on the properties defined in the
data server. Greater emphasis has been given, however, to importing predefined
data servers from a library, database files, and index files; importing saves you
valuable time.

Database Files For example, after importing an existing database file, all of the fields in the
database structure are included in the data server that you are defining. You
are free to include and exclude any of these predefined fields, modify them, and
add new fields (as shown earlier in Adding Fields and Editing Fields).

Furthermore, you can even import fields from another database file to add to the
current data server. For example, you could add the fields in DETAIL.DBF to the
Orders data server:

1. Double-click on the Orders DB server entity in the list view pane of the
Repository Explorer to start the DB Server Editor.

2. Click the Find button associated with the File Name edit control.

The Import dialog box appears.

Using the DB Server Editor

Chapter 7: Defining Data Servers and Field Specifications 321

3. Select DETAIL.DBF from the GSTUTOR folder in the SAMPLES directory.

The Duplicate Field Error dialog box appears:

4. Enter an alternate name for the indicated field (for example, ORDERNUM2).

5. Click OK.

All of the fields in DETAIL.DBF (including the renamed ORDERNUM field)
are added to the Orders data server.

6. Highlight ORDERNUM2 in the Include list box, and then click the Right
arrow button:

Highlightduplicatefield...

Thenclickhere

The duplicate field is added to the Exclude list box and becomes inaccessible
when using this data server.

7. Click Save to save all of your changes, and then click the Close button.

8. Click the Build toolbar button to rebuild the data server.

Importing Index Files Just as importing an existing database file is faster than creating one, so is
importing an index file. After importing an existing index file, all of its orders
are added to the data server that you are defining. You are free to make
modifications to the index file itself or to any of its orders (as shown previously
in Editing Index Files and Orders).

Using the DB Server Editor

322 CA-Visual Objects IDE User Guide

Exporting Database and Index Files

As mentioned earlier, you can create and modify database file structures and
index files, and then export them while in the DB Server Editor. Choose the File
Export menu command to create a .DBF file structure with no associated records,
using the Export dialog box. For example:

Important! Before exporting any file, you should make a backup of it; if you export
without changing the name of the .DBF file, you will lose all records in the file.

You can also choose the File Export Index menu command to export a single
index file at a time, using the Export Index dialog box shown here:

Note: The implications of how changes to the data server, field specification,
and index/order properties will affect the resulting exported files have already
been discussed in detail throughout this section. For detailed information about
the Export and Export Index dialog boxes, see the online help.

Using the SQL Editor

Chapter 7: Defining Data Servers and Field Specifications 323

Using the SQL Editor
The SQL Editor is used for creating and editing SQL data servers. In this section,
you will learn how to:

■ Define a data server for a table or view in an existing SQL database

■ Specify a WHERE clause and an ORDER BY clause

■ Specify additional properties for the fields

■ Modify an SQL data server

In order to connect to a data source using the SQL Editor, the appropriate ODBC
engine and driver must be installed on your computer, and the data source must
be properly configured.

CA-Visual Objects comes packaged with the ODBC kernel and several ODBC
drivers. The CA-Visual Objects package does not, however, include complete
engines for all of these drivers—you must obtain these from the appropriate
vendor in order to use the supplied drivers. CA-Visual Objects does supply the
CA-OpenIngres/Desktop, which provides complete DBMS for the Windows or
Windows NT desktop environment and creates an ODBC data source,
CA-OpenIngres/DT Demo, so that you can experiment with the SQL Editor.

Note: When you install various drivers, a separate help file for each driver will
also be installed. (Refer to the “Installing and Starting CA-Visual Objects”
chapter of the Getting Started guide if you are interested in installing these
components.)

Keep in mind, also, that your end users must have the appropriate engine and
driver installed to use the resulting data server in an application. The supplied
drivers can be distributed with your application as described in the “Operating
Environment” chapter of the Programmer’s Guide. However, database engine
redistribution rights are determined by the individual engine manufacturers. In
most cases, the end user must own a separate, licensed copy of the engine
software.

Important! To use a data server created using the SQL Editor, the SQL Classes and
System Classes libraries must be included in the search path sequence defined for your
application. (For more information on setting a search path, please see the Setting the
Search Path section in “Using the Repository Explorer.”)

Using the SQL Editor

324 CA-Visual Objects IDE User Guide

The SQL Editor

The SQL Editor is very similar to the DB Server Editor—it also has its own
toolbar (which is identical to the DB Server Editor toolbar, described earlier) and
an associated Properties window. When first loaded for a new data server entity,
the SQL Editor looks as follows:

SQLEditortoolbar

Propertieswindow

Findbutton
Connectbutton

CA-VisualObjectsmenubar

The Properties
Window

The SQL Editor also features a floating Properties window that is initially set to
allow you to specify properties for the current data server:

Like the Properties window in the DB Server Editor, this one takes on different
roles depending on the current focus of the editor. After you create or modify
the data server using the SQL Editor Properties window, you can modify its
fields using the FieldSpec Properties window. (See the Specifying SQL Editor
Properties and Specifying Field Properties sections later in this chapter for more
information about this window.)

Using the SQL Editor

Chapter 7: Defining Data Servers and Field Specifications 325

Other Options The remainder of the options in the SQL Editor workspace allow you to specify
various properties for the current data server. See Defining an SQL Server next
for details.

Defining an SQL Server

Defining a data server in the SQL Editor requires you to do the following:

■ Create the data server by specifying its properties, connecting to an SQL
database, and choosing a table to use

■ Optionally specify a WHERE clause

■ Optionally specify an ORDER BY clause

■ Optionally specify additional properties for the fields

Creating an SQL Server

Creating an SQL data server requires that you have an existing SQL database
available. To create a data server based on an existing SQL database, you need to
perform the following steps:

1. Start the SQL Editor.

Like all CA-Visual Objects tools, the SQL Editor is accessed using either the
Tools menu or the New Entity toolbar button.

The SQL Editor appears.

2. In the Name edit control, type the name of the data server (for example,
Customer_Order). This information is included in the data server’s
automatically generated hyperlabel.

You can enter a name using a maximum of 64 characters. The first character
must be alphabetic or an underscore; the other characters can be
alphanumeric and can include the underscore character. Blanks within the
name will be changed to underscores when you save the data server.

This name is used to create the SQL server entity and to subclass the data
server in the code generated by the SQL Editor. For example:

CLASS Customer_Order INHERIT SQLSelect

It is also the name used to refer to this data server in your program code. For
example:

oSQLCust := Customer_Order{}

3. Optionally set additional data server properties using the SQL Editor
Properties window.

See Specifying SQL Editor Properties below.

Using the SQL Editor

326 CA-Visual Objects IDE User Guide

4. Select the Table Range check box if you want to limit the available tables
when you connect to a database.

5. In the Connection group box, type the name of an SQL database in the
Source edit control, and enter the appropriate User ID and Password.

Alternatively, click on the Find button to the right of the Source edit control
to select an ODBC source (for example, CA-OpenIngres/DT Demo) from the
Select Data Source dialog box:

If the data source you need is not listed here, you can add a new one by
clicking on the New button. For more information, see your ODBC
documentation.

Note: The ODBC source name must already have been created and
configured using the Microsoft ODBC Administration Utility (or the
equivalent).

6. Click OK.

A standard logon dialog box appears, which varies according to your data
source connection. For example:

7. Enter the appropriate information, and click OK.

You are returned to the SQL Editor.

8. Click on the Connect button.

Using the SQL Editor

Chapter 7: Defining Data Servers and Field Specifications 327

9. If you selected the Table Range option, you must complete the following
dialog box to specify which tables to include:

After clicking OK, the tables associated with this database appear in the
Tables list box to the right.

10. In the Tables list box, click on one or more tables to include in this data
server (for example, order.Customer).

The fields associated with the selected table(s) appear in the Include list box,
with primary key fields indicated by (*).

11. Choose the Save toolbar button to save the SQL server entity.

Note: This last step can be repeated whenever you make changes to the data
server and want to save your work without closing the SQL Editor.

Specifying SQL Editor Properties

You can define additional properties for a data server using the SQL Editor
Properties window:

The four properties in this dialog box, Caption, Inherit from Class, Help Context,
and Description, are identical to the ones described for the DB Server Editor in
the Specifying Data Server Properties section.

Using the SQL Editor

328 CA-Visual Objects IDE User Guide

Defining a WHERE Clause

To define a WHERE clause, click on the WHERE Clause edit control and enter
the clause (for example, State = ‘CA’ or Amount_Due = 500.00):

T ypical WHERE claus e Tes t S QL button

This clause defines the selection criteria for the database when accessed with this
data server.

Tip: To check the syntax of the WHERE clause, click on the Test SQL button.
This gives you a quick way to make sure that the clause is valid without
building the entire application.

Defining an ORDER BY Clause

To define an ORDER BY clause, click on the ORDER BY Clause edit control and
type the clause. This clause defines the ordering criteria for the database when
accessed with this data server, for example, Cust_Num or Cust_Name.

Using the SQL Editor

Chapter 7: Defining Data Servers and Field Specifications 329

Specifying Field Properties

Using the FieldSpec Properties window, you can specify any field property that
is not directly associated with the database. The Field Properties are the same as
those described under Specifying Field Properties in Using the DB Server Editor.

Note: You cannot, however, change properties that would affect the structure of
the underlying SQL table; that is, Name, Type, Length, Decimals, and Required
are read-only fields.

Generating Code

When you save a data server, CA-Visual Objects automatically generates:

■ An SQL server entity for the data server

You can double-click on this entity in the Repository Explorer’s list view
pane to begin editing it with the SQL Editor.

■ An SQLSelect subclass using the data server name

■ A field spec entity for each field specification defined for the data server

You can double-click on any field spec entity in the Repository Explorer’s list
view pane to begin editing it with the FieldSpec Editor.

■ A FieldSpec subclass for each field specification in the data server

■ Other default source code that can be modified

Modifying an SQL Server

After you have defined a data server, you can modify it by changing its
properties or the properties of its fields. You can also change the data server
name, its associated table or source database, and its WHERE and ORDER BY
clauses.

Editing SQL Editor Properties

Name To change the name of the data server, type a new name in the Name edit
control.

Connection To change the associated source database, either type a new Source, User ID, and
Password in the Connection group box and click on the Connect button, or
connect to a new source database by clicking on the Find button. This will clear
the Include field list and replace the Tables list with the table names from the
new source database.

Using the SQL Editor

330 CA-Visual Objects IDE User Guide

Note: You can optionally check the Table Range check box before connecting to
a new database to limit the table selection using the SQL Editor dialog box.

Tables To associate another table, click on the new table name in the Tables list box.
This will add the field list from the selected table to the prior Include field list.

To remove an associate table that is currently highlighted in the Tables list box,
click on the table name. The fields from the table will be removed from the
Include field list.

WHERE/ORDER BY
Clauses

To change the WHERE or ORDER BY clause, click on the appropriate edit
control and type the new clause.

Other Properties To change any other property associated with a data server:

1. Click on the Name edit control.

The Properties window changes so that it relates to the data server.

2. Click on the property that you want to change in the Properties window and
specify the new value.

See Specifying Data Server Properties for more information.

Editing Fields

If there are fields in the Include list box, you can change certain properties,
change their order, or exclude them from use by the data server. Except for the
fact that you cannot delete fields and cannot make structural changes to the
underlying database in the SQL Editor, the instructions for making these changes
are the same as those described in the Editing Fields section for the DB Server
Editor earlier in this chapter.

Using the FieldSpec Editor

Chapter 7: Defining Data Servers and Field Specifications 331

Using the FieldSpec Editor
A field specification is a unique, independent entity in the CA-Visual Objects
architecture. It allows you to specify and store a wide variety of properties for an
item in your application, all in a single, manageable location. (Note that it is
derived from the FieldSpec class.)

Typically, a field specification is “associated” with a field in a data server. Some
of the properties you might define in such a field specification are a type, a
length, a picture clause, and validation checks. In fact, when you create a data
server in the DB Server Editor or the SQL Editor, the system automatically
generates a field specification for every field in that server.

The automatic association of field specifications with data server fields is quite
useful, because many of your fields will require formatting, validation, etc., and
field specifications provide a convenient and intuitive way to define these
properties.

In addition, many databases have similar (if not identical) fields, which require
the same formatting, validation, etc. With the CA-Visual Objects architecture,
you can design a single field specification that can be “attached” to each common
field. For example, if you create a Salary field specification, you can simply reuse
its properties when creating an EmpSalary field in a data server for an Employee
database. You can then reuse its properties when creating a similar field for a
data server for a Payroll database.

However, field specifications do not need to be associated with data server fields.
For example, when designing a form in the Window Editor, you might add an
edit control for which you want to specify a picture clause, a required flag, and a
validation check. Even though the control is not linked to a data server field, you
can attach a field specification to it to define these properties.

Field specifications, therefore, are useful in a variety of ways, saving you both
time and resources. And, because of the nature of repository-based
development, field specifications can easily be selected and reused throughout
the system.

This section describes the FieldSpec Editor and explains how to:

■ Define a new field specification

■ Modify an existing field specification

■ Copy properties from one field specification to another

Using the FieldSpec Editor

332 CA-Visual Objects IDE User Guide

The FieldSpec Editor

The CA-Visual Objects FieldSpec Editor has its own toolbar (which is identical to
the DB Server Editor toolbar, described earlier), in addition to the menu
commands on the CA-Visual Objects menu bar.

When first loaded for a new field spec entity, it looks as follows:

FieldSpecEditor

FieldSpecEditor
toolbar

CA-VisualObjects
menubar

Note that the FieldSpec Editor is similar in appearance to the FieldSpec
Properties window in both the DB Server and the SQL Editors.

Using the FieldSpec Editor

Chapter 7: Defining Data Servers and Field Specifications 333

Defining a Field Specification

To define a new field specification that will be stored in the current module, you
need to perform the following steps:

1. Start the FieldSpec Editor.

Like all CA-Visual Objects tools, the FieldSpec Editor is accessed using either
the Tools menu or the New Entity toolbar button.

2. In the FieldSpec value cell, type the name of the new field (for example,
CustCredit):

Enternewnamehere

You can enter a name using a maximum of 64 characters. The first character
must be alphabetic or an underscore; the other characters can be
alphanumeric and can include the underscore character.

This name is used to create the field spec entity and to subclass the field
specification in the code generated by the FieldSpec Editor. For example:

CLASS CustCredit INHERIT FieldSpec

It is also used to associate this field specification with a field in a data server.

3. Enter the remaining properties for the field specification by clicking on the
appropriate cell and specifying a value. For example:

Using the FieldSpec Editor

334 CA-Visual Objects IDE User Guide

Note: Refer to the online help for detailed information about new and
updated field specification properties.

Type and Length are required, and all other properties are optional. For a
complete description of these properties, refer to Specifying Field Properties
in the Using the DB Server Editor section earlier in this chapter. Note,
however, that Name, Caption, and Description correspond to FS Name, FS
Caption, and FS Description, respectively.

4. Choose the Save toolbar button to save the field specification.

Note: This last step can be repeated whenever you make changes to a field
specification and want to save your work without closing the FieldSpec Editor.

Generating Code

When you save a field specification, CA-Visual Objects automatically generates
a field spec entity. You can double-click on this entity in the Repository
Explorer’s list view pane to begin editing it with the FieldSpec Editor.

CA-Visual Objects also creates a subclass of the FieldSpec class using this same
name, and an Init() method to initialize all the properties you defined.

Editing Field Specifications

Within the FieldSpec Editor, you can edit a field specification and copy
properties from one field specification to another.

Modifying a Field Specification

Basic Steps To modify any field specification defined for an application, follow these basic
steps:

1. Start the FieldSpec Editor.

2. Click on the FieldSpec cell.

3. Type the name of an existing field specification, or click on the Down arrow
button to display a drop-down list box and choose the one you want.

4. Change any property by clicking on it, and entering or selecting a new value.

5. Choose Save.

Using the FieldSpec Editor

Chapter 7: Defining Data Servers and Field Specifications 335

Order Entry Example For example, if you did not follow the tutorial in the Getting Started guide, you
should make the following small change to one of the field specifications shared
by the Customer and Orders data servers.

1. Select the Customer module in the OE Data Servers library, and then double-
click on the CUSTOMER_ZIP field spec entity:

Double-clickonCUSTOMER_ZIPfieldspecentity

Listbutton

Tip: Use the List button in the Repository Explorer’s toolbar to assist you in
your search for the specified field spec entity.

The FieldSpec Editor appears:

Using the FieldSpec Editor

336 CA-Visual Objects IDE User Guide

Note: The FieldSpec Editor is remarkably similar to the FieldSpec Properties
window of the DB Server Editor when a field is selected. The only difference
is that the field-specific properties—that is, Name, Caption, Description, and
HelpContext—are not present.

2. Scroll to the Picture property and click on it.

3. Type 99999 in its value cell, and press Enter.

4. Close the FieldSpec Editor and save your changes.

This one change is propagated automatically to the two data servers that use the
CUSTOMER_ZIP field specification to format their individual zip code fields. To
see this for yourself, double-click either on the Customer or the Orders DB server
entity in the Repository Explorer’s list view pane. For example:

Pictureclausevaluepropagatedtodataserver

ZIPfield

Copying a Field Specification

You can create a copy of a field specification and rename it, or copy the
properties from one field specification to another easily using the FieldSpec
Editor.

For example, if you want to create a new field specification called DeptStoreCard,
copying the property values from the CustCredit field specification defined
earlier:

1. Load the CustCredit field specification following the basic steps 1–3 in
Modifying a Field Specification above.

Printing

Chapter 7: Defining Data Servers and Field Specifications 337

2. Click on the FieldSpec value cell again, and replace CustCredit with
DeptStoreCard:

3. Choose Save.

The properties for the existing field specification, CustCredit, are copied to the
new field specification, DeptStoreCard, but will remain intact in the original. At
this point, you can change some of the properties in the copy, such as the
description, if you wish.

Note: You can also use the Clipboard to cut, copy, and paste text in individual
field specification properties using the Cut, Copy, and Paste commands on the
Edit menu.

Tip: Field specifications, like all other entities, can easily be copied from one
application to another within the Repository Explorer by pressing the Ctrl
key and using the drag-and-drop technique. Note that only the field spec
entity is copied and not the generated source code.

Printing
To print both the data server properties and the field properties generated by a
data server, click on the Print toolbar button from within either the DB Server
or SQL Editor.

To print the properties for a field generated by a field specification, click on the
Print toolbar button from within the FieldSpec Editor.

Chapter 8: Creating Data-Aware Windows 339

Chapter

8 Creating Data-Aware Windows

Data windows and data dialog windows are data entry windows that are
associated with data servers. Both are data-aware—each type “knows” about the
data with which it is intended to operate via properties that you specify for each
data control in its window.

As described earlier in the “Using the Window Editor” chapter, data windows
and data dialog windows are quite similar. However, whereas a regular data
window is an MDI child window, a data dialog window behaves like a modal
dialog window. This means that the end user must respond to the window and
close it before continuing with the application. Data dialog windows are
typically used for small data entry tasks, such as password entry.

Note: In CA-Visual Objects 2.7, a new window type—OLEDataWindow—was
added. An OLE data window is essentially the same as a regular data window,
except that it contains additional logic for the deactivation of an in-place active
OLE object by clicking anywhere in the window. Additionally, all text controls
are now data aware. For more detailed information about OLE data windows
and data aware controls, refer to the online help.

The Window Editor allows you to create data dialog windows and data
windows using one of the following techniques:

■ Customizing a DataWindow or DataDialog form by choosing a data server,
manually placing controls on the form, and specifying properties for those
controls

■ Using the Auto Layout feature to choose a data server (or two related data
servers) and automatically place fixed text and single-line edit controls on
the form whose properties are based on the data server

Using either technique, the key to designing a data-aware window is in linking
individual controls to fields defined in the data server.

Creating a Data-Aware Window

340 CA-Visual Objects IDE User Guide

In addition, you can specify a field specification for each control. You bind a
control to a specific field using the field name as the name of the control.
Because the field specifications store information designed specifically for use
with a data window (such as captions, descriptions, help keywords, picture
formatting, and validation rules), such links are quite useful. Data windows
automatically inherit and use the property values from the field specifications,
eliminating the need for you to specify this information repeatedly. The only
controls you cannot make data-aware are fixed icons, fixed text, group boxes,
push buttons, and radio buttons.

Creating a Data-Aware Window
To create a window that is linked to a data server, such as the data window that
“links” the Customer and Orders data servers in the Order Entry sample
application, you need to perform the following steps:

1. Select the desired application in the Repository Explorer (for example, Order
Entry).

2. Click the New Module toolbar button.

The Create Module dialog box appears.

3. Type App Windows in the Enter Module name edit control, and choose OK.

The App Windows module is added to Order Entry in the Repository
Explorer’s tree view pane.

4. Highlight the App Windows module in the tree structure, and then select the
Window Editor command from the Tools menu.

The Window Editor dialog box appears:

Note: This dialog box has been updated in this version of CA-Visual Objects
to reflect the addition of the new window type, OLEDATAWINDOW.

See Creating a Window in “Using the Window Editor” for details about this
dialog box.

5. In this instance, select DATAWINDOW in the New Window Type list box.

6. Enter CustOrd in the Name edit control.

Creating a Data-Aware Window

Chapter 8: Creating Data-Aware Windows 341

7. Choose OK.

The Window Editor appears:

8. Specify the form’s properties using the Data Window Properties window.
For example, click on the Caption property and then type Customer Orders
in its value cell.

Note: As mentioned earlier in “Using the Window Editor,” data windows
and data dialog windows have several new properties, including Browser
Inherits From, Columns Inherit From, Defer USE, Allow Server Close, and
Quit on Close. Other properties have been updated. Therefore, refer to the
online help for detailed information about data window and data dialog
window properties.

9. Switch to the DataWindow tab, click on the Down arrow in the Menu
property’s value cell, and choose STANDARDSHELLWINDOW from the list
box that appears:

10. Associate a data server with the data window, using one of two methods:
Auto Layout or Properties.

These methods are described next in Associating Data Servers.

Creating a Data-Aware Window

342 CA-Visual Objects IDE User Guide

11. Choose the Save toolbar button to save the form.

12. Close the Window Editor.

(You will return to the CustOrd data window shortly.)

Associating Data Servers

You can associate a data server with a data window or data dialog window in
either one of two ways:

■ Using the Auto Layout feature

Choose the Auto Layout toolbar button to specify a data server (or two
related data servers), creating a predefined data window based on the data
server(s) definition. You are then free to move the predefined controls
around within the form and modify them as you see fit. This is described in
the next section, Using Auto Layout.

■ Using the Properties window

Choose a data server using the Properties window and add your own
controls manually one by one, creating a customized data window or data
dialog form. This is described in the section Customizing a Data-Aware
Window later in this chapter.

Using Auto Layout

Using the Window Editor’s Auto Layout feature is much easier than creating a
customized data-aware window “from scratch.” At the touch of a button, Auto
Layout automatically creates a fixed text caption and single-line edit data
control for every available field in the associated data server(s).

Tip: If you have an Xbase or SQL database on disk that is not yet known to
the repository, simply bring up the
DB Server or SQL Editor using the appropriate command from within the
Tools menu, import the database structure, save it in the repository, and
switch back to the Window Editor. See Chapter 7: Defining Data Servers
and Field Specifications for more information on how to do this and on data
servers and field specifications, in general.

The Auto Layout feature presents you with two options for defining the type of
data server link, Single Server or Master Detail Servers.

Creating a Data-Aware Window

Chapter 8: Creating Data-Aware Windows 343

Single Server Option The Single Server option is used to link a data-aware window to a single data
server. The example below steps you through the creation of a data entry form,
Inventory, that accesses a parts data server that you might want to create to
extend the Order Entry sample application. (The Parts data server would be
based on the DETAIL.DBF file located in the SAMPLES\GSTUTOR folder.)

1. From within the App Window module of Order Entry, start the Window
Editor.

2. Create another data window and name it Inventory.

3. Click on the Auto Layout toolbar button.

The Auto Layout dialog box appears:

4. Optionally, check the Include Search Path check box if you want to choose
from data servers that are accessible via the current application’s search path,
as well as those defined to it. Otherwise, leave it unchecked.

Assuming that the Parts data server would be defined in the OE Data Servers
library, like Customer and Orders, select the Include Search Path option.

5. From the Data Server list box, select the desired data server (for example,
Parts):

6. Click OK.

Creating a Data-Aware Window

344 CA-Visual Objects IDE User Guide

The Auto Layout Field Selection dialog box appears:

7. Optionally, deselect any fields that you do not want displayed in the data
window.

For Inventory, click on EXT_WEIGHT and EXT_PRICE to exclude them, and
then click OK.

The result is a predefined form with fixed text and single-line edit controls
for each field defined for the specified data server:

Controlscreatedfor
eachdataserverfield

Associateddataserver

Note that the value cell for the Data Server property has been filled in
automatically by the system.

8. Save this form, if you wish. Otherwise, click on the Close button and choose
No when prompted to save this form entity.

Creating a Data-Aware Window

Chapter 8: Creating Data-Aware Windows 345

Tip: You can edit or delete any of the controls in a data-aware window.
Additionally, you can rearrange their placement or manually add other
controls using the tool palette. If you wish, you can use a multi-line edit
control for certain fields; simply delete the single-line edit control, and add a
multi-line edit control. See Modifying a Window in the “Using the Window
Editor” chapter earlier in this guide for more information.

Master Detail Servers
Option

The Master Detail Servers option allows you to link a window to two data
servers in a master-detail relationship. In this case, a data-aware window is
created for the master server with a “nested” data window for the detail server.
(See Sub-Data Windows later in this chapter for additional information about
using sub-data window controls in the Window Editor for nesting purposes.)

To create a data-aware window linked to two data servers in a master-detail
relationship (for example, the CustOrd form that “links” the Customer and
Orders data servers in the Order Entry sample application):

1. Reopen the Window Editor from within the App Windows module, and
open the CustOrd data window you created earlier.

2. Click on the Auto Layout toolbar button.

The Auto Layout dialog box appears.

3. Select the Master Detail Servers radio button.

The Auto Layout dialog box changes slightly, as shown below:

4. Since both of Order Entry’s data servers are defined in the OE Data Servers
library instead of the application itself, select the Include Search Path option.

Creating a Data-Aware Window

346 CA-Visual Objects IDE User Guide

The Customer data server appears in both the Master Server and Detail
Server combo boxes:

5. Select a common field from the Relation combo box (for example,
#CustNum).

The field list is taken from the master data server. The field that you choose
will be used to perform a lookup operation in the detail data server’s
controlling order. This means that the detail server must have an open index
file with a controlling order whose key is based on a similar field.

The field name in the detail server does not have to be the same as the field
name that you use for the relation string, but in some cases it will be. The
important thing is that the data in the relation string field matches the data in
the key field of the detail server’s controlling order. (For more information
about index files and orders, see Adding Index Files in Chapter 7: Defining
Data Servers and Field Specifications.)

6. Select another data server from the Detail Server drop-down list box (for
example, Orders).

7. In the Order combo box, enter the controlling order for the CustOrd form (for
example, ORDCUST). For more information about the controlling order, see
Adding Index Files in Chapter 7: Defining Data Servers and Field
Specifications earlier in this guide.

8. Note that the system automatically generates a name for the detail window
and displays it in the Detail Window edit control. (This same name will be
displayed in the Properties window for the sub-data window control.)

Optionally, enter a new name for the detail form. For OrdCust, accept the
default name.

9. Choose OK.

Creating a Data-Aware Window

Chapter 8: Creating Data-Aware Windows 347

The Auto Layout Field Selection dialog box appears:

10. Optionally, deselect any fields that you do not want displayed in the data
window.

For CustOrd, simply click OK, accepting all fields.

A default CustOrd data window form is created for you, using information you
already defined for the Customer and Orders data servers:

Maindatawindow

Detailwindow(sub-datawindowcontrol)

Since the Customer data server was designated as the master server, its fields are
placed on the main data window form as edit controls with fixed text captions.
Additionally, a detail form is placed on the data window beneath these fields for
Orders. This detail form, or sub-data window control, is actually a nested data
window.

Creating a Data-Aware Window

348 CA-Visual Objects IDE User Guide

You can now edit the following: the data window form itself, the controls for
each of the data window’s fields, or the detail form, simply by clicking in the
appropriate area. The appropriate Properties window appears, allowing you to
modify the specified form or control properties. See Modifying a Window in
“Using the Window Editor” for more details on editing form properties and
controls. See Sub-Data Windows later in this chapter for information on how to
modify the actual layout of the detail form.

Customizing a Data-Aware Window

To create a customized data window or data dialog window, start with either a
blank DataWindow or DataDialog form and choose a data server using the
Properties window. To do this, click on the Data Server property’s arrow button,
and select a data server from a list of all data servers defined for the current
application. For example:

DataServerproperty

Drop-downlistofavailablevalues

Then you can customize the blank DataWindow or DataDialog form manually,
selecting controls from the tool palette or using the Select from Palette
commands from the Edit menu, placing them in the desired locations on the
form, and specifying properties for them, such as field specification, size, color,
and caption. See Placing Controls on a Form in “Using the Window Editor”
earlier in this guide for details.

Note that when creating a customized data-aware window, controls are linked to
fields via the Field Spec and Name properties. You should specify the field
names as the Name as well as choose an associated field specification.

Browse and Form View

Chapter 8: Creating Data-Aware Windows 349

Browse and Form View
So far, you have been using the Window Editor to paint a data-aware window
using form view, but the editor has also created a corresponding browse view that
you can work with if you choose. Browse view displays multiple records for
each field, always maintaining one record as the “current” row, reflecting the
data server’s current position. The form view, on the other hand, displays only
one record—the current one—at any given time.

To change from one view to another, use the Browse/Form View toolbar button:

Browse/FormViewtoolbarbutton

For example, below is our sample single-server form, Inventory, in form view:

Browse and Form View

350 CA-Visual Objects IDE User Guide

After clicking the Browse/Form View toolbar button, here is the same form in
browse view:

Note: Changing the view associated with a data-aware window also changes
the form’s View As property, as described earlier under Specifying Window
Properties.

Tip: You can start out by designing the form in browse view, if you like.
Similar to the way in which the Window Editor creates a default browse
view for forms designed using form view, it will create a default form view
for forms designed using browse view. Note, however, that Auto Layout is
available only in form view.

Working in Browse View

If you are planning to give the end user the option to switch between views at
runtime or if you are going to use browse view as the default, you will probably
want to switch to browse view and make any modifications that are necessary.

For example, our sample CustOrd data window form was created initially
using Customer as the master server and Orders as the detail server (see Master
Detail Option in the Using Auto Layout section earlier in this chapter). To
change the data window form so that it displays in browse view, click the
Browse/Form View toolbar button.

Browse and Form View

Chapter 8: Creating Data-Aware Windows 351

Note the new tool palette with the column icon that allows you to place
additional columns in the table:

Browseview

Newtoolpalettewithcolumnicon

Sizing Columns In this view, you can size a column as follows:

1. Place the mouse pointer on either the left or right edge of the column
heading.

You will see a vertical bar with left and right arrows when the column is
ready for sizing.

2. Press the left mouse button and hold it down.

3. Drag the border to the left or right until the column is the desired size, and
release the mouse button.

Tip: If necessary, move the Properties window out of the way by clicking on
its title bar and dragging it to a new position.

Moving Columns You can also move a column:

1. Place the mouse pointer anywhere within the column heading.

2. Press the left mouse button and hold it down.

3. Drag the column to the new location, and release the mouse button.

When you are moving a column, you will see a double-sided arrow with a
column icon in between to indicate that the column is being moved.

Browse and Form View

352 CA-Visual Objects IDE User Guide

Cut, Copy, and Paste If you like, you can use the Cut, Copy, and Paste toolbar buttons to manipulate
columns using the Clipboard. When you paste a column, it is inserted as the
rightmost column in the table. Then you can move the column to its desired
position.

Inserting Columns Finally, you can add columns in this view using the column icon in the tool
palette. For example, to insert another column in our sample data window form,
CustOrd:

1. Click on the column icon in the tool palette, and drag-and-drop the control
onto the data window form.

A column corresponding to a single-line edit control is added, and the
appropriate Properties window appears:

ColumnPropertieswindow

Newcolumn

2. Specify the values for the new column.

See Specifying Control Properties and Style Settings in “Using the Window
Editor” earlier in this guide for more details.

Tip: The browse view also allows runtime configuration by the user; that is,
column widths may be adjusted by dragging on the border, and columns
may be rearranged by simply dragging them to a new place.

Any changes that you make while in browse view are saved as part of the data
window form and will be apparent the next time you switch to the browse view
in the Window Editor and when the user switches to browse view at runtime.

Sub-Data Windows

Chapter 8: Creating Data-Aware Windows 353

Form View

You can return the data window form to the original form view by clicking the
Browse/Form View toolbar button once again. For example:

Sub-Data Windows
A sub-data window is nothing more than a specialized name to refer to a data
window that is a control on another data window (or data dialog window). It is
the technique that you will use in the Window Editor for nesting one data
window within another. There is no difference between a sub-data window and
a data window, other than the fact that a sub-data window defaults to browse
view and that it can be manipulated as a control on a data window.

Creating a Sub-Data Window Using Auto Layout

One way to create a sub-data window is to select the Master Detail option of the
Auto Layout feature discussed earlier. This gives you a typical window layout in
which the master record is displayed in form view with its related detail records
in browse view. See Master Detail Option in the Using Auto Layout section for
detailed information about linking a window to two data servers at the touch of
a button.

Sub-Data Windows

354 CA-Visual Objects IDE User Guide

Manually Creating a Sub-Data Window

Instead of using the Auto Layout feature, however, you can create a data
window and manually place one or more sub-data windows within it, using the
sub-data window icon on the tool palette.

Using this technique, you can either insert an existing data window as a sub-data
window control or create a new sub-data window that you customize. After
placing the control on the data window form, you then specify its Name
property. To use an existing data window as your sub-data window control,
simply type its window name in the Properties window. To create a new sub-
data window, specify a new name.

Tip: You can manually convert an existing single server data form to one
that is linked to two data servers in a master-detail relationship using this
same technique.

The relationship between the sub-data window and its owner data window is
specified using the Relation String property, discussed previously in this chapter.
(For more information about the Relation String property, see Specifying
Control Properties and Style Settings in “Using the Window Editor” earlier in
this guide.)

Note: If the data window that you are using as a sub-data window is larger than
the owner window, the sub-data window will be clipped to fit within the owner
window. This is a useful feature since the data window defining the sub-data
window will be displayed full size when used alone.

Sub-Data Windows

Chapter 8: Creating Data-Aware Windows 355

Example 1:
Using an Existing
Data Window

For example, if you want to create a new data window for shipping data and
insert an existing data window with customer information as a sub-data
window control, you would follow these basic steps:

1. Create a new single server data window form (for example, ShipForm),
linking it to an existing data server (for example, Customer):

2. Optionally change the Caption property to Shipping Form.

3. Rearrange these fields as you like, perhaps adding new fields for the shipper
and airbill number.

4. Click on the tool palette’s sub-data window icon, and place the control onto
the ShipForm data window form.

A sub-data window with the default name of Sub_Form1 appears along with
the appropriate Properties window:

Sub-Data Windows

356 CA-Visual Objects IDE User Guide

5. Replace the default sub-data window name, Sub_Form1, with the name of
the existing data window (for example, CustOrd).

6. In the Relation String value cell, enter a field that is common to both the data
window’s data server and the sub-data window’s data server (for example,
#CustNum).

Your ShipForm data window form should now look something like this:

ShipFormdatawindow

CustOrdsub-datawindow

RelationStringproperty

Note: As mentioned earlier in this chapter, this common field must be used
to define the controlling order for the sub-data window’s server.

7. Choose the Save toolbar button to save the form.

8. Double-click on the sub-data window control to view the nested data
window’s complete properties.

Sub-Data Windows

Chapter 8: Creating Data-Aware Windows 357

A new copy of the Window Editor appears, displaying the sub-data window,
CustOrd, in its default view, which in this case is form view:

Because Customer was specified previously as the data server for the sample
CustOrd data window form, which is now being used as a sub-data window,
its fields are displayed here.

9. Switch to the DataWindow tab in the Data Window Properties window, and
change the View As property to #BrowseView:

Select#BrowseView

Sub-Data Windows

358 CA-Visual Objects IDE User Guide

The Window Editor should now look as follows:

10. Optionally, modify this sub-data window.

11. Close the sub-data window by double-clicking on its system menu.

If you have made any changes since you last saved this form, you will be
prompted to save them before returning to the Window Editor session for
the main data window form, ShipForm.

12. Before going on to the next example, choose the Test Mode command from
the View menu (or press Ctrl+T) to view the ShipForm data window form as
the end user will see it:

Sub-Data Windows

Chapter 8: Creating Data-Aware Windows 359

Example 2:
Creating a New
Sub-Data Window

If, however, you want to create a new sub-data window control for a single-
server data window form that links, for example, returned items to customers
in the Order Entry sample application, you would follow these basic steps:

1. Create a new single-server data window form (for example, Returns),
linking it to an existing data server (for example, Customer).

2. Optionally change the Caption property to Returns.

3. Use the Auto Layout feature and the Auto Layout Field Selection dialog box
to place relevant fields on the main data window form.

4. Rearrange these fields as you like, perhaps adding new fields such as a radio
button group, Resolution, and two radio buttons, Exchange and Refund.

5. Click on the tool palette’s sub-data window icon, and place the control onto
the data window form.

A sub-data window with the default name of Sub_Form1 appears along with
the appropriate Properties window.

6. Optionally, rename the sub-data window form (for example, Items).

7. In the Relation String value cell, enter a field that is common to both the data
window’s data server and the sub-data window’s data server (for example,
#OrderNum).

The Returns data window form should look something like this:

8. Choose the Save toolbar button to save the form.

9. Double-click on the sub-data window control.

Sub-Data Windows

360 CA-Visual Objects IDE User Guide

A new copy of the Window Editor appears, displaying the Items sub-data
window form in browse view:

Note: The previous example of a sub-data window used an existing data
window as the sub-data window control and, consequently, inherited its
fields from that data window’s data server. Since this form has not yet
inherited any fields, the form is blank.

10. Optionally, change the Caption property to Items.

Now, you need to associate the Returns sub-data window with a data server, and
the easiest way to do this is using the Auto Layout feature, as described below:

1. Change to form view using the Browse/Form View toolbar button, if
necessary.

2. Click the Auto Layout toolbar button.

The Auto Layout dialog box appears.

3. Choose the Single Server option.

4. Select the Include Search Path option.

5. From the Servers drop-down list box, select the data server for the sub-data
window form (for example, Parts).

6. Click OK.

The Auto Layout Field Selection dialog box appears.

7. Select relevant fields, such as PartNum and Quantity, for the sub-data
window form.

8. Click OK.

Sub-Data Windows

Chapter 8: Creating Data-Aware Windows 361

Thesub-data window form, Items, in form view now looks something like
this:

9. Optionally modify any of the other properties for the sub-data window form.

10. Switch to the DataWindow tab in the Data Window Properties window, and
change the View As property to #BrowseView.

11. Click on the Save toolbar button to save the new sub-data window form.

12. Close the sub-data window form by double-clicking on its system menu to
return to the Returns data window form.

13. Choose the Test Mode command from the View menu.

Alternatively, press Ctrl+T.

The Returns data window form appears as the end user will see it:

14. Close the Window Editor.

Sub-Data Windows

362 CA-Visual Objects IDE User Guide

Modifying a Sub-Data Window

Modifying a sub-data window form is the same as modifying the layout of any
other data-aware window. You can customize the sub-data window form in
browse view as described earlier under Working in Browse View, or you can
work with it in form view.

You can also change any of the sub-data window properties. When it is
displayed as a control, a sub-data window has limited properties. These include
its name and its relationship to the master data server, as described earlier in the
Specifying Window Properties section in “Using the Window Editor.”

Tip: Remember, you can gain access to a sub-data window form’s full set of
properties by double-clicking on its sub-data window control. A new copy
of the Window Editor will be invoked, allowing you to edit any of the
properties displayed.

Chapter 9: Using the Report Editor 363

Chapter

9 Using the Report Editor

The CA-Visual Objects Report Editor is a state-of-the-art, database publishing
tool that allows you to create sophisticated reports. It consists of the CA-Report
Writer and the CA-Report Viewer.

The CA-Report Writer’s WYSIWYG environment allows you to design and
produce custom database reports at the press of a button directly from within the
IDE. You can mix text, graphics, and data using a wide variety of publishing
features. Use or customize a predefined report style or design your own report
from scratch. Group related data together and perform mathematical
calculations, such as group and report totals. Then preview your report online
using the CA-Report Viewer to see how it looks and make any necessary
modifications before printing it.

Once a report has been designed and saved, CA-Visual Objects automatically
generates object-oriented code for it, using the appropriate classes, and adds it to
the repository. When executing the application, you can preview the report
using the Report Editor’s runtime engine. With a minor source code
modification, you can also print the report.

Tip: Since the Report Editor includes a royalty-free runtime version, you can
ship this report engine with any of your CA-Visual Objects applications. See
the “Operating Environment” chapter in the Programmer’s Guide for more
information about preparing your application for delivery.

This chapter describes how to use the Report Editor. In it you will learn how to:

■ Access the CA-Report Writer window and set its properties

■ Use queries in a report

■ Create reports, including working with report sections and tables, formatting
the report, determining page layout, and adding graphics

■ Using report fields

■ Preview reports online using the CA-Report Viewer

■ Print reports and export reports to files

Report Styles and Definitions

364 CA-Visual Objects IDE User Guide

Report Styles and Definitions
Report Styles The CA-Report Writer’s predefined report styles make it easy to create reports.

When you choose a style, the CA-Report Writer creates a report definition for
you that you can use to enhance a report. The following is a list of the types of
report styles from which you can choose:

Style Description

Tabular Produces columnar-style reports that display the data in
multiple rows and columns; suitable for sales and inventory
reports, for example.

Form Produces continuous reports that display one record of data
at a time, with each field individually labeled. Form reports
are useful when reporting on a large number of data fields
that would not easily fit into columns; suitable for personnel
reports and customer statements, for example.

Labels Produces labels, such as mailing labels, inventory tags, name
badges.

Letter Produces form letters.

Free style Creates an empty report form so that you can build a
customized report from scratch; suitable for a variety of
customized reports, such as aged trial balances, money
market portfolios, catalogs, or customized invoices.

Cross Tabular Creates cross tabular reports that display report data in rows
and columns in which the data values are aggregated for each
row and column pair; suitable for sales and inventory control
reports, for example.

Report Styles and Definitions

Chapter 9: Using the Report Editor 365

The following examples illustrate several report styles:

Phone lists

Product listings

Purchase
orders

To see sample reports using each of these styles and learn how you can
customize them, see Customizing Report Definitions later in this chapter.

Workspace Overview

366 CA-Visual Objects IDE User Guide

Report Definitions The information to format a report comes from a query and from the report’s
design. This information is called the report definition. The following illustration
shows a report definition that is comprised of the row and column titles of a
query:

The report title and the column
headings are formatted in the
report definition

These columns display
data from the query

This field is defined in the report
definition to calculate totals

Important! When you view the CA-Report Writer window, you are viewing the report
definition—not the data associated with the report. You can view report data in print
preview.

Note: Columns from a query are referred to as fields in a report definition.

Workspace Overview
The CA-Report Writer window contains its own menu bar, toolbar, and group
categories for formatting the style of the body of a report. The window also
contains rulers for controlling page margins and section formatting, and a status
bar for displaying cursor information.

When you create or open a report, the report definition is displayed in the
CA-Report Writer window. The report definition is composed of the row and
column titles from the table in the query in the format of the selected style. The
data from the query is also attached to the report definition, and is available for
you to view in Print Preview.

When you create a new report, you are prompted to:

■ Connect to a data source

■ Select a report style

Workspace Overview

Chapter 9: Using the Report Editor 367

When you create or open a report, the report definition is associated with a
query. You can display or print the query data using the information in the
report definition. You can enhance the report by adding text or graphics to the
report definition in the CA-Report Writer window.

The following illustration shows the various features of the CA-Report Writer
window:

Menu bar

Toolbar

Ruler

Status bar

Section name window

Page margin Report area

The Toolbar

The CA-Report Writer toolbar contains buttons for frequently used menu
commands:

New
Save Print Copy

InsertHeader

InsertRow

Sum
Rectangle

ZoomIn Font

Open

PreviewReport

Cut
Paste

InsertFooter

InsertField

Line
Picture

ZoomOut

Clicktoscroll

Creating a Report

368 CA-Visual Objects IDE User Guide

Bold
Underline

Right Justify

Italic Left Center

Toggleparagraphmarkdisplaybutton

The Rulers

The CA-Report Writer horizontal and vertical rulers help you format the report
page. Use the horizontal ruler to select and size columns and the vertical ruler to
format sections.

To hide rulers, use the Rulers option in the Report Defaults dialog box. For more
information about showing and hiding rulers, see Setting Report Properties later
in this chapter.

Creating a Report
Now that you have a general overview of the Report Editor workspace, you are
ready to use the CA-Report Writer to create or open a report and the CA-Report
Viewer to preview it.

Creating a New Report

Basic Steps To create a new report, you need to perform the following steps:

1. Start the Report Editor.

Like all CA-Visual Objects tools, the Report Editor is accessed using the
Tools menu or the New Entity toolbar button.

Creating a Report

Chapter 9: Using the Report Editor 369

The CA-Visual Objects Data Source Selection dialog box appears:

This dialog box allows you to connect to the database containing the tables to
be associated with the report.

2. Select a data source for the report doing one of the following:

■ Select the Connect to New Data Source option to access the Select Data
Source dialog box:

■ Select the Use Active Data Connection option to access the Active Data
Connection combo box.

3. From the Machine Data Source tab page of the Select Data Source dialog box
or from the Active Data Connection combo box, select an SQL data source
(for example, dBASE Files).

4. Choose OK.

Creating a Report

370 CA-Visual Objects IDE User Guide

The CA-Visual Objects Report Editor dialog box appears:

5. Enter a file name for the report (for example, Salesord or Ord) in the Report
Definition File Name edit control.

6. From the Data Server group box, choose the type of data server to be
associated with the report.

7. Select one or more data servers from either the Available DBF Entities or the
Available SQL Entities list box.

Note: If you choose more than one data server, you will be prompted for
information on how to join them. Refer to your online help system for more
information on how to complete the Report Editor Joins dialog box.

An SQL query is automatically generated, and the data server’s fields are
added automatically to the report definition.

8. Choose a report style from the Report Style group box.

Note: If you select the Cross Tabular option, you are presented with another
dialog box, Crosstab Report Definition, to define the report definition. For
information about this dialog box, see Cross Tabular Reports later in this
chapter.

The CA-Report Writer creates a report definition based on the report style
you selected and the data associated with the SQL query.

9. Click OK to start the CA-Report Writer.

10. Format the predefined report template (name, page layout, headings, and so
on) in the CA-Report Writer.

Naturally, you can customize a basic report by adding details like literal,
database, and computed fields; spreadsheet-like functions; text; and
graphics. You can also add graphics using CA-Report Writer’s drawing
features. Typeface, color, and size can be selected for your report text, and
you can add bolding, italics, and other print features.

11. Before saving your report, you can optionally select the Report Summary
command from the Edit menu.

Creating a Report

Chapter 9: Using the Report Editor 371

The Report Summary dialog box appears:

Enter information about the report and its author in the appropriate edit
controls.

12. Click OK.

You are returned to the CA-Report Writer.

13. Save the report.

At this point, CA-Report Writer saves the report definition as an external
.RET file.

14. Close the CA-Report Writer.

You will be prompted to store the changed entities. If you choose Yes, a binary
entity and a subclass for the report are saved to the Repository Explorer. If No,
the .RET file remains but no entities are added to the Repository Explorer.

Note: To create another report definition without quitting the current definition,
repeat the steps in the preceding procedure, which starts another CA-Report
Writer session. You can define only one report per CA-Report Writer session,
but you can run multiple sessions simultaneously.

Alternative Method You can also create a new report from within the CA-Report Writer itself. To do
so:

1. Click the CA-Report Writer’s New toolbar button.

The New Report dialog box appears:

2. Specify the .SQL file and its path name and folder.

Creating a Report

372 CA-Visual Objects IDE User Guide

3. Select a query type using the Query Type group box.

Note: You cannot create a query file in CA-Visual Objects; however, you can
import both .SQL and .QBE files. See Working with Queries in Reports later
in this chapter for more detailed information.

4. Click OK.

The New Report dialog box appears:

5. Select a report style for the new report definition, and then click OK.

6. Format the predefined report template (name, page layout, headings, and so
on).

7. Save the report.

Creating a Report

Chapter 9: Using the Report Editor 373

Opening a Report

To open an existing report, do one of the following:

■ Double-click on the specified report entity in the Repository’s list view pane.
For example:

Double-clickonreportentity

■ From within the CA-Report Writer, click on the Open toolbar button and
select an .RET file from the Open Report Definition dialog box that appears:

In both cases, the specified report is loaded immediately in a CA-Report Writer
window.

Note: CA-RET 1.0 reports will also require an active database connection.
Before opening a CA-RET 1.0 report, you must create a data source for the report
database and connect to it.

Viewing Report Data

374 CA-Visual Objects IDE User Guide

Generating Code

When you save a report—responding Yes to the prompt to store entity changes—
CA-Visual Objects creates the following:

■ A report entity

You can double-click on this entity in the Repository Explorer’s list view
pane to begin editing it with the CA-Report Writer.

■ A ReportQueue subclass, using the report name

It is the Init() method of this subclass that determines the action to take
when the end user chooses to run the report. By default, it displays a
preview of the report. Refer to Printing a Report later in this chapter and to
the ReportQueue class in the online help system for detailed information on
how to customize this code.

■ An external .RET file

Viewing Report Data
When you create a new report or open an existing one, the CA-Report Writer
displays the report definition. You can view the actual data via the CA-Report
Viewer when you use the Print Preview option.

To preview a report, do one of the following in the CA-Report Writer window:

■ Click the Preview Report toolbar button.

■ Choose the Print Preview command from the File menu.

Viewing Report Data

Chapter 9: Using the Report Editor 375

The CA-Report Viewer appears. For example:

Toolbar

Menubar

Scrollbars

Notice that the CA-Report Viewer has its own menu bar, toolbar, and scroll bars,
so navigating within this window is easy. You can view different pages of the
report or you can print the report just by clicking on various toolbar buttons.

Moving to Another
Page

You can use the following toolbar buttons to view different pages of the report:

FirstPage

NextPage

PreviousPage

LastPage

Viewing Report Data

376 CA-Visual Objects IDE User Guide

Viewing Entire Page To view an entire report page:

1. Click the Page View toolbar button.

The report page is reduced in its entirety. For example:

2. To return to normal view, click the Normal View toolbar button.

Centering a Report To center the current report in the Preview window, click the Center toolbar
button.

Returning to the
Report Definition

To return to the report definition, do one of the following:

■ If a report is one page long, click the Close toolbar button.

■ If a report is longer than one page, click the Cancel toolbar button and then
click Close.

Customizing Report Definitions

Chapter 9: Using the Report Editor 377

Customizing Report Definitions
As stated earlier, you can customize your report definition by selecting various
report styles that are described in more detail in the following sections. For
instructions about making these design changes, see Designing Reports later in
this chapter.

The following illustration shows the various sections that can be included in a
report definition:

Page header

Report header

Group header

Body

Group footer

Group footer

Group header

Note that the available sections will vary depending on the report style selected.

Tabular Reports

When you select the tabular report style, the CA-Report Writer creates a report
definition comprised of the following:

■ A page header with sample title and subtitle

■ A body with one or more rows containing data from each column in the
query with a corresponding column header

■ A page footer containing the page number

Customizing Report Definitions

378 CA-Visual Objects IDE User Guide

Below is an example of a tabular report definition:

Here is its data displayed in the CA-Report Viewer:

You can change the generic page title and column headings of a tabular report, as
well as insert group headers and footers to break the report into groups by which
data can be categorized or summarized. For example, you can group all sales
statistics by office or region or all parts by inventory category. You can also do
the following:

■ Delete columns of unwanted data

■ Rearrange or change the width of columns

■ Modify the format strings that control the appearance of data fields

■ Add fields that are calculated from other data in the report

■ Enhance the report appearance using different fonts, colors, and styles,
graphics images, lines, boxes, and borders

Customizing Report Definitions

Chapter 9: Using the Report Editor 379

To perform these tasks, see Working with Tables, Working with Rows, and
Using Report Fields later in this chapter.

Form Reports

When you select the form report style, the CA-Report Writer creates a report
definition comprised of the following:

■ A page header section

■ A page footer with page numbers

■ A body section that lists a label and a value for each field

Below is an example of a form report definition:

Here is its data displayed in the CA-Report Viewer:

Customizing Report Definitions

380 CA-Visual Objects IDE User Guide

You can change the generic report title and field labels of form reports, as well as
insert group headers and footers to break the report into groups; for example, all
employees by office or job title. You can also:

■ Add fields to and delete fields from the report

■ Rearrange the order of data fields

■ Change the alignment and appearance of text and data

■ Place each individual record on a separate page

■ Add additional columns

■ Add a single-page report summary to accompany a multi-page report

To perform these tasks, see Working with Tables, Working with Rows, and
Using Report Fields later in this chapter.

Label Reports

When you select the labels style, the CA-Report Writer creates a report definition
with a body section, then displays the Select Label Style dialog box from which
you choose a standard Avery label size or other label form:

Numberscorrespondtoproduct
numbersonAverylabelboxes

When you click OK, a labels report definition displays:

Customizing Report Definitions

Chapter 9: Using the Report Editor 381

To select the fields that you want to include on the labels, choose the Field
command from the Insert menu. The Insert Field dialog box appears:

After selecting fields such as FIRSTNAME, LASTNAME, ADDRESS, STATE, and
ZIP, the report will print your labels. For example:

Report prints labels
across and down the
page

Note: See Using Report Fields for detailed information about the Insert Field
dialog box.

The CA-Report Writer sets the page size and margins for cut sheet (Avery 5000-
series) labels, so that printing begins 1/10 in. from the left margin and 1/16 in.
from the top of each label.

Customizing Report Definitions

382 CA-Visual Objects IDE User Guide

For continuous form labels (Avery 4000-series) used with tractor-feed printers,
the CA-Report Writer sets the left margin at 1/10 in., but with no top margin.
You should align the form in the printer so the top line prints properly. For
continuous form labels, you should set the page size as specified in Printer Setup
to match the size of one sheet (one fold) of labels.

Form Letter Reports

When you select the form letter style, the CA-Report Writer creates a report
definition with an empty page header section and a body section for the text of
the letter. It uses the query columns to build the body. If they match exactly,
they are placed in the body; otherwise, they are placed in prompts (indicated by
< >), which the CA-Report Writer uses to suggest field positions. You need to
replace these with columns from the query.

Each form letter prints on a new page. Below is an example of a form letter
report definition:

Here is its data displayed in the CA-Report Viewer:

Customizing Report Definitions

Chapter 9: Using the Report Editor 383

You can make the following changes to customize a form letter:

■ Insert name and address fields at the beginning of the body section

■ Insert an appropriate salutation

■ Enter the text of the letter

■ Place database fields within the text of your letter and/or create a table of
data fields to include data from your database in the body of your form letter

To perform these tasks, see Working with Tables, Working with Rows, and
Using Report Fields later in this chapter.

Free Style Reports

When you select the free style report style, the CA-Report Writer creates a report
definition with an empty body section. It does not add any other report sections
or features, and it does not place any data fields or columns on the report
definition.

You add sections and other desired features to create a report definition.

Cross Tabular Reports

Cross tabular reports display report data in rows and columns. Data values are
aggregated for each row and column pair. This report style is useful for
inventory control, manufacturing control, and sales performance reports.

You could create a report to produce the same results as the preceding report by
creating two group breaks, one on product and the other on date. The cross
tabular report presents the same results in a compact, easy-to-read table.

Creating a Cross Tabular Report

To create a cross tabular report:

1. Access the Report Editor, connect to a data source, and then select or create a
query.

The CA-VO Report Editor dialog box appears.

See Creating a Report earlier in this chapter for details.

2. Select the Crosstab report style option.

The Crosstab Report Definition dialog box appears:

Customizing Report Definitions

384 CA-Visual Objects IDE User Guide

Note that the Row Categories option is preselected by default.

3. Select at least one field from the Fields list box to use as a row in the report,
and click Add.

If you select more than one field, the first field is a level 1 group header, the
next is level 2, and so on. Click Move Up and Move Down to change the
order of the fields.

4. Select the Column Category option.

5. Select one field from the Fields list box to use as a column category in the
report, and click Add.

You can use the Group Columns By list box to define how you want the
column grouped. The grouping you can select depends on the data type of
the column category field.

6. Select the Values option and select one or more fields from the Fields list box
to specify the fields you want summed.

If you do not specify a value, the CA-Report Writer totals the values of the
column category field. If it is a numeric field, the CA-Report Writer uses the
Sum function; otherwise, it uses the Count function. You can select a
different function from the Summary Operators list box.

If you specify more than one field, you can define each as an adjacent
crosstab column. See Putting Columns of Like Data Together in later in this
chapter for more detailed information.

7. Click OK.

The CA-Report Writer creates a report definition with:

■ A page header section

■ A report header section listing the column headers, the column category
field, and a total header for the row totals

Customizing Report Definitions

Chapter 9: Using the Report Editor 385

■ A group footer section that contains the report data and row totals, and a
report footer section that contains the column totals

Below is an example of a cross tabular report definition:

Here is its data displayed in the CA-Report Viewer:

To allow column headings to be displayed on reports longer than one page, the
CA-Report Writer turns on the Repeat Section On Page Break option in the
Format Section dialog box for the report header.

You should change the generic page titles, and you will probably want to change
the column headers as well. You can also change the format of the column
category, date fields, and totals.

Changing the Column Category for the Report

To change a column category for your report:

1. Choose the Crosstab Definition command from the Edit menu.

The Crosstab Report Definition dialog box appears again.

Setting Report Properties

386 CA-Visual Objects IDE User Guide

2. Select the specified field in the Column Category list box, and then click the
Remove button.

3. Select a new field from the Fields list box and click the Add button.

Note: Make sure you edit the field definitions of any aggregate fields that
reference the column.

Setting Report Properties
You can set your own preferences for creating and editing report definitions. For
example, you can hide or display margins and rulers, you can choose between
inches and centimeters for measuring, and you can choose to create a backup of
the report whenever you save it.

To set your report’s properties:

1. Start the CA-Report Writer by opening an existing report or creating a new
report (as described earlier in this chapter).

2. Choose the Properties command from the File menu.

The Report Properties dialog box appears:

3. Select the report properties you want to use.

4. Click OK.

Following are descriptions of the available options by category for the Report
Properties dialog box.

Display Options Use the Display group box options to control the display of various
components in the CA-Report Writer window.

Working with Queries in Reports

Chapter 9: Using the Report Editor 387

Field Display Options Use Field Display group box options to control whether a field in the report
definition appears as a field name or as a format string, such as decimal
placement or number display.

Measurement
Options

Use the Measurement group box options to choose inches or centimeters to use
on rulers in the CA-Report Writer window and in the object snap feature.

Object Snap Option Use the Object Snap option to specify the density of the snap grid. CA-Report
Writer uses the grid to align objects you move in the report definition.

Other Options Miscellaneous options appear at the bottom of the Report Properties dialog box
as described below:

■ Select Create Backup when Saving to back up the report definition

■ Select Center Columns on Page to center table columns on the page

■ Choose Select Text First to be able to select text

Deselect this option for graphics.

Working with Queries in Reports
You can associate more than one query with a report definition, but you can use
only one query at a time, however, as the main report query. You can work with
the query in the CA-Report Writer window and perform the following tasks:

■ Associate multiple queries with a report definition

■ Rename a query

■ Edit a query

■ Export a query to a query window

Associating Multiple Queries with a Report Definition

If you want to be able to create different reports from a single report definition,
you can associate multiple queries with it. For example, you can create a report
definition that has one query that accesses dBASE files, another query that
accesses Btrieve files, and a third query that retrieves all records from a text file.
By selecting which query to use before you print the report, you get different
reports from the same report definition.

To associate multiple queries with a report definition:

1. Open or create a report definition as described earlier in this chapter.

2. Choose the Import Query command from the Query menu.

Working with Queries in Reports

388 CA-Visual Objects IDE User Guide

The Import Query dialog box appears:

3. Select a query from the Import Query dialog box, and then click OK.

4. If any of the column names in the new query do not match those in the
report definition, map the fields in order to run the report successfully.

For details, see Mapping Columns from a Query to a Report later in this
section.

Selecting a Query to Use with a Report

You can use only one query at a time with a report definition as the main report
query. If a report has multiple queries defined, you need to specify which query
to use. A report continues using the same query until you set a different one.

To specify which query to use:

1. Open or create a report definition as described earlier in this chapter.

2. Choose the Set Report Query command from the Query menu.

The Set Report Query dialog box appears:

3. Select the query you want to use, and then click the Select Query button.

4. If any of the column names in the new query do not match those in the
report definition, map the fields in order to run the report successfully.

For details, see Mapping Columns from a Query to a Report later in this
section.

Working with Queries in Reports

Chapter 9: Using the Report Editor 389

Deleting a Query

If you have multiple queries associated with a report definition, you can delete
all but one of them. You must have at least one query associated with a report.

To delete a query:

1. In the CA-Report Writer window, choose the Delete Query command from
the Query menu.

The Delete Query dialog box appears:

2. Select the query you want to delete from the list box.

3. Optionally select Delete Temporary Table.

This option, if selected, deletes the temporary table created when you create
a report from the Report Browser window. See the CA-Report Writer online
help system for detailed information.

4. Click the Delete Query button.

Mapping Columns from a Query to a Report

Mapping controls the connection between columns from a report query and fields
in a report definition. Mapping lets you change the database column to which a
report field refers. You may need to do this when you have multiple queries
associated with a report and the column names in each of the queries are
different.

Suppressing Fields You can map fields when you want to suppress them from printing. For
example, you could define an additional query for a report that inhibits certain
internal or sensitive information, producing a non-proprietary version of the
same report. You would eliminate the sensitive fields from the second query and
match the corresponding report definition fields to a null value, or replace the
database column with a computed field having a value such as “Information not
available.”

Mapping when
Adding New Queries

Whenever you create an additional query for a report that uses data from a
different database, you may need to map the report definition fields to the
database column names in the new query or set them to 0. This ensures that the
new query data can be displayed on the report. If the database column names
in the new query are exactly the same as those currently in the report definition,
you do not need to map the fields.

Working with Queries in Reports

390 CA-Visual Objects IDE User Guide

If you create an additional query for a report that does not use one or more of the
fields on the report, you need to map the report fields to 0 or null.

To map columns from a query to a report:

1. In the CA-Report Writer window, choose the Map Fields command from the
Query menu.

The Database Field Mapping dialog box appears, displaying the report fields
that are already mapped:

2. Click the field you want to map, and then click the Down arrow to display
the Re-map To drop-down list box.

3. Select the database column to which you want to map the report field.

If the field you are mapping is referenced by a computed field, the
Referenced By list box shows all fields referenced.

4. Click OK.

Changing the Default Query Name

When a query is associated with a report definition, the CA-Report Writer gives
the query a default name in the form QUERY1, QUERY2, and so on. You can
change the default name to a more meaningful name and provide a description
of the query. This is especially useful when you associate multiple queries with a
single report definition.

Renaming a Query

To rename a query:

1. In the CA-Report Writer window, choose the Name command from the
Query menu.

The Select Query for Query Name dialog box appears:

Working with Queries in Reports

Chapter 9: Using the Report Editor 391

Select the query
to rename...

...and click here

2. If there is more than one query associated with the report, select the query
you want to rename from the Select Query list box, and then click the Name
button:

The Query Name dialog box appears:

3. Enter the new name for the query in the Name edit control, and optionally
enter a description.

4. Click OK.

Editing a Query

You can edit a report query when you need to add or delete columns or modify
the query in any other way. When you edit a report query, you are working with
a copy of the query, not the query file itself. Therefore, any changes you make to
the report query are not reflected in the original file. You can export the report
query to a query window if you want to save it as a separate query file. See
Exporting a Report Query later in this chapter.

Editing a Report Query

To modify a query from within the CA-Report Writer window:

1. Choose the Edit Query command from the Query menu.

If there is more than one query associated with the report, the CA-Report
Writer displays the Edit Query dialog box for you to select the specified
query for editing:

Working with Queries in Reports

392 CA-Visual Objects IDE User Guide

2. Choose the Run command from the Query menu to execute the query.

Alternatively, click the Query dialog box’s Execute tool bar button.

The CA-Report Writer displays the Quick Query window where you can
view and edit the query using various menu commands or toolbar buttons:

3. Save your changes and close the Query window to return to the CA-Report
Writer.

The CA-Report Writer automatically applies any changes you made to the
report definition file; however, you may need to modify the report definition
itself.

■ If you added a column to the query, you must insert it in the report
definition using the Insert Field menu command. (For more information,
see Inserting, Moving, and Deleting Fields later in this chapter.)

■ If you deleted a column from the query, the CA-Report Writer displays a
message telling you a column has been deleted. You can either set the
field to 0, edit the query to include the column, or map the fields.

Designing Reports

Chapter 9: Using the Report Editor 393

Exporting a Report Query

You can export a query from the CA-Report Writer to the appropriate query
window if you want to save it in a separate query file. This is useful when the
query used in the report definition does not exist in a separate query file—for
example, if you did not save a query before using it in a report definition or you
inadvertently deleted a query before saving it.

To export a query:

1. Choose the Export Query command from the Query menu.

The Export Query dialog box appears:

2. Select the query to be exported from the list box.

3. Click Export.

The CA-Report Writer exports the query and displays it in the appropriate
query window. For example:

4. Save it as a separate query file using the File Save As menu command.

Designing Reports
When you create a new report from scratch—or customize a default report
created by CA-Report Writer—you can use any of the following report design
techniques:

■ Add, change, or delete report sections

A report section is the basic unit of layout in a report definition. Each section
can contain fields, text, and graphics. There are eight types of sections,
which are described later in Working with Sections.

Working with Sections

394 CA-Visual Objects IDE User Guide

■ Add report details, including text, fields, and graphics

Text includes field labels and page and report headers and footers. (See
Adding Report Details to Sections for detailed information.)

A field is a reference in a report definition to an individual piece of data. It
can be a database field, which displays information from one column in a
query result or it can be a computed field, which displays a value computed
from the data in a function or formula. (See Working with Tables for
detailed information.)

Graphics—logos, designs, photos, or other pictures—can be imported into
your report. You can also draw lines and rectangles. (See Adding Graphics
for detailed information.)

■ Format the page display

You can format report page margins; format the alignment of text, fields, and
data on the report page, place borders around the report and apply fonts
styles, and color to the report contents. (See Formatting a Report’s
Appearance for detailed information.)

Working with Sections
A report section is the basic unit of layout in a report definition. A report
definition must have at least one section. The sections you use and the
information you place in them depends on the type of report you are creating.
The following illustrations show some of the section types you can use in
CA-Report Writer reports:

Page header

Report header

Order group header

Body

Order group footer

Vendor group footer

Vendor group header

Section name window

Working with Sections

Chapter 9: Using the Report Editor 395

Report header

Page header

Group headers

Body

Group footers

Page footer

Report Section Types

As stated earlier, you can use eight types of sections in a CA-Report Writer
report:

Section Type Description

Page Header (PH) Appears at the top of each report page. You can
use a page header section for letterheads, logos,
subtitles, dates, and page numbers.

Report Header (RH) Appears at the beginning of the report. You can
use a report header section for report titles and
dates. It can print as a separate report title page.

Body (B) Contains the main body of the report’s data. The
entire body section prints for each row of data
retrieved from your database.

Working with Sections

396 CA-Visual Objects IDE User Guide

Section Type Description

Group Header (GH) Appears at the beginning of a group of sections. A
group header section can identify a group of data
that appears in another section following the group
header. For example, a customer transaction report
would need a group header for each customer
name in the database, so that all transactions for a
particular customer are grouped together in the
body section of the report. For more information,
see Grouping Data later in this chapter.

Group Footer (GF) Appears at the end of a group of sections. You can
use a group footer to display summary information,
including group subtotals.

Report Footer (RF) Appears at the end of the report. If there is a page
footer, the report footer appears before it. You can
use it to display report summary information, such
as grand totals.

Page Footer (PF) Appears at the bottom of each report page. You can
use a page footer for page numbers and company
information.

Background Spans the background of the entire report page. A
background section is independent of all other
sections; you can use this type of section to display
background graphics.

Working with Sections

Chapter 9: Using the Report Editor 397

Adding a Section to a Report

To add a section to a report:

1. Click either the Insert Header or Insert Footer toolbar button.

The Insert Header or Insert Footer dialog box, respectively, appears. For
example:

Alternatively, choose the Section command from the Insert menu.

The Insert Section dialog box appears:

2. Depending on what you did in step 1, do one of the following:

■ In the Insert Header or Insert Footer dialog box, select the header or
footer type you want to insert, and then click OK.

Note: If you are adding a group header or group footer, you must
specify a break field in the dialog box. See Working with Group Headers
and Footers in the next section for details about specifying break fields.

Working with Sections

398 CA-Visual Objects IDE User Guide

■ In the Insert Section dialog box, select the section type you want to
insert, and then click OK.

The CA-Report Writer automatically includes a background section in each
report definition.

Working with Group Headers and Footers

When you add a group header or group footer section, you must specify at least
one break field. A break field is a field by which you want to group rows in a
report. The CA-Report Writer prints the body section for each row that has an
identical value in the break field. For example:

The body sections print each
row having the same value in
the break field

The group footer prints
after the last body
section. It summarizes the
group

The group header introduces
the group and is printed
before the first body section

If you use more than one group, the CA-Report Writer nests the groups in the
order in which you add them to the report. The first group header or footer you
add is group level 1, the next is level 2, and so on.

Working with Sections

Chapter 9: Using the Report Editor 399

Note: For a group break to make sense, the report data must be sorted in the
same order as the group breaks. The query should contain a sort column that
orders the data in the same order as the nested groups of the report. For
example:

Group header 1 and . . .

. . . group footer 1 define
the outermost group

Group header 2 and group footer 2 are
nested inside the outermost group.

To add a group header or group footer to a report:

1. Click either the Insert Header or Insert Footer toolbar button.

The Insert Header or Insert Footer dialog box, respectively, appears. For
example:

ChooseGroupHeader...

Selectabreakfield

Alternatively, choose the Section command from the Insert menu.

Working with Sections

400 CA-Visual Objects IDE User Guide

The Insert Section dialog box appears:

2. Depending on what you did in step 1, do one of the following:

■ In the Insert Header or Insert Footer dialog box, select Group Header or
Group Footer.

■ In the Insert Section dialog box, select Group Header or Group Footer.

3. Select the field you want to use as a break field from the Group Break Fields
list box.

4. To specify a break field based on a partial change in the field, select a value
from the Group By list box.

Valid values are:

■ Text field

First n characters by which to group fields

■ Numeric field

Intervals by which to group fields

■ Date field

Length of time by which to group fields

5. Click OK to add the section to the report definition.

After you add a group header or footer section, you can add text or fields to it.
For example, you can label a group by inserting the break field in the group
header section. You can print subtotals, group averages, or other summary
information by adding computed fields. For more information about adding
fields, see Using Report Fields later in this chapter.

Working with Sections

Chapter 9: Using the Report Editor 401

Tip: Use care when placing data fields into group headers or footers to
ensure that the result makes sense. If you insert a field that is not the break
field, the value displayed in the report is taken from one of the rows in the
group. The field’s value may be merely a random example, rather than a
characteristic value in common with all rows for that group.

Adding Report Details to Sections

You can add fields, text, and graphics to each section. Here are some guidelines
and restrictions you should be aware of when adding details to a report section.

Page Headers
and Footers

Page header and page footer sections can include page number functions, date
and time fields, and database fields. They cannot include other functions or
computed fields. A page footer section has a fixed length. It truncates any text
or fields that extend beyond the bottom page margin.

Report Headers
and Footers

If you want to print a title page for a report, you can format a report header to
print before the page header. If you want to print a calculated field in the
report header on each page, you can format a report header to print on
subsequent pages.

Group Headers
and Footers

When you insert a group header or footer into the report definition, you must
specify one or more fields by which you want to group records in the report.
See Grouping Data later in this chapter for more information.

Background To insert information into the background section, select the View Page
Background menu command. You can add page number functions, date and
time fields, and database fields. You cannot add any other functions or
computed fields. The CA-Report Writer prints information defined in the
background section the same way on each page of the report.

Working with Sections

402 CA-Visual Objects IDE User Guide

Formatting Sections

You can set attributes for a section in order to control how it prints and/or to
improve its readability. There are three dialog boxes used for section formatting;
the available options vary for each section type.

Basic Steps for Section Formatting

To format a section, follow these basic steps:

1. Double-click the section name in the section name window (for example,
PH):

Double-clickonPHin
sectionnamewindow...

Pageheadersectionishighlighted...

Alternatively, position the cursor in the desired section of the report
definition, and then choose the Section command from the Format menu.

Working with Sections

Chapter 9: Using the Report Editor 403

Depending on the section type you have selected, the Format Section, Format
Group Section, or Format Body Section dialog box appears. For example:

2. Choose the desired options, which are described in the next section.

Note: Some options are not available for certain section types.

3. Click OK.

Section Formatting Options

Options for section formatting can include some or all of the following:

Height Overrides the default Auto section height. Enter a value in inches (1.00, for
example).

Note: By default, the CA-Report Writer uses the minimum height necessary to
display all the text, data, and graphics in a section. If you specify a height less
than the minimum necessary to print the section, the CA-Report Writer adjusts
the height when you specify the Auto option.

Working with Sections

404 CA-Visual Objects IDE User Guide

Offset Prints a group header and body section detail lines side by side by specifying an
offset for the body section, moving the first line up the page. (Make sure the
value you enter does not make sections overlap.)

The vendor address prints on
the left side of the page

Order details print on the
right side of the page

Keep Section on Page Prevents the section from moving to another page in the report.

Keep with Next Section Keeps this section with the next section in the report.

Page Break After Inserts a page break after this section.

Reset Page Number Resets the page number to 1 whenever report header or footer sections are
processed. For example, you would want to reset the page number to 1 in an
invoice report whenever the invoice recipient changes.

Repeat Section on
Page Break

Controls where group header sections appear by repeating a group header
following a page break. When a page break occurs while printing a body
section in a grouping, the group heading associated with the body section is
printed at the top of a new page.

Underline Last Row Underlines the last body section in a group.

Replace Page Footer Controls where group footer sections appear by treating a group footer as a
page footer. You can set this option for only one group footer—if a page footer
section is also defined, the page footer prints only on those pages where no
group footer prints.

The vendor name and address
are defined in a group header.
A group header section prints
for each vendor

The product details are in the
body section

Insert Blank After Inserts a blank line after every nth body section when you enter a value in the
text box.

Label Style Presents report data in column format (body sections only). This is used in label
reports.

Working with Sections

Chapter 9: Using the Report Editor 405

Printing Message Specifies a printing message to use when printing a report.

Break Fields Specifies the break field for a group section. When you change a break field in a
report, you must also revise the sort order in the query used in the report.

Group Level Changes the relative nesting level of a group section. For example, you can
change a report that displays orders by product within vendor to one that
displays orders by vendor within product. Nesting level 1 represents the
outermost group; level 2 the first group, and so on. If there is a corresponding
group header or footer, you must also change the nesting level for that section.

Group By Specifies the group intervals for group sections.

Deleting a Section

To delete a section:

1. Position the cursor on the appropriate section in the section name window or
in the section area of the vertical ruler in the CA-Report Writer window.

2. Choose the Delete command from the Edit menu.

Working with Tables

406 CA-Visual Objects IDE User Guide

Working with Tables
You can align data, text, and graphics in different sections of a report by using a
table, which contains rows (horizontal) and columns (vertical) of data.

Each table contains cells, which are the intersections of rows and columns. You
can insert fields or text into one or more paragraphs in a cell, allowing you to
align related information in different sections of a report. For example:

This table has three columns,
containing labels. . .

. . . fields. . .

. . . and both.

This table has eight columns.
One row is in the group
header section. . .

. . . and the other is
in the body section

When the report prints, the
column headers are aligned
with the column data

Defining Table Styles

You can define a unique column (vertical) layout, called a style, for each table—
rows in a table are aligned with the same style. You define a table style by
creating a new style or copying an existing style. You can define up to 50 table
styles for each report definition.

Working with Tables

Chapter 9: Using the Report Editor 407

Defining a New Table Style

To define a new table style for your report definition:

1. Position the cursor where you want to insert a row using the new table style.

2. Choose the Define Table Style command from the Table menu.

The Define Table Style dialog box appears:

Note that the New Style radio button is selected, by default.

3. Enter a name in the Style Name edit control for the new table style.

The default is TABLEn.

4. Optionally, enter a different value in the Number of Columns edit control to
override the default setting.

5. In the Column Width edit control, specify the width of each column in the
table.

Note: You can specify Auto to have the CA-Report Writer automatically
size columns.

6. Click OK.

Copying an Existing Table Style

To copy an existing table style:

1. Position the cursor where you want to insert a row using the new table style.

2. Choose the Define Table Style command from the Table menu.

The Define Table Style dialog box appears.

3. Enter a name in the Style Name edit control for the new table style definition.

4. Select the Copy Style radio button.

Working with Tables

408 CA-Visual Objects IDE User Guide

5. Select an existing table style from the drop-down list to be copied to the new
table style definition:

Selecttabletobecopied

6. Click OK.

Deleting a Table Style

You can delete any table styles that are not currently being used. If a table style
appears in a report definition, the Delete Table Style option is not available. (In
such cases, you must first delete any rows defined in the table before you can
delete the table style.)

To delete a table style:

1. Choose the Delete Table Style command from the Table menu..

The Delete Table Style dialog box appears:

2. From the Table Style list box, select the style you want to delete.

3. Click the Delete button.

Working with Tables

Chapter 9: Using the Report Editor 409

Using Columns in Tables

The columns in a table function like tab stops to align text. Text you enter in a
report section normally wraps at the right page margin. In a column, text also
wraps, starting a new line when the width of the text exceeds the space between
the column margins. This section tells you how to add columns to a table style,
format the columns, move columns, and delete columns.

The CA-Report Writer indicates where columns and rows appear in a report
definition by displaying vertical and horizontal divider lines respectively. You
can change the display of column and row dividers by choosing the
Column/Row Dividers command from the Table menu.

Tip: Use your keyboard to move around in a table. The Tab key places the
cursor at the start of the next cell in a row (or paragraph). To move the
cursor to the start of the previous cell in a row (or paragraph), use Shift+Tab.

Adding Columns to a Table

To add a column to a table in your report definition:

1. Position the cursor in the column after which you want to insert a new
column.

2. Choose the Insert Column command from the Table menu.

The CA-Report Writer inserts a new column in all occurrences of the table
style, including those in different sections.

Changing Column Width

Columns are separated by an area called the gutter. You can adjust the width of
any column or column gutter in a report style. When you change a column
width, it changes for all rows of the same table style in the report.

Note: Increasing the column width may cause other columns to extend beyond
the page margins—you may need to decrease the width of these columns.

You can change the width of a column using either the Format Columns dialog
box or the ruler method.

Dialog Box Method To change column width in a report definition:

1. Position the cursor in the desired column.

2. Double-click between the column markers for the column in the ruler.

Working with Tables

410 CA-Visual Objects IDE User Guide

Alternatively, choose Format Columns from the Table menu.

The Format Columns dialog box appears:

3. Enter a new value in the Width edit control to change the column width.

4. Enter a value in the Gutter edit control to change the gutter width.

5. Click the Next or Previous button to move to and format the next or previous
column in the table.

6. Click the Delete Column button if you want to delete this column from the
table.

Note: Use the Crosstab Column and Adjacent Crosstab Columns options to
format columns in cross tabular reports. See Putting Columns of Like Data
Together later in this chapter for information about crosstab columns in
report tables.

7. Click OK to return to the report definition.

The CA-Report Writer shifts the columns according to your dialog box selections.

Ruler Method To change column width in a report definition using the ruler:

1. Position the cursor in the desired column.

2. Drag either column marker in the ruler to the desired position.

Note: If you shrink a column, the CA-Report Writer shifts subsequent
columns to the left. Expanding a column shifts subsequent columns to the
right.

Centering Columns

To center a column within your report definition:

1. Position the cursor in the desired column.

2. Click the Center paragraph alignment toolbar button. The column is
centered immediately within your report definition.

3. Alternatively, choose the Properties command from the File menu.

Working with Tables

Chapter 9: Using the Report Editor 411

The Report Properties dialog box appears:

4. Select the Center Columns On Page option.

5. Click OK.

Moving Columns

You can change the sequence of columns in a table style by moving columns.
The content and format of the columns remains the same.

Follow these basic steps to move a column within a table in your report
definition:

1. To display the column markers on the ruler, select the style you want to
delete.

2. To select the column, click the ruler at the location of the column you want to
move.

3. With the cursor on the ruler, drag the column across the report definition
until its center is on the column that you want to position it in front of.

The selected column is highlighted by a dashed outline while you drag it
across the report.

4. To move a column to the beginning of the report, move the center of the
selected column over the first column in the report.

Working with Tables

412 CA-Visual Objects IDE User Guide

Deleting Columns

You can delete a column from a table style, including any text or fields inside the
column. The CA-Report Writer deletes the selected column from all rows of the
table style in the report—any new rows will not contain the column.

To delete a column from a table in a report definition:

1. Position the cursor in the column you want to delete.

Alternatively, click the column in the horizontal ruler (with the column
markings for the table style displayed).

2. Choose the Delete Column command from the Table menu.

The specified column is removed.

3. Alternatively, choose the Format Columns command from the Table menu.

The Table Format Column dialog box:

4. Click the Delete Column button.

5. Click OK.

Working with Tables

Chapter 9: Using the Report Editor 413

Defining an Adjacent Crosstab Column

If your cross tabular report contains more than one aggregate value, the
CA-Report Writer normally displays all aggregates for the first column before
going on to the next. If you want to put columns of like data next to each other,
such as the quantity of a product ordered and the number of orders in a fiscal
quarter, you can define each additional column in the report as an adjacent
crosstab column. For example:

To define an adjacent crosstab column in a table within your report definition:

1. Place the cursor on the crosstab column.

2. Choose the Format Columns command from the Table menu.

The Table Format Column dialog box appears.

3. Select the Adjacent Crosstab Columns option.

4. Click OK.

Working with Rows

Once a table style is defined, you can insert rows of the table into any section in
the report definition. All rows in a table have the same column alignment, even
if they are in different report sections. Each row can contain different text and
fields. You add text and fields to the cells of a row the same way you add them
to any area of a report definition. You do not have to place contents in every cell.

This section describes how to add, move, and delete rows, and how to convert
rows to text and text to rows.

Working with Tables

414 CA-Visual Objects IDE User Guide

Adding Rows to Tables

To add a row to a table:

1. Position the cursor in the table where you want to insert a new row.

2. Click the Insert Row toolbar button.

Alternatively, choose Insert Row from the Table menu.

If there is more than one table style defined in the report, the CA-Report
Writer displays the Insert Table Row dialog box. For example:

All of the table styles defined for the report are listed in the Table Styles list
box.

3. Select the table style you want to apply to the row, and then click the Insert
button.

The CA-Report Writer inserts a new row of the selected table style.

Note: If there is only one table style, the new row is automatically inserted.

Moving Rows

When you move a row in a table, the CA-Report Writer moves the entire row,
including text and fields, to the new location.

To move a row within a table in your report definition:

1. Position the cursor anywhere in the row.

2. Choose the Select Row command from the Table menu.

3. Click the Cut toolbar button.

Alternatively, choose Cut from the Edit menu.

4. Move the cursor to the location where you want to insert the cut row.

5. Click the Paste toolbar button.

Alternatively, choose Paste from the Edit menu.

Working with Tables

Chapter 9: Using the Report Editor 415

Note: If you paste the row onto another row, the CA-Report Writer merges the
contents of each cell.

Inserting Blank Lines Between Rows

To insert a blank line, or paragraph, between rows in a table:

1. Position the cursor on either row you want to insert the blank line between.

2. Choose the Insert Paragraph command from the Table menu.

The Insert Paragraph dialog box appears:

3. Select either the Before Current Row or After Current Row option to insert
the new (blank) paragraph before or after the current row, respectively.

4. Click OK.

Deleting Rows

When you delete a row from a report definition, the CA-Report Writer deletes all
row cells and cell contents.

To delete a row from a table in a report definition:

1. Position the cursor anywhere in the row.

2. Choose Delete Row from the Table menu.

Converting Text to Rows and Rows to Text

To move text from one area of the report definition into a table row, you can
convert the text into a row. When you convert text to a row, each paragraph in
the text is placed in a separate column.

You should select a table style that has the same number of columns as text
paragraphs you are converting. Otherwise, you will have unused columns. For
example, to convert two paragraphs of text to a row, place the cursor in front of
the first paragraph; then select a table style that has two columns.

Working with Tables

416 CA-Visual Objects IDE User Guide

You can also move text out of a table and into another part of the report
definition by converting the contents of a table row to page-aligned text. The
row contents are placed in the new location as a series of paragraphs aligned
with the page.

Text to Row To convert text to a row within a report definition:

1. Position the cursor in front of the text you want to convert.

2. Choose Convert Text To Row from the Table menu.

The Insert Table Row dialog box appears, if a table has been defined
previously for this report:

3. From the Table Style list box, select the table style you want to use for the
text.

4. Click Insert.

The CA-Report Writer moves each paragraph of the selected text into one
column in the selected table style.

Row to Text To convert a table row to text:

1. Position the cursor anywhere in the row you want to convert.

2. Choose the Convert Row To Text command from the Table menu.

The CA-Report Writer deletes the row and aligns the text as a series of
paragraphs within the normal page margins of the report.

Selecting a Table Cell for Editing

You can easily select the contents of a cell and format, move, copy, or delete its
contents.

To select a table cell within a report definition:

1. Position the cursor in the cell.

2. Drag the cursor over the cell.

Alternatively, choose Select Cell from the Table menu.

Once the cell is selected, then edit, copy, delete, or move the cell’s contents.

Formatting a Report’s Appearance

Chapter 9: Using the Report Editor 417

Note: Pasting a selected cell onto another cell adds to the contents of that cell.
You can also paste cell contents to a non-table area. However, if you paste more
than one cell into a non-table area, the CA-Report Writer inserts a row with the
contents of the selected cells copied.

Formatting a Report’s Appearance
You can customize the display of your reports by:

■ Aligning data

■ Formatting the display of text on the page

■ Adding borders around parts of a report

■ Using conditional paragraphs

■ Changing fonts and point sizes

■ Applying bold, italics, and underlining

■ Applying color

■ Creating a report title page

■ Controlling page breaks

When you format the appearance of the report, you are formatting paragraphs
and characters.

Paragraph Formatting A paragraph is any area in a report definition that ends with a paragraph mark
(¶). For example, each column heading in a report header is a separate
paragraph. A paragraph can be the contents of one cell or an entire section of a
report. Pressing the Enter key inserts a paragraph mark. You can have many
paragraphs within a block of text, and one cell can contain multiple paragraphs.

With paragraph formatting, you can do the following:

■ Left-justify, right-justify, center, or justify the contents of a paragraph in a
report

■ Wrap, truncate, and specify line spacing for text displays in reports

■ Place borders around selected paragraphs in reports

Tip: When formatting paragraphs, turn on the display of paragraph marks
by clicking the Paragraph Mark toolbar button or by turning on the
Paragraph Marks option in the Report Properties dialog box (Properties
command in the File menu).

Formatting a Report’s Appearance

418 CA-Visual Objects IDE User Guide

You can specify the format of a paragraph before you enter information in it.
The CA-Report Writer applies the formatting as you enter text, and continues to
use this formatting on new paragraphs until you reset it or reposition the cursor.
For example, if you start a new paragraph, it has the same attributes as the
previous one. Whenever you copy or move a paragraph, the CA-Report Writer
also copies or moves the formatting.

Character Formatting Character formatting determines how report text—including letters, numbers,
punctuation, and symbols—appears on the screen and in print. Character
formatting lets you choose:

■ Fonts and point sizes

■ Underlined, bold, or italic styles

■ Color

You can select character formatting before you type, or selectively after you have
typed text in your report. Select any number of characters, and then apply or
remove character formatting. The current character formatting is displayed on
the status bar (at the bottom of the CA-Report Writer window) and is highlighted
on the toolbar.

Aligning Paragraph Text

You can align paragraph text with the left margin, the right margin, both
margins simultaneously (justified), or you can center the text between the right
and left margins. Column data aligns with the column margins. Data outside a
column aligns with the page margins of the report.

To align text within the report definition:

1. Position the cursor in the paragraph you want to align.

2. Click one of the following toolbar buttons:

Left Center

Right Justify

Tip: Drag the cursor to select more than one paragraph.

Formatting a Report’s Appearance

Chapter 9: Using the Report Editor 419

Formatting Text Displays

Text display refers to the placement of text (or database fields containing text) that
is too large to be displayed on a single line within the column or page margins of
a report. The CA-Report Writer either wraps the text (continuing it on the next
line), or truncates it at the column or page margin. Usually, wrapping applies to
text fields, but not number or date fields.

When you preview a report, the CA-Report Writer displays numbers that are too
large for a column as a sequence of pound (#) symbols.

Note: By default, the CA-Report Writer left-aligns and wraps text and text fields
in reports.

To format the display of text within your report definition:

1. Position the cursor in the paragraph you want to format.

Note: Drag to select more than one paragraph. Alternatively, to select all
paragraphs in a section or column, highlight the entire section or column.

2. Choose the Paragraph command from the Format menu.

The Format Paragraph dialog box appears:

3. Select either the Wrap or Truncate option in the Text Display group box.

Note: If you enter a value in the Line Spacing edit control, rather than using
the default of Auto, the line spacing unit is in points.

4. Select any other paragraph formatting options you want to use.

5. Click OK.

Formatting a Report’s Appearance

420 CA-Visual Objects IDE User Guide

Adding Borders to Paragraphs

Paragraph borders are rectangular boxes around paragraphs. You can choose the
width of the border and whether the top and bottom of a border end at column
margins or extend to the center of the gutter (called continuous borders).

You can enclose part of a paragraph by specifying part of a border, such as its
top or bottom; or you can place a single border around multiple paragraphs by
turning on the Outline option in the Format Paragraph dialog box. The
CA-Report Writer draws a border around all paragraphs until it reaches a
paragraph for which the Outline option is not selected. You can also have a
border with rounded corners.

To add a border to a paragraph within a report definition:

1. Position the cursor in the paragraph (or column or section) that you want to
surround with a border.

2. Choose the Paragraph command from the Format menu.

The Format Paragraph dialog box appears again.

3. Select the desired options in the Border group box. For example, select the
Outline option and enter 2 pt. in the Thickness edit control:

4. Click OK.

Changing Font, Font Size, Style, and Color

You can mix different fonts, font sizes, text styles, and text colors in reports.

Note: Point size refers to the height of the character. One point is
approximately 1/72 of an inch.

To change your font settings for a report definition:

Formatting a Report’s Appearance

Chapter 9: Using the Report Editor 421

1. Select the characters you want to format.

Alternatively, position the cursor at the point where you want to insert text
using a new character format.

2. Click the Font toolbar button.

Alternatively, choose the Character command from the Format menu.

A standard Font dialog box appears:

3. Select a font from the Font combo box.

4. Select a font style from the Font Style combo box.

Alternatively, click the Bold, Italic, or Underline toolbar button to apply one
of these styles to the selected text.

5. Select a font size from the Size combo box.

6. Select a color from the Color drop-down list box.

Your selections are reflected in the Sample group box.

7. Click OK to return to the report definition.

Note: To print using a particular font, the font must be installed for the selected
printer.

Creating a Report Title Page

You can print a separate report title page for a report.

Note: Your report must contain a report header section in order to print a title
page.

To create a title page for your report:

1. Position the cursor in the header section of the report definition.

Alternatively, double-click the report header section in the section name
window.

Formatting a Report’s Appearance

422 CA-Visual Objects IDE User Guide

2. Choose the Section command from the Format menu.

The Format Section dialog box appears.

3. Select the Page Break After and Print Before First Page Header options:

Selecttheseoptions
tocreateatitlepage

4. Optionally, select the Replaces First Page Header option instead of Print
Before First Page Header if you want to define an alternate first page header.

5. Click OK to return to the report definition.

Controlling Page Breaks

You can control where page breaks occur in a report. For example, in a form
letter, where the body of the report comprises the letter, you would want a page
break after each body section.

You can control where page breaks occur by applying formatting to a section or
by inserting a page break. You can also keep a section on the same page or keep
sections together.

Page Break After
a Section

To insert a page break after a body section within a report definition:

1. Position the cursor in the desired section of the report definition.

Alternatively, double-click the section name window.

2. Choose the Section command from the Format menu.

The Format Body Section dialog box appears.

Formatting a Report’s Appearance

Chapter 9: Using the Report Editor 423

3. Select the Page Break After option:

4. Click OK.

Hard Page Breaks To insert a hard page break within a report definition:

1. Position the cursor at the location where you want to insert a page break.

2. Choose the Insert Page Break command from the Insert menu.

The page break appears as a dotted line on the screen.

Keeping a Section on a Page

You can set an option to keep a section on the same page. If the entire section
cannot fit on a page, the CA-Report Writer prints the section on a new page.
(This attribute is always set for page header and page footer sections.)

To keep a section on a page:

1. Position the cursor in the desired section.

Alternatively, double-click the section name window.

2. Choose the Section command from the Format menu.

The Format Body Section dialog box appears again.

3. Select the Keep with Next Section option:

Formatting a Report’s Appearance

424 CA-Visual Objects IDE User Guide

4. Click OK.

Note: You cannot keep all body sections within a grouping together on the same
page.

Keeping Sections Together

You can set an option to keep a group header section and at least one body
section together in a report—this is useful when you want to keep a group
heading with the body of the report. The CA-Report Writer prints a section on a
new page if it cannot fit the following section on the current page. (Remember
that every body section is a separate section.)

To keep sections together in your report:

1. Position the cursor in a group header section in the report definition.

Alternatively, double-click the group header section name window.

2. Choose Section from the Format menu.

The Format Group Section dialog box appears.

Using Conditions to Determine Report Data

Chapter 9: Using the Report Editor 425

3. Select the Keep Section on Page option:

4. Click OK.

Paginating Cross Tabular Reports

The CA-Report Writer determines the width (the number of columns) of a cross
tabular report when it prints the report. The width of the report depends on the
data. The CA-Report Writer uses horizontal pagination for reports that are
wider than the defined page margins.

Using Conditions to Determine Report Data
You can include or exclude information from a report based on data coming
from your database or computed conditions. For example, in an accounts
receivable report, you may want to display a bold message next to any customer
owing more than $10,000 or you may want to print a subreport detailing some
information based on a set of conditions.

You can also have the CA-Report Writer eliminate individual fields or rows of a
report if the value of one field is false.

To set report data conditions within a report definition:

1. Position the cursor in the paragraph to which you want to apply the
condition.

Drag to select more than one paragraph.

Alternatively, to select all the paragraphs in a column or section, highlight
the column or section.

Using Conditions to Determine Report Data

426 CA-Visual Objects IDE User Guide

2. Choose Paragraph from the Format menu.

The Format Paragraph dialog box appears.

3. Select a value from the Eliminate Paragraph When FALSE drop-down list
box:

Reportremovesallrowswithan
amountvalueunder1000

4. Click OK.

Note: To make the printing of an entire row conditional, you must make all
paragraphs in a row conditional.

Using a Subreport in a Conditional Paragraph

You can insert a subreport in a conditional paragraph in a report. The subreport
prints only if the condition in the paragraph is true, allowing you to use alternate
subreports, depending on parameters or data in the main report.

See the online help system for details about using subreports.

Determining Page Layout

Chapter 9: Using the Report Editor 427

Determining Page Layout
In the CA-Report Writer you can customize your report’s page layout by:

■ Setting page size and margins

■ Snaking columns on a page

■ Using horizontal pagination

Setting Page Size, Orientation, and Margins

You can easily change the size of a report page, change the page orientation, and
adjust the page margins.

To change the report page size and orientation:

1. Choose the Page command from the Format menu.

The Format Page dialog box appears:

2. Enter values in the Width and Height edit controls.

3. Select either the Portrait or Landscape option to define the page orientation.

4. To change the page margins, enter values for Left, Right, Top, and Bottom in
the Margins group box.

Note: You can also change page margins for the report from the horizontal
ruler by dragging the left or right margin markers (the solid black triangles)
to the desired ruler location.

5. To save your page formatting selections as defaults, click the Save As
Defaults button.

6. Click OK.

Determining Page Layout

428 CA-Visual Objects IDE User Guide

Snaking Columns on a Page

You can divide a page into a number of equal width columns and snake the
contents of a report within those columns. Snaking means filling the first column
from the top of a page to the bottom, moving to the next column until it fills up.
The column contents are listed from top to bottom in each increment. This is
particularly useful for a telephone directory, for example:

Snaking fills the first column
from the top of a page. . .

. . . moving to the next column
until it fills up.

. . . and then to the next

. . . to the bottom. . .

To snake columns on a page in your report:

1. Choose the Page command from the Format menu.

The Format Page dialog box appears.

2. Enter a value in the Number of Columns edit control to specify the desired
number of columns into which you want to divide the report.

Determining Page Layout

Chapter 9: Using the Report Editor 429

3. Enter a value in the Space Between Columns edit control to specify the
amount of space that should be placed between columns. For example:

Thisreportisdivided

0.125in.apart
intothreecolumns,

4. Click OK.

Using Horizontal Pagination

If a report is wider than its page size, you can print the overflow information on
subsequent pages using horizontal pagination. Horizontal pagination lets the
report print across first and then down. It ensures that each cell fits on the page
or it is forced to the next horizontal page. This feature is useful in cross tabular
reports, where the width of the report can vary.

Note: If a report is wider than its page size and you do not define a horizontal
page break, the columns are truncated.

To use the horizontal pagination feature:

1. Choose the Page command from the Format menu.

The Format Page dialog box appears again.

Adding Graphics

430 CA-Visual Objects IDE User Guide

2. Select the Break At Right Margin option:

3. Click OK.

The CA-Report Writer creates a horizontal page break when the report table
columns in the report extend beyond the specified right margin.

Adding Graphics
You can add graphics to your reports by drawing lines and rectangles or by
importing graphic images that were created in other applications.

Lines and Rectangles Add lines and rectangles to a report to highlight report text. For example, you
can draw a line after a group footer to print a line before each new group of data.

Lines and rectangles are useful when the report contents do not vary with the
data. In other cases, you should use paragraph borders or text underlining, since
they automatically adjust to the size of the paragraph or text.

Graphic Images Insert files containing logos, designs, photos, or other pictures in a report
definition to enhance report data. For example, you can create a letterhead by
adding a logo to the page header. In addition, you can specify graphic images
for data fields and computed fields so you can print a graphic image for every
occurrence of a specific field in a report.

Note: You should place lines, rectangles, and graphic images within the
boundaries of a single section only. If you want a graphic displayed across an
entire report page, insert it into the background section.

Adding Graphics

Chapter 9: Using the Report Editor 431

Drawing Lines

To draw a line in any section of a report definition:

1. Select the Insert Line toolbar button.

Alternatively, choose the Line command from the Insert menu.

2. Position the cursor where the line is to start and drag to create the line.

Note: The line must stay in one report section.

Changing a Line’s Color and Thickness

To modify a line in your report definition:

1. Double-click the desired line.

Alternatively, choose the Line command from the Format menu.

The Format Line dialog box appears.

2. Select a color from the Color drop-down list box.

3. Enter a value in the Thickness edit control to change the line thickness.

4. Click OK.

Moving a Line

To modify a line in your report definition, use one of the following methods:

Drag Method Position the cursor anywhere on the line except on a selection handle and drag
the line to a new location.

Dialog Box Method To use the dialog box method:

1. Double-click the desired line.

Alternatively, choose the Line command from the Format menu.

The Format Line dialog box appears again.

Adding Graphics

432 CA-Visual Objects IDE User Guide

2. Enter values in the X and Y edit controls to specify the new position.

3. Click OK.

Resizing a Line

To resize a line in your report definition, use one of the following methods:

Drag Method Drag a selection handle on one end of the line to a new position.

Dialog Box Method To use the dialog box method:

1. Double-click the desired line.

Alternatively, choose the Line command from the Format menu.

The Format Line dialog box appears again.

2. Enter values in the X and Y edit controls in the Start Point and End Point
group boxes.

3. Click OK.

Drawing Rectangles

You can draw rectangles in any section of a report definition. You can apply
rounded corners and shadows to rectangles. You can also fill the background
and foreground of a rectangle with various colors and patterns.

To draw a rectangle in your report definition:

1. Select the Insert Rectangle toolbar button.

Alternatively, choose Rectangle from the Insert menu.

2. Position the cursor where you want the line to start and drag to create the
rectangle.

Note: The rectangle must fit in one report section.

Adding Graphics

Chapter 9: Using the Report Editor 433

Changing a Rectangle’s Color, Fill, and Border

To modify a rectangle within a report definition:

1. Double-click the desired rectangle.

Alternatively, choose the Rectangle command from the Format menu.

The Format Rectangle dialog box appears:

2. Select a color from the Color drop-down list box.

3. Enter a value in the Thickness edit control to change the line thickness.

4. Select the Round Corners option to add rounded corners to the rectangle.

5. Select the Shadow option to add a shadow to the rectangle.

6. Select the desired foreground fill from the Foreground drop-down list box.

7. Select the desired background fill from the Background drop-down list box.

8. Select a fill pattern from the Pattern drop-down list.

9. Click OK.

Moving a Rectangle

To move a rectangle in your report definition, use one of the following methods:

Drag Method Position the cursor anywhere on the rectangle except on a selection handle and
drag the rectangle to a new location.

Dialog Box Method To use the dialog box method:

1. Double-click the desired rectangle.

Alternatively, choose the Rectangle command from the Format menu.

The Format Rectangle dialog box appears again.

2. Enter values in the X and Y edit controls to specify the new position.

3. Click OK.

Adding Graphics

434 CA-Visual Objects IDE User Guide

Resizing a Rectangle

To resize a rectangle in your report definition, use one of the following methods:

Drag Method Drag a selection handle on a rectangle to a new position.

Dialog Box Method To use the dialog box method:

1. Double-click the rectangle.

Alternatively, choose the Rectangle command from the Format menu.

The Format Rectangle dialog box appears again.

2. Enter values in the Height and Width edit controls.

3. Click OK.

Inserting Graphic Images in a Report

You can insert graphic images into any section of a report definition, but first you
must specify the following:

■ Where in the report you want the graphic image to appear

■ Where the graphic image comes from

■ How the graphic should be sized in the report

Graphics, like other report contents, appear in a report in accordance with
section type. For example, a graphic inserted in the report header prints once at
the top of the report, whereas a graphic inserted in the body section prints once
for each row of data. Graphics inserted into the background section appear on
each report page, creating a constant backdrop, such as on a form.

You can insert a graphic using a data field or computed field whose value is the
file name of the graphic. Use this feature if you want to associate a graphic
image with specific field values.

Adding Graphics

Chapter 9: Using the Report Editor 435

The following report illustrates this feature:

This report displays a different graphic
image for each product category

You can insert a graphic in any section except a page header or page footer. You
can import the following types of graphics files into a report:

■ Windows bitmaps (.BMP)

■ CompuServe (.GIF)

Tip: Use .BMP files for best performance results.

To insert a graphic in your report definition:

1. Select the Insert Picture toolbar button.

Alternatively, choose the Picture command from the Insert menu.

2. Begin dragging in the report definition to specify where you want the start
point (any corner of the graphic) to be located.

3. Drag until the rectangle (representing the location and dimensions of the
graphic) is the size you want.

Adding Graphics

436 CA-Visual Objects IDE User Guide

When you release the mouse button, the Format Picture dialog box appears:

Entergraphicfilenameand...

specifythegraphicsize

4. Do one of the following

■ Select the File Name radio button, and then enter the name and directory
path of the graphics file to insert.

■ Choose Browse to display the Open Picture File dialog box from which
you can locate and select the file to insert:

The CA-Report Writer displays the original dimensions of the graphic in
the lower-right corner of the Format Picture dialog box.

Adding Graphics

Chapter 9: Using the Report Editor 437

■ To associate a picture with a particular field, select the Field Containing
File Name radio button, and then select the file name that contains the
picture you want to insert from the drop-down list box. For example:

The group header contains
an inserted graphic image

LOGO_FILE contains the file names of the
graphics that will print in the report

5. Indicate how you want the graphic inserted into the report definition by
selecting one of the following options:

■ Select Stretch/Shrink To Fit if you want the CA-Report Writer to expand
or reduce the size of the graphic proportionally to fit in the space you
specified for it.

■ Select Clip if you want the CA-Report Writer to crop the graphic to fit in
the space you allotted for it.

■ Select Use Picture Size to use the original size of the graphic.

Note: If you are using the Stretch/Shrink To Fit or Clip option, you can
change the dimensions of the graphic by entering either the actual
dimensions or the percentage by which to scale the picture using the
Width and Height or the Scale edit controls in the dialog box. In
conjunction with these options, you can also indicate the amount by
which to crop the graphic from the left or top margin.

6. Click OK to return to the report definition.

Tip: For best results, consider sizing the image in your application and then
choosing the Use Picture Size Option in the Format Picture dialog box.

Adding Graphics

438 CA-Visual Objects IDE User Guide

Moving a Graphic

To move a graphic, simply drag the graphic to its new location in the report
definition.

You can also move a graphic from one section to another using the Cut and Paste
toolbar buttons or menu commands.

Resizing a Graphic

To resize a graphic, use one of the following methods:

Drag Method Drag a selection handle at one corner of the picture.

Dialog Box Method To use the dialog box method:

1. Double-click on a picture.

Alternatively, choose the Picture command from the Format menu.

The Format Picture dialog box appears again.

2. Enter new values in the Width and Height edit controls.

Alternatively, enter new values in the Scale edit controls.

3. Click OK to return to the report definition.

Moving Graphics to the Background

If you are editing an area of a report definition in which one or more graphics are
overlaid on text, you can move the graphics to the background so that you can
select and edit the text.

To move a graphic to the background:

1. Choose the Properties command from the File menu.

The Report Properties dialog box appears.

Adding Graphics

Chapter 9: Using the Report Editor 439

2. Deselect the Select Text First option:

Note: You cannot select the graphic in the background until you turn this
option off.

3. Click OK.

Working with Overlapping Graphics

When a section contains more than one graphic object (line, rectangle, or image),
you can use the Move To Back command (Format menu) to control the order in
which the graphics are drawn relative to one another. The order is important
only when graphics overlap.

The CA-Report Writer draws graphics from front to back. Each time you select a
graphic and choose Move To Back, the selected graphic is moved one “step”
backward in the order.

Note: Text is always drawn after all graphics. You cannot use the Move To Back
option to change the drawing order relative to the text.

Deleting a Line, Rectangle, or Graphic

To delete graphic elements from your report definition:

1. Select a line, rectangle, or picture in the report definition.

2. Choose the Delete command from the Edit menu.

Using Report Fields

440 CA-Visual Objects IDE User Guide

Using Report Fields
This section explains how to define and use fields in reports. To display data in a
report, you insert report fields that define the data to the report definition. For
example, inserting fields into the body section causes the report to print the field
values once for each row in the query result.

Types of Fields

The CA-Report Writer recognizes four types of report fields—data, computed,
system-defined, and parameter.

In the following illustration, the VND_NAME field is a data field in a query
associated with the report definition; the VND_TOTAL_COST field is a
computed field that totals the cost of each item in the order; and the
_pagenumber field is a system-defined field that displays a page number in the
footer of each report page:

_pagenumber
system-defined
field

VND_NAME field

VND_TOTAL_COST
computed field

Data Fields A data field maps to a field in the query result that you use to supply data for the
report.

Computed Fields A computed field uses functions and arithmetic operators to compute a value.
You define a computed field by combining values in other report fields or by
using functions. A common type of computed field is the Sum field, which
totals the values of a specified report field.

System-Defined Fields A system-defined field supplies system data such as the date and time (_date) or
page number (_pagenumber).

Using Report Fields

Chapter 9: Using the Report Editor 441

Parameter Fields A parameter field prompts the user to enter a value each time the report is run.
You define the prompt and the data type for the parameter field. You can also
define a parameter field in a subreport that you use to pass values from a main
report or bucket table. Subreports and bucket tables are described fully in the
online help system.

Steps for creating computed and parameter fields are described in detail later in
this chapter.

Data Types

The CA-Report Writer recognizes and assigns three data types: text, date, and
number. For data fields, it uses the data types of data in the database table to
determine what data type to assign. For computed fields, the CA-Report Writer
automatically assigns the data type based on the field definition.

The following table describes each data type:

Data Type Description

Text Character strings

Character strings cannot contain null values; the maximum
length is 65K.

Number Decimal and integer numbers

The range is 1.7e +/- 308 with 15 digits of accuracy (double
floating point).

Date Date and time values

The acceptable range is Jan. 1, 0001–Dec. 31, 9999.

An example of each data type is shown in the following table:

Data Type Field Sample Data

Text VND_NAME Pacific Way Parts Co.

Date ORD_DATE 8/4/93

Number ORD_PRICE 89.95

A variety of standard format strings are available for each data type. You can
choose one of these or create a format using format characters. For more
information, see Formatting Fields later on in this chapter.

Viewing and Editing Field Definitions

442 CA-Visual Objects IDE User Guide

Viewing and Editing Field Definitions
Before you define computed fields or parameter fields for your report definition,
your report contains data fields from the query associated with the report and
system-defined fields, such as _date and _pagenumber.

If a field is a data field, you can view its definition and edit its appearance in the
report; if a field is any other type of field, you can also edit its definition.

To view or edit a field definition, do one of the following:

■ Choose the Field Definitions command from the Edit menu, and then select a
field.

■ Double-click on a field in the report definition.

■ Position the cursor on a field in the report definition and choose the Field
command from the Format menu.

The CA-Report Writer responds in one of several ways depending on the type of
field you selected:

Data Fields If you chose Field Definitions from the Edit menu and selected a data field to
edit, the CA-Report Writer displays the Database Field Definition dialog box
where you can view the definition.

This dialog box displays the column name, table, column, data type, and width
from the corresponding column in the query:

Correspondingcolumn
datafromthequery

Viewing and Editing Field Definitions

Chapter 9: Using the Report Editor 443

If you double-clicked a data field or chose Field from the Format menu, the
CA-Report Writer displays the Format Field dialog box where you can view the
definition and edit its format:

Datafielddefinition

Formatsection

Computed and
System-Defined Fields

If you selected a computed field or system-defined field, the CA-Report Writer
displays the Field Formula dialog box, shown below.

This dialog box displays the formula that defines the selected field and its
formatting options. Use the dialog box options to edit a field’s formula, apply a
format to the field, and assign other display options.

In the following example, the VND_TOTAL_COST field totals the cost of each
item carried by individual vendors:

You can edit the field’s formula in one of two ways:

■ Edit the formula manually in the Formula multi-line edit control.

■ Select the field from the Fields list box, and then double-click a function in
the Functions list box.

Inserting, Moving, and Deleting Fields

444 CA-Visual Objects IDE User Guide

You can optionally enter a field description in the Description edit control.

For more information about formatting fields in reports and using field formulas,
see Formatting Fields and Defining Computed Fields later in this chapter.

Parameter Fields If you select a parameter field, the CA-Report Writer displays the Define
Parameter dialog box, shown below. This dialog box displays the prompt
displayed to the user when CA-Report Writer runs the report, the parameter’s
default value, a description (if any), and the data type.

Tip: You can also edit the definition of a parameter field by selecting the Edit
Report Parameters menu command.

For more information about defining field parameters in reports, see Using
Parameter Fields later in this chapter.

Inserting, Moving, and Deleting Fields
With some restrictions, you can insert fields into any section in a report
definition. If you decide later that you want to move a field or delete it, you can
use commands in the Edit menu or, if a field does not appear in a report
definition, use other procedures described in this section.

Inserting a Field in a Report Definition

To insert a field in your report definition:

1. Move the cursor to the location where you want to insert a new field.

2. Click the Field toolbar button.

Alternatively, choose the Field command from the Insert menu.

Inserting, Moving, and Deleting Fields

Chapter 9: Using the Report Editor 445

The Insert Field dialog box appears:

3. From the Fields list box, select a field type name.

4. Optionally, choose a format string from the Format String drop-down list
box.

5. Click the Insert button to display the new field in the report definition.

Moving a Field

To move a field within your report definition:

1. Select the field you want to move.

2. Click the Cut toolbar button.

Alternatively, choose the Cut command from the Edit menu.

3. Move the cursor to the location where you want to place the cut field.

4. Click the Paste toolbar button.

Alternatively, choose the Paste command from the Edit menu.

Deleting a Field

When you delete a field from a report definition, you must also delete the field
definition. To do so, place the cursor on the field you want to delete and do one
of the following:

■ Choose Field Definitions from the Edit menu.

■ Alternatively, choose the Delete command from the Edit menu.

Inserting, Moving, and Deleting Fields

446 CA-Visual Objects IDE User Guide

The Edit Field Definition dialog box appears:

Select the name of the field you just deleted from the report definition, click
Delete, and then click Close.

Deleting Parameter
Fields

To delete a parameter field, do one of the following:

■ Choose Report Parameters from the Edit menu.

The Report Parameters dialog box appears:

Select a parameter from the Parameters list box, click Delete, and then click
Close.

■ Choose Field Definitions from the Edit menu.

Inserting, Moving, and Deleting Fields

Chapter 9: Using the Report Editor 447

The Edit Field Definition dialog box appears:

Select a field from the Fields list box, click Delete, and then click Close.

Restrictions You cannot delete a computed field if it is referenced by any other computed
field, as displayed in the Referenced By list box in the Edit Field definitions
dialog box. Similarly, you cannot delete a parameter field if it maps to a field in a
query. The CA-Report Writer dims the Delete button if the field cannot be
deleted.

For example, the Delete button in the following illustration is dimmed because
the selected field, Avg_Ord_Markup, is used in the field definition of
Avg_Vnd_Markup:

Defining Computed Fields

448 CA-Visual Objects IDE User Guide

Defining Computed Fields
Computed fields are user-defined fields that you can create using other fields,
arithmetic operators, and functions to compute values. For example, the
definition of a simple computed field, UNIT_SALES, is the product of two other
fields: PRICE*QUANTITY.

Field Names By default, CA-Report Writer supplies generic field names (FIELD1, FIELD2,
etc.) for computed fields, which you can replace with something more
meaningful. Field names must begin with a letter; subsequent characters in the
field name can be any combination of upper and lowercase letters, numbers,
and/or the underscore (_) character.

Arithmetic Operators The CA-Report Writer uses the operators shown in the following table to
combine field values arithmetically:

Operator Function Example

+ Addition PRICE+10

- Subtraction QUANTITY-4

* Multiplication PRICE*QUANTITY

/ Division Total/QUANTITY

CA-Report Writer observes the standard rules of precedence:

■ Operations involving multiplication and division are computed first, going
from left to right.

■ Operations involving addition and subtraction are computed after
multiplication and division operations.

For example, the result of the following formula is 15:

3 + 4 / 2 * 6

You can use parentheses in an expression to override the rules of precedence and
to add clarity to the formula’s display.
CA-Report Writer computes the operations in the innermost parentheses first
and works outward.

For example, the result of this formula is 3 1/3:

3 + (4 / (2 * 6))

Defining Computed Fields

Chapter 9: Using the Report Editor 449

Defining a Simple Computed Field

You define computed fields by either entering the field formula from your
keyboard or using a point-and-click technique to build the field definition.

To define a computed field for your report definition:

1. Click the Insert Field toolbar button, or choose Field from the Insert menu
and then click the Define New Field button in the Insert Field dialog box that
appears.

Alternatively, choose Field Definitions from the Edit menu and then click the
Define New button in the Edit Field Definition dialog box that appears.

In all cases, the Field Formula dialog box appears.

2. Optionally, enter a field name in the Field Name edit control (or accept the
default).

3. Position the cursor in the Formula text box, and then do one of the following:

■ Define the field by entering a formula in the Formula multi-line edit
control. For example:

■ Double-click a field in the Fields list box and select the desired arithmetic
operator buttons to build the formula.

4. Optionally, format the field’s appearance using the Format String group box
options.

5. Optionally, enter a description for the field in the Description edit control.

6. Click OK.

Defining Computed Fields

450 CA-Visual Objects IDE User Guide

Using Functions to Define a Computed Field

The CA-Report Writer supplies over 80 functions that you can use to create
computed fields. The functions perform sophisticated calculations. For example,
you can use functions to rank field values or to return the future value of an
investment.

When you use a function in a computed field, you must specify certain variables
on which the function operates. For example, to use the function Sum(expression,
section), you must specify the expression (a data field or computed field) and the
section over which to compute the sum (the group section or the entire report).
The VND_TOTAL_COST field in ORD.RET uses this sum function:

Sum(item_cost,VND_NO)

where ITEM_COST is the field to total within a group that has VND_NO defined
as its break field.

Types of Functions

The following information is a summary of the functions you can use in the
CA-Report Writer. For detailed information about these functions, see the
CA-Report Writer online help system.

Aggregate Functions Aggregate functions perform calculations (for example, counting, summing, and
averaging) on grouped data or data for the entire report. Aggregate functions
ignore Null values in their computations. For example, the Avg() function does
not include the Null value when it computes the average.

Generally, you insert a computed field containing an aggregate function in a
group header or footer or report header or footer. The placement of the field
determines the value returned by the function.

For example, if you want to count the number of items per order, place the Count
aggregate function in a group section defined by the ORD_NO break field. If,
instead, you want to count the number of items in the entire report, insert the
field in a report header or footer section. See the online help system for the
individual aggregate functions and for details on where to place them in a report
definition.

Note: If your report contains a large amount of data, you can improve
performance and memory usage by placing aggregate functions in either report
footers or group footers. Placing an aggregate function in a report header
requires the most time and memory to evaluate.

Arithmetic Functions Arithmetic functions perform common mathematical operations on data
defined in the report definition, such as raising a value to a power or returning
an absolute value.

Defining Computed Fields

Chapter 9: Using the Report Editor 451

Conditional Functions Conditional functions perform common relational operations on data defined in
the report definition. Conditional functions take relational expressions as
arguments that return a true (1) or false (0) result. For example, you can test if a
value falls within a range or is null.

Conversion Functions Conversion functions convert a field or value of one data type to a value of
another data type. For example, CA-Report Writer provides functions that
convert date values to number values or text values, number values to date
value or text values, and so on.

Date and Time
Functions

Date and Time functions calculate dates and times using serial numbers. For
example, you can use a function to add a number of weeks to a date and get the
future date back.

Financial Functions Financial functions calculate common financial formulas. For example, you can
use financial functions to calculate the payment on a loan or the future value of
an investment.

Financial functions usually contain parameters such as a payment amount, a
number of payment periods, and an interest rate. Be sure that each number you
supply is based on the same unit of time (for example, months or years).

For example, if the payment period is monthly, but you have an annual interest
rate, divide the interest rate by twelve, as shown in the example below where the
annual interest rate is 8%:

pmt(0.08/12,30,10000,0,0)

Lookup Functions Lookup functions search tables of data (that is, data arranged in multiple columns
and rows) to locate a specified value. They help you locate specific information,
which is provided as part of a large package of data (for example, tax tables,
mortgage payment tables, zip code tables, pay scale tables, and so on).

String Manipulation
Functions

String manipulation functions manipulate text strings and fields with a text data
type in the report definition. For example, text functions let you compare
strings, insert and extract characters within strings, and convert lowercase
strings to uppercase strings.

Defining Computed Fields

452 CA-Visual Objects IDE User Guide

Defining a Computed Field Using a Function

When you define a computed field that uses a function, the function performs a
calculation and returns a value to the computed field. You can use a function by
itself or embed it in a more complex expression.

To define a computed field for your report definition using a function:

1. Click the Insert Field toolbar button, or choose Field from the Insert menu
and then click the Define New Field button in the Insert Field dialog box that
appears.

Alternatively, choose Field Definitions from the Edit menu and then click the
Define New button in the Edit Field Definition dialog box that appears.

In all cases, the Field Formula dialog box appears:

2. Optionally, enter a field name in the Field Name edit control (or accept the
default).

3. Position the cursor in the Formula multi-line edit control, and then double-
click a function in the Functions list box.

The Function Editor dialog box appears.

4. After completing the function definition in the Function Editor (described in
the following section), you are returned to the Field Formula dialog box.

5. Optionally, format the field’s appearance using the Format String group box
options.

6. Optionally, enter a description for the field in the Description edit control.

7. Click OK.

Defining Computed Fields

Chapter 9: Using the Report Editor 453

Using the Function Editor Dialog Box

The Function Editor dialog box is displayed whenever you double-click a
function name in the Functions list box of the Field Formula dialog box. It
prompts you to choose the correct fields to enter for a function, displaying the
syntax for the selected function, value boxes for the parameters the function
requires, and a scroll box of fields that you can use for each function parameter.

Formulating a
Function

For example, suppose you want to total the cost of all items for an order:

1. Double-click Sum in the Functions list box of the Field Formula dialog box.

The Function Editor dialog box appears:

Sumdefinition

Correspondingfieldslist

Formuladisplaywindow

Notice that this dialog box displays:

■ The sum definition for the Sum function that was double-clicked in the
Field Formula dialog box.

■ The fields that correspond to the expression of the Sum definition.

■ The field the expression will act upon appears in the field formula
display window.

2. Click the Section edit control.

The Fields list box changes to the Section list box for section arguments:

Sectionargumentlistbox

Formuladisplaywindow

Defining Computed Fields

454 CA-Visual Objects IDE User Guide

Note: When you click in the Section edit control, the Function Editor only
displays the fields that make sense for the section argument in the Fields list
box.

3. Double-click the desired field in the Section list box.

Notice that the formula changes in the formula display window.

4. Click OK to return to the Field Formula dialog box.

Defining a Sum Field with the Sum Button

CA-Report Writer provides a quick method for creating Sum fields using the
Sum toolbar button. To define a Sum field within your report definition, use this
method:

1. Position the cursor in a column of numeric values that you want to sum, and
then click the Sum toolbar button.

CA-Report Writer displays the completed formula in the Field Formula
dialog box. For example:

Total_Costcolumn

Formula

2. Complete the field definition (for example, replace the generic field name).

3. Click OK.

Note: If you click the Sum button in a table column in a group footer that uses
the same table style as the body section, CA-Report Writer automatically creates
a Sum field using the column name and group break field for the function
arguments.

Using Parameter Fields

Chapter 9: Using the Report Editor 455

Using Parameter Fields
A parameter field is a field whose value is passed to something else—a report, a
main report from a subreport, or a bucket table. You define the prompt, data
type, and default value for the parameter field.

Parameter Fields
for Reports

Defining a parameter field for a report causes the CA-Report Writer to prompt
the user to enter a value each time the report is run. For example, suppose you
have a payroll report that lists all employees and their salary histories in
employee ID order. To run a report on a single employee’s salary history, you
can define a parameter field based on employee ID. Each time the report is run,
the user is prompted for an employee ID, the parameter value is passed to the
report query, and the query is executed.

Parameter Fields
for Subreports

You can also define a parameter field in a subreport that is used to pass values
from a main report to the subreport. When the main report is run, the
parameter value is passed to the report query defined in the subreport and the
query is executed.

Parameter Fields for
Bucket Tables

Parameter fields can also be used to pass values from bucket tables. When you
create a bucket table, the parameter field is not mapped to a query.

For more information about parameter fields, subreports, and bucket tables, refer
to the online help system.

Formatting Fields
Fields inserted into a report have an associated format string that determines
how the data is displayed on the report. The format string is a mask for the field,
designating the exact punctuation and placement of data. You can use
predefined format strings or you can create your own. You can also assign
formatting options to fields that suppress trailing blanks and repeated values.

Using Format Strings CA-Report Writer provides various format strings you can use to format numeric
and date-time report fields. You can also create your own format string using
the formatting string symbols in the Field Formula dialog box. The symbols in
the format strings determine the way the values are formatted.

Note: Some of the symbols refer to strings specified in the International section
of the Control Panel. You can change these strings in the Windows or Windows
NT Control Panel (click the International icon to see and change these strings).

Formatting Fields

456 CA-Visual Objects IDE User Guide

Applying Formatting to a Field

You can apply formatting to a field in both the Format Field and Field Formula
dialog boxes. To do so:

1. Click the Insert Field toolbar button, or choose Field from the Insert menu
and then click the Define New Field button in the Insert Field dialog box
that appears.

Alternatively, choose Field Definitions from the Edit menu and then click the
Define New button in the Edit Field Definition dialog box that appears.

In all cases, the Field Formula dialog box appears.

2. Select a predefined format from the Format String drop-down list box:

FormatStringdrop-downlistbox

Formatstringbuttons

Alternatively, use the Format String buttons to create your own format
string.

Note: The Field Formula dialog box will be empty if you use the Insert Field
method for accessing it.

3. Select the Trim Trailing Blanks option to eliminate trailing blanks in text
values.

4. Select the Eliminate Repeated Values option to eliminate repeating values
when the same value is repeated in a group or selected rows.

5. Select the Blank if Zero option to display a blank when the field value is zero.

6. Click OK to return to the report definition.

Formatting Fields

Chapter 9: Using the Report Editor 457

Editing the Format of a Field

To edit a field’s format:

1. Double-click the field you want to format to access the Format Field dialog
box.

Alternatively, position the cursor on the specified field and choose the Field
command from the Format menu to access the Field Formula dialog box.

2. Make your selections in the appropriate dialog box.

3. Click OK to return to the report definition.

Note: Both dialog boxes offer the same formatting options. For numeric or date
fields, select a string from the Format String combo box, or enter a string or select
from the string characters displayed. Optionally, you can select options to print
a blank when a field value is 0, print only the first value in a group of repeated
field values, or eliminate trailing blanks in string values. Note that the Blank If
Zero option applies only to numeric fields that are not formatted with a decimal
point.

Formatting Numbers

Use numeric format strings to format numeric values with dollar signs,
thousandths separators, scientific notation, percentages, and so on. Numeric
format strings can have one or two sections, separated by a semicolon:

■ If the format string has one section, positive and negative values use the
same format and negative numbers use a minus sign prefix.

■ If the format string has two sections, you can format positive numbers and
negative numbers differently. The first section is the format for positive
numbers; the second is for negative numbers.

If you do not specify a format string, CA-Report Writer rounds to 10 significant
digits: 1234567.1234 prints as 1234567.123; 1234567891234567 prints as 1.23e15
(this is the same as the General format string).

Formatting Fields

458 CA-Visual Objects IDE User Guide

The following table provides examples of numeric format strings:

Format String Value Formatted Value

0.00 100.5 100.50

-145.10 -145.10

0.00;(0.00) 100.5 100.50

-145.10 (145.10)

$#,##0.00 100.5 $100.50

0 $0.00

2500.25 $2,500.25

-145.10337 -$145.10

$#,##0.00;($#,##0.00) 100.50365 $100.50

-145.10 ($145.10)

$#,##0.00"CR";$#,##0.00"DB" 1125.9 $1,125.90CR

-2500 $2,500.00DB

0[S/1000] 12375 12

199 0

General 147 147

1.875 1.875

Saving Reports

Chapter 9: Using the Report Editor 459

Formatting Dates

Date-time format strings allow you to control how dates and times appear in
reports. The following table shows some examples of these strings:

Format String Value Formatted Value

mm/dd/yy Jan 15, 1999 01/15/99

mm/dd/yyyy Jan 9, 1999 01/09/1999

m/d/yy Jan 9, 1999 1/9/99

dd.mm.yy Jan 9, 1999 09.01.99

Mmm d, yyyy Jan 9, 1999 Jan 9, 1999

dd-MMM-yy Jan 9, 1999 09-JAN-99

Mmmm d, yyyy Jan 9, 1999 January 9, 1999

hh:mm:ss 4:53:10 PM 16:53:10

hh:mm:ss AM/PM 4:53:10 PM 04:53:10 PM

mm/dd/yy hh:mm:ss Jan 9, 1999 9:43 01/09/99 09:43:00

Saving Reports
When you create a new report, you should save the report and then save any
additional edits on a frequent basis. To initially save a new report, click the
Report Writer’s Save toolbar button. To save any subsequent changes, just click
the Save toolbar button again.

After saving your report, you can then continue to define other reports or
queries, switch to another tool or window in the IDE (using the mouse or the
Window menu), or exit the Report Editor.

Once you close the Report Editor, you will be prompted to store any changed
entities. The binary report entity will then be stored in the repository.

Printing a Report

460 CA-Visual Objects IDE User Guide

Printing a Report
This section tells you how to print reports, how to preview a report as it prints,
and how to create print status messages.

You can print a report from the CA-Report Writer window or the CA-Report
Viewer window using one of the following methods:

■ Click the Print toolbar button in the CA-Report Writer window.

■ Choose Print from the File menu in the CA-Report Writer window.

CA-Report Writer displays a standard Print dialog box where you can select a
print range, print quality, and the number of copies to print.

Tip: If you want to select a different printer or change the page orientation,
click Setup to access the Print Setup dialog box.

Pausing Printing

To temporarily pause the printing process:

1. Click the Pause button in the CA-Report Editor message box that displays
while the report is printing:

2. Click Resume to start printing again.

For more information about this dialog box, see Adding Print Status Messages.

Previewing a Report as It Prints

You can set up the CA-Report Writer so you can see each page of a report online
as it prints. To do so:

1. Choose Properties from the File menu to access the Report Properties dialog
box.

2. Select the Preview While Printing option in the Display group box.

3. Click OK.

Printing a Report

Chapter 9: Using the Report Editor 461

Note: If you have the Preview While Printing option selected, the CA-Report
Editor message box is not displayed (see the next section). To interrupt the
printing of a report, press the Esc key.

Adding Print Status Messages

The CA-Report Writer allows you to change the text that appears in the
CA-Report Editor message box that displays as you are printing a report. For
example, if you are printing a report that lists orders by vendor, you can create a
message to indicate each order number as it prints and each vendor name as it
changes.

If you do not define print messages, the CA-Report Writer uses the default
Generating page x and Printing page x messages.

You can display a message using data from one or more fields on a report
definition by adding a print message to a report section. If you have more than
one message, attach each to a different section. Any section can have a print
message. If you place the message in the report header section, it displays when
the report starts printing. If you place it in the page header] section, it is
re-evaluated at the beginning of each page. Messages placed in the body section
are updated as each record is processed.

Example To add a print status message:

1. Position the cursor in the section of the report where you want to place the
print message.

2. Choose the Section command from the Format menu.

If the section is not defined as a group, either the Format Section or Format
Body Section dialog box appears.

If, however, the section is defined as a group, the Format Group Section
dialog box, shown earlier, appears instead.

Note: For more information about defining a section as a group, see
Grouping Data earlier in this chapter.

Printing a Report

462 CA-Visual Objects IDE User Guide

Using an Existing
Message

3. To use one field for the print message, select it from the Printing Message
drop-down list box. For example:

Note: If you want to define a new message using one or more fields, skip to
step 5.

4. Optionally, to change the name of this field or edit its format string, click the
Edit Field button to access the Format Field dialog box:

Defining a New
Message

5. Alternatively, to define a new message using one or more
fields, do one of the following:

■ Click the Define New Field button

Printing a Report

Chapter 9: Using the Report Editor 463

The Field Formula dialog box appears:

■ To add a field to the formula, double-click the specified field in the Fields
list box.

■ To add a function to the formula, double-click the specified function in
the Functions list box to access the Function Editor dialog box:

■ You can enter a field in the Section edit control under Value, and then
click OK to add the formula.

(For more information about creating formulas, see Defining Computed
Fields earlier in this chapter.)

6. Click OK in the appropriate Format Section dialog box to associate the
message with the section.

Using the Report in an Application

464 CA-Visual Objects IDE User Guide

7. Click the Print Report toolbar button to print the report and display the
message you created. For example:

Note: If you have the Preview While Printing option selected in the Report
Properties dialog box, the CA-Report Writer does not display the new
message. Deselect this option to view your message.

Note: The CA-Report Writer does not display a print message until it computes
all field values referenced by the section. This means that if you include a report
total (or any non-literal column) in a message used in a page header, the
CA-Report Writer cannot process the report. Instead it displays the following
message: “Field . . . illegally references a field or function which cannot appear in
the ... section.”

Using the Report in an Application
Once you have created a report using the Report Editor, you need to add one of
two basic actions that will activate the report for the end user:

■ Clicking a push button

■ Using a menu command (or its equivalent toolbar selection)

Associating a report with either of these events is easy. Simply use the report
entity name in the ButtonClick event property of the push button or the Event
Name property of the menu item. Then, when you select the push button or
menu item, the report will be displayed. See Chapter 5: Using the Menu Editor
for more information on associating a report with a menu selection.

Exporting a Report to a File

Chapter 9: Using the Report Editor 465

Exporting a Report to a File
You can export reports to DOS files in one of two formats:

■ ASCII text (unformatted)

■ Microsoft’s Rich Text Format (RTF)

RTF preserves fonts, paragraph formatting, and alignment characteristics
used in the report; and it is supported by several Windows word processors.

When you export reports to text files, each paragraph ends with a new line, with
tabs separating report column values.

To export a report:

1. Open the report in the CA-Report Writer window.

2. Choose the Export Report To File command from the File menu.

The Export Report to File dialog box appears:

3. Select the drive, path, and file name for the exported file and select the type
of file in which you want to export the report.

The CA-Report Writer displays a dialog box as it exports the report. Click
Pause to pause the export; click Cancel to stop the export.

Chapter 10: Using the Image Editor 467

Chapter

10 Using the Image Editor

You can use the CA-Visual Objects Image Editor to create custom images, such as
icons, cursors, bitmaps, and ribbons, for your applications. It provides a drag-
and-drop interface that allows you to:

■ Create icon, cursor, bitmap image, and ribbon entities (and classes) that can
be used as mouse pointers, application icons, window icons, and window
control icons for push button, radio button, check box, and fixed icon
controls

■ Load existing icon (.ICO), cursor (.CUR), or bitmap (.BMP) files

■ Modify the entity name, related file name, and image of the icon, cursor,
bitmap or ribbon; and save your changes

■ Use drawing tools, including a color palette, lines, ellipses, rectangles, and
rotation tools, to create new images or to modify existing images

■ Edit each pixel of an image while simultaneously viewing how it will appear
in your application

■ Use temporary buffers to store up to six images; use drag-and-drop to
transfer images to and from the temporary buffers or to delete images via the
“trash can”

■ Manipulate images using the Windows Clipboard

Starting the Image Editor
Simply double-click on an icon, cursor, bitmap, or ribbon entity in the Repository
Explorer’s list view pane to open an Image Editor window for that image. You
can also access the Image Editor using the Tools menu or the New Entity toolbar
button. (You can open as many individual Image Editor windows as you wish.)

Workspace Overview

468 CA-Visual Objects IDE User Guide

Workspace Overview
The following illustration shows the various features of the Image Editor:

Toolbar

Editarea

Open/Save

Color
indicator

Colorpalette

Copy
Delete

Tool
palette

Editbuffer
Temporary
buffers

Icon/cursorbar

Statusbar

Toolpalette

Workspace Overview

Chapter 10: Using the Image Editor 469

Image Editor Components

The Image Editor window contains it own menu bar, toolbar, tool palette, and
other unique components:

Toolbar The Image Editor toolbar contains buttons for frequently used menu commands:

Edit

Save Build

Execute

Clear

TraceExpression

Print

The Clear, Edit, and Save buttons are described in this chapter. See Chapter 2:
Working in the Desktop and Chapter 11: Debugging Your Applications for
information about the other toolbar buttons.

Note: The Print toolbar button is disabled because printing from the Image
Editor is not supported.

Edit Area This is the area where you edit an image using the tools on the tool palette. It can
be a destination for a drag-and-drop operation.

Refer to Using the Edit Area in this chapter for more information.

Edit Buffer This area shows the image in the same size in which it will appear on the screen.
It can be a source or destination for a drag-and-drop operation.

Temporary Buffers Each of these six areas holds an image whose type depends on the current mode.
They are useful for temporary storage of images you are modifying and to
transfer images between files. Each temporary buffer can be a source or
destination for a drag-and-drop operation.

Tool Palette This set of buttons contains the Mode buttons described below and a set of
drawing tool buttons. Refer to Using the Tool Palette in this chapter for specific
information on the various drawing tools.

Workspace Overview

470 CA-Visual Objects IDE User Guide

Mode Buttons The four buttons at the top of the tool palette allow you to toggle between several
modes—Icon, Cursor, Bitmap, and Ribbon—depending on which type of image
object you wish to edit. The following table describes each mode and its
corresponding image object type.

Mode Button Description

Icon Icons can be variable in size and can use a 2-,
16-, or 256-color palette.

Cursor Cursors are small bitmaps which can use a 2-,
16-, or 256-color palette.

Each cursor also has a hot spot, which is a
single pixel that determines where the mouse
action is to take place; for example, the hot
spot on a standard arrow cursor is normally
located at the tip of the arrow.

Bitmap Bitmaps can be variable in size (16x16, 32x32,
48x48, or 64x64) and can use a 2-, 16-, or 256-
color palette.

Ribbon Ribbons are composed of a series of bitmaps
that can be variable in size (16x16, 32x32, 48x48,
or 64x64), and can use a 2-, 16-, or 256-color
palette.

Icon/Cursor Bar This bar shows the images contained in a ribbon. Click the arrows to scroll
through the images; use the left mouse button to advance one image at a time,
and the right mouse button to advance to the next or previous page of images.
Each item shown on the bar can be a source or destination for a drag-and-drop
operation.

Open/Save Button Drag an image from the edit buffer, a temporary buffer, or the icon/cursor bar
and drop it on this button to invoke File Save Image File. Click this button and
drag the disk icon to the edit area or edit buffer to invoke File Open Image File.

Copy Button Drag an image from the edit buffer, a temporary buffer, or the icon/cursor bar
and drop it on this button to invoke Edit Copy, transferring the image to the
Windows Clipboard. Double-click this button to view the contents of the
Windows Clipboard.

Delete Button Drag an image from the edit buffer or a temporary buffer and drop it on this
button to remove the image from the buffer.

Important! You will not receive any confirmation before the image is removed, even if
there are unsaved changes in the buffer.

Customizing the Image Editor

Chapter 10: Using the Image Editor 471

Color Indicator The four color rectangles in this box show the active colors for the drawing tools
and screen in the edit area and edit buffer. The top two colors correspond to the
primary and secondary solid colors. The bottom two colors correspond to the
primary and secondary transparent colors. Refer to the Using the Color
Indicator and the Editing Icons and Cursors sections in this chapter for specific
information on changing these colors.

Color Palette This box allows you to change the solid and transparent colors in the color
indicator box. You can choose a 2-color palette (black and white), a 16-color
palette or a 256-color palette for icons, cursors, bitmaps, and ribbons. Refer to
Editing Icons and Cursors in this chapter for specific information on using the
color palette.

Status Bar The status bar provides information on the cursor position within the edit area,
the location of the hot spot pixel on a cursor object, the size of an area you are
outlining, and the function of buttons on the tool palette.

Customizing the Image Editor
You can set a number of default options for the Image Editor—such as image
type and size, grid color, and color palette—by choosing the Properties
command from the Options menu. The Image Editor Options dialog box
appears:

Typically, you will want to select the most commonly used settings as permanent
system defaults; and then, if necessary, override them on an application-by-
application basis using the Set New Defaults button. Of course, you can restore
the default settings at anytime by selecting the Restore Defaults button.

Loading Images

472 CA-Visual Objects IDE User Guide

The Image Editor Options dialog box provides the following options:

Image Type From the Image Type radio button group, select a default image type for new
images. Valid values are: Cursor, Icon, Bit Map (single icon or bitmap), and
Ribbon (series of bitmaps). The default is Icon.

Color Options Select a default color palette from the Color Options radio button group. Valid
values are 2 Colors, 16 Colors (for 16x16 and 32x32 pixel images), and 256 Colors
(for 48x48 and 64x64 pixel images). The default is 16 Colors.

Size Options From the Size Options radio button group, select the default pixel size for
images. Valid values are Variable, 16x16, 32x32, 32x32, 48x48, and 64x64. The
default is 32x32.

Current Size The size of the currently loaded image is displayed in the Current Size edit
control. Optionally, enter a new value.

Transparent Option Select the Transparent Option if you want the background color of the
application or window to appear as the background color for the specified image
at runtime. (See Transparent Colors for more detailed information about this
option.)

Grid Color From the Grid Color drop-down list box, choose a color for the grid: Valid
choices are: None (no grid), White, Light Gray, Gray, Dark Gray, and Black. The
default is Light Gray.

Ribbon Spacing If the current image is a ribbon bitmap, specify the spacing between each image
within the ribbon.

Loading Images
You can open existing icon (.ICO), cursor (.CUR), and bitmap (.BMP) files in the
Image Editor in order to view them in the icon/cursor bar and transfer them to
the edit area or a temporary buffer.

To load a single icon, cursor, bitmap, or ribbon image object:

1. Start the Image Editor.

Like all CA-Visual Objects tools, the Image Editor is accessed using the Tools
menu or the New Entity toolbar button.

2. In the Image Editor, click one of the Mode buttons to specify the type of
image you wish to load.

Loading Images

Chapter 10: Using the Image Editor 473

3. Do one of the following:

■ Click the Edit tool bar button

■ Choose the Open Image File command

■ Click the Open/Save button and drag the disk icon to the edit buffer

In all cases, the appropriate dialog box—Edit Icon File, Edit Bitmap File, Edit
Cursor File, or Initialize Ribbon from Bitmap File—appears. For example:

4. Select a directory folder from the Look In combo box.

Use the Up One Level and Details toolbar buttons, respectively, in your
search for the desired drive and directory. For example, below is the
BUTTONS folder in CAVO27/SAMPLES/CONTROLS:

5. Choose the appropriate .BMP, .ICO, or .CUR file you want to load (for
example, TOMATO.BMP in the BUTTONS folder shown above).

Using the Color Indicator

474 CA-Visual Objects IDE User Guide

CA-Visual Objects loads the image defined in the specified file into the edit area:

Using the Color Indicator
The Image Editor displays the four current colors in the 2x2 color indicator. The
top row displays the two solid (drawing) colors and the bottom row displays the
two transparent (background) colors. The left color is called the primary color,
and the right color is called the secondary color. You can draw with the primary
color by using the left mouse button, while the right button controls the
secondary color.

Primary Secondary

Solid

Transparent

Colorindicator Colorpalette

Solid Colors
Solid Colors is the default option setting for the color indicator; these colors
define the icon or cursor image. You will spend most of your time using solid
colors. The color palette displays 2, 16, or 256 solid colors for icons, cursors,
bitmaps, and ribbons—depending on your default settings for the Image Editor.
At runtime, only pixels you have drawn with solid colors are displayed, while
the host window background fills in for any empty pixels.

Note: To erase solid colors, switch to transparent colors by selecting the
Transparent Colors command from the Options menu, and then use the Pencil or
Fill tool with the left mouse button.

Using the Color Indicator

Chapter 10: Using the Image Editor 475

Transparent Colors

You can also choose the Transparent Colors option for the color indicator; use
these colors to simulate the way the icon will look when displayed at runtime on
windows with different background colors. Once you choose the primary
transparent color, the secondary color will be automatically determined. The
transparent colors are temporary (appearing only in the Image Editor) and may
not appear at runtime if the host window has a different background color.

You will see the primary transparent color displayed as a frame surrounding the
icon in the edit buffer. When the transparent colors are active, you can change
the background frame color by clicking on a different color with the left mouse
button. You can see what the icon will look like at runtime, with the standard
gray window background colors, by dragging it from the edit buffer to a
temporary buffer.

When the transparent colors are active, you can draw just like you can in the
solid color mode. If you draw a transparent color with the left mouse button,
you will overwrite any solid color pixels. Then at runtime (or in the temporary
buffer), these pixels will be empty, so the window background colors will appear
instead of solid pixels. You can also use the secondary transparent color to allow
a different background color to display, based on the color of the host window.
It is advisable to not use either of the transparent colors as solid colors to avoid
confusing effects.

Using Drag-and-Drop

476 CA-Visual Objects IDE User Guide

Using Drag-and-Drop
The table below shows how you can use drag-and-drop techniques to perform
certain tasks more efficiently. There are six possible locations where you can
begin or end a drag-and-drop operation. The “From” locations are indicated by
the row headings, while the “To” locations are indicated by the column
headings.

To
From

Edit
Buffer

Temporary
Buffer

Open/
Save
Button

Clipboard
Button

Delete
Button

Icon/
Cursor Bar

Edit Buffer – Yes Save
file

Yes Yes Yes

Temporary
Buffer

Yes – Save
file

Yes Yes Yes

Open/Save
Button

Open
file

No – No Delete
file

No

Clipboard
Button

No No No – Delete
from
Clipboard

No

Delete
Button

No No No No – No

Icon/Cursor
Bar

Yes Yes Save
file

Yes Yes –

Using the Edit Area

Chapter 10: Using the Image Editor 477

Using the Edit Area
The edit area is where you make changes to an image. As you modify the pixels
in the image, you can immediately see in the edit buffer how your changes affect
the icon, cursor, bitmap, or ribbon. Choose commands on the Options menu to
control the appearance of the edit area. Click buttons on the tool palette or
choose commands on the Edit Select from Palette menu to activate various tools
to modify the image. Use the color palette to control the colors used by the
various drawing tools and the background color of the edit area.

Setting Colors

Within the edit area you can change the drawing colors, the background colors,
and the grid color.

Drawing Colors To change the drawing colors used by all drawing tools:

1. Choose Solid Colors from the Options menu.

The highlight rectangle in the color indicator box moves to the top to indicate
that drawing colors are now active.

2. Click with the left mouse button on a color in the color palette to set the
drawing color for the left mouse button.

3. Click with the right mouse button on a color in the color palette to set the
drawing color for the right mouse button.

Background Colors To change the background colors, which are displayed only in the Image Editor
and not at runtime:

1. Choose Transparent Colors from the Options menu.

The highlight rectangle in the color indicator box moves to the bottom to
indicate that background colors are now active.

2. Click with the left mouse button on a color in the color palette to change the
primary background color. This color is visible only in the edit area and edit
buffer, not in the temporary buffers.

Using the Edit Area

478 CA-Visual Objects IDE User Guide

Note: The secondary background color automatically changes when you
change the primary color. Unlike the primary transparent color, pixels set to
the secondary background color do affect the way the background color is
displayed at runtime. Move the icon or cursor image to a temporary buffer
to see how the secondary background color changes for areas in which you
have used it. The color in which pixels set to the secondary background
color appear in another area or window is controlled by the background
color of that area or window. For this reason, we recommend that you not
set pixels to the secondary background color, as the results can be hard to
predict. Also, you should avoid using either of the two transparent colors as
solid colors, since you cannot distinguish between a solid and transparent
pixel of the same color by looking at the edit area.

3. When you have set the desired background color, choose the Options Solid
Colors menu command to highlight the drawing colors at the top of the color
indicator. Note that a check mark appears on the Options menu next to the
colors that are active.

Tip: Choose the Options Transparent Toggle menu command to be able to
switch easily between solid colors and transparent Colors.

Using the Tool Palette

The buttons on the floating tool palette provide a variety of tools to modify the
icon or cursor image in the edit area. You can click and drag the tool palette to
move it to any location you want. Use the drawing tools to modify individual
pixels and draw lines, rectangles, and ellipses. Use the rotation tools to flip or
rotate the entire image or a selected area. This section provides a description of
how to use each tool on the tool palette:

Pencil

Rectangle

Line

Ellipse

FlipVertically

Rotate
Clockwise

Fill

FilledRectangle

SelectArea

FilledEllipse

FlipHorizontally

Rotate
C-Clockwise

Using the Edit Area

Chapter 10: Using the Image Editor 479

Pencil Use the Pencil to color individual pixels, for freehand drawing, or to set the hot
spot location for a cursor. To use the Pencil tool:

1. Click the Pencil button or choose Pencil from the Edit Select from Palette
menu.

2. Click with either mouse button to change the color of an individual pixel, or
click and drag to change multiple pixels.

To set a hot spot in a cursor object only:

1. Click the Pencil button or choose Pencil from the Edit Select from Palette
menu.

2. While holding down the Ctrl key, click with either mouse button on the pixel
that you want to designate as the hot spot for the current cursor object.

An outline appears around the pixel to identify it as the hot spot. The hot spot is
the point on the cursor that identifies the area to apply an action to when you
click a mouse button. For example, the hot spot in the cursor for the Pencil tool
itself is located at the point of the pencil, so the color of the pixel under the point
changes when you click with a mouse button.

You can also use the Pencil tool to erase solid colors. To do this:

1. Switch to transparent color mode using the Options Transparent Colors
menu command.

2. Click the Pencil button or choose Pencil from the Edit Select from Palette
menu.

3. Click with the left mouse button to erase an individual pixel, or click and
drag to change multiple pixels.

Fill Use Fill to change the color of pixels inside an existing shape or to change the
color of all pixels that use the primary background color.

The basic operation of this tool fills all pixels in a bounded area to a selected
color. This Fill option “spills through” diagonal gaps, as shown in the example
below. To use this option:

1. Click the Fill button or choose Fill from the Edit Select from Palette menu.

2. Click with the left or right mouse button inside an area bounded by pixels set
to a drawing color.

Before fill After fill

Using the Edit Area

480 CA-Visual Objects IDE User Guide

To fill without spilling through diagonal gaps:

1. Click the Fill button or choose Fill from the Edit Select from Palette menu.

2. While holding down the Shift key, click with the left or right mouse button
inside an area bounded by pixels set to a drawing color.

Before fill After fill

To change all pixels in the edit area that are set to the primary background color
to the selected color:

1. Click the Fill button or choose Fill from the Edit Select from Palette menu.

2. While holding down the Shift key, click with the left or right mouse button
anywhere in the edit area.

You can also use the Fill tool to erase solid colors. To do this:

1. Switch to transparent color mode using the Options Transparent Colors
menu command.

2. Click the Fill button or choose Fill from the Edit Select from Palette menu.

3. Click with the left mouse button inside an area bounded by pixels erase the
solid colors.

Line Use the Line tool to draw a line between two pixels in the edit area. To use the
Line tool:

1. Click the Line button or choose Line from the Edit Select from Palette
menu.

2. Click with the left or right mouse button on the pixel you want to be one
endpoint of the line, then drag to the pixel you want to be the other
endpoint.

3. Release the mouse button to draw the line.

Note on the status bar that the initial pixel is denoted by 1,1; as you drag, the
coordinates change to indicate the length and angle of the line.

Select Area Use the Select Area tool to identify an area of pixels that you want to flip or
rotate. To use the Select Area tool:

1. Click the Select Area button or choose Select from the Edit Select from
Palette menu.

2. Click with the left or right mouse button on the pixel at one corner of the
desired area, then drag to the pixel at the opposite corner.

3. Release the mouse button to select the area and identify it with a rectangle.

Using the Edit Area

Chapter 10: Using the Image Editor 481

Note on the status bar that the initial pixel is denoted by 1,1; as you drag, the
coordinates change to specify the size of the selection area. To use the rotation
tools, you must select a square area of pixels.

Rectangle Use the Rectangle tool to draw a rectangle in the edit area. To use the Rectangle
tool:

1. Click the Rectangle button or choose Rectangle from the Edit Select from
Palette menu.

2. Click with the left or right mouse button on the pixel at one corner, then drag
to the pixel at the opposite corner of the rectangle.

3. Release the mouse button to draw the rectangle, which will be outlined with
the appropriate drawing color based on the mouse button you used.

Note on the status bar that the initial pixel is denoted by 1,1; as you drag, the
coordinates change to specify the size of the rectangle.

Filled Rectangle Use the Filled Rectangle tool to draw a rectangle in the edit area. To use the
Filled Rectangle tool:

1. Click the Filled Rectangle button or choose Filled Rectangle from the Edit
Select from Palette menu.

2. Click with the left or right mouse button on the pixel at one corner, then drag
to the pixel at the opposite corner of the rectangle.

3. Release the mouse button to draw the rectangle, which will be filled with the
appropriate drawing color based on the mouse button you used.

Note on the status bar that the initial pixel is denoted by 1,1; as you drag, the
coordinates change to specify the size of the rectangle.

Ellipse Use the Ellipse tool to draw an ellipse in the edit area. To use the Ellipse tool:

1. Click the Ellipse button or choose Ellipse from the Edit Select from Palette
menu.

2. Click with the left or right mouse button on a pixel at the outside edge of the
desired area, then drag to a pixel at the opposite edge.

3. Release the mouse button to draw the ellipse, which will be outlined with the
appropriate drawing color based on the mouse button you used.

Note on the status bar that the initial pixel is denoted by 1,1; as you drag, the
coordinates change to specify the size of the ellipse.

Filled Ellipse Use the Filled Ellipse tool to draw an ellipse in the edit area. To use the Filled
Ellipse tool:

1. Click the Filled Ellipse button or choose Filled Ellipse from the Edit Select
from Palette menu.

Using the Edit Area

482 CA-Visual Objects IDE User Guide

2. Click with the left or right mouse button on a pixel at the outside edge of the
desired area, then drag to a pixel at the opposite edge.

3. Release the mouse button to draw the ellipse, which will be filled with the
appropriate drawing color based on the mouse button you used.

Note on the status bar that the initial pixel is denoted by 1,1; as you drag, the
coordinates change to specify the size of the ellipse.

Flip Vertically Use the Flip Vertically tool to flip the entire edit area or a portion you have
selected with the Select Area tool. To use the Flip Vertically tool:

1. If desired, select an area of pixels to flip using the Select Area tool (refer to
the instructions earlier in this chapter).

2. Click the Flip Vertically button or choose Edit Flip Vertically.

All pixels in the image or the selected area move to the exact opposite location
around an imaginary horizontal line at the halfway point of the edit area. Refer
to the picture below for an example of this tool.

Before vertical flip After vertical flip

Flip Horizontally Use the Flip Horizontally tool to flip the entire edit area or a portion you have
selected with the Select Area tool. To use the Flip Horizontally tool:

1. If desired, select an area of pixels to flip using the Select Area tool (refer to
the instructions earlier in this chapter).

2. Click the Flip Horizontally button or choose Edit Flip Horizontally.

All pixels in the image or the selected area move to the exact opposite location
around an imaginary vertical line at the halfway point of the edit area. Refer to
the picture below for an example of this tool.

Before horizontal flip After horizontal flip

Rotate Clockwise Use the Rotate Clockwise tool to rotate the entire edit area or a square portion
you have selected with the Select Area tool. To use the Rotate Clockwise tool:

1. If desired, select a square area of pixels to rotate using the Select Area tool
(refer to the instructions earlier in this chapter).

Using the Edit Area

Chapter 10: Using the Image Editor 483

2. Click the Rotate Clockwise button or choose Edit Rotate Clockwise.

The area rotates 90 degrees in a clockwise direction. Refer to the picture below
for an example of this tool.

Before clockwise rotation After clockwise rotation

Rotate
Counterclockwise

Use the Rotate Counterclockwise tool to rotate the entire edit area or a square
portion you have selected with the Select Area tool. To use the Rotate
Counterclockwise tool:

1. If desired, select a square area of pixels to rotate using the Select Area tool
(refer to the instructions earlier in this chapter).

2. Click the Rotate Counterclockwise button or choose Edit Rotate C-Clockwise.

The area rotates 90 degrees in a counterclockwise direction. Refer to the picture
below for an example of this tool.

Before counterclockwise
rotation

After counterclockwise
rotation

Clearing the Edit Area

To remove the current image from the edit area and edit buffer:

Click the Clear button on the toolbar or choose the File New menu command.
The Image Editor prompts you to save any changes to the image.

Note: You can also click and drag the image from the edit buffer to the Delete
(trash can) icon; however in this case, Image Editor does not prompt you to save
any unsaved changes.

Creating a Ribbon

484 CA-Visual Objects IDE User Guide

Creating a Ribbon
Suppose you wanted to adapt and expand the Order Entry sample application
for a client who happens to be a greengrocer. You could add some “glitz” to the
application by creating a ribbon image object to be associated with its menu or
one of its window controls. You could use some of the vegetable bitmaps in the
BUTTONS folder in the CAVO27\SAMPLES\CONTROLS directory for this
purpose.

To create a ribbon entity and bitmap file from existing bitmap files:

1. Start the Image Editor.

Like all CA-Visual Objects tools, the Image Editor is accessed using the Tools
menu or the New Entity toolbar button.

2. In the Image Editor, click the Bitmap mode button.

3. Click the Open/Save button and drag the disk icon to the edit buffer.

The Edit Bitmap File dialog box appears.

4. Choose the appropriate .BMP file you want to load (for example,
TOMATO.BMP).

CA-Visual Objects loads the image defined in the specified file into the edit
area and the edit buffer.

5. Switch to Ribbon mode.

6. Copy the image from the edit buffer to the icon/cursor bar using the drag-
and-drop technique.

Note that after dropping the image on the icon/cursor bar, you are
automatically switched back to Bitmap mode.

7. Repeat steps 3–6, adding PEPPER.BMP, EGGPLANT.BMP, and
BROCOLI.BMP to the icon/cursor bar.

Creating a Ribbon

Chapter 10: Using the Image Editor 485

The Image Editor should now look something like this:

8. Save your ribbon entity as Grocer and its corresponding bitmap file as
GROCER. BMP. (See Saving Images below for details.)

See Using Images in Applications for more information about incorporating
image objects in your application designs.

Saving Images

486 CA-Visual Objects IDE User Guide

Saving Images
To save the image object in the edit area as an entity in the current module of
your CA-Visual Objects application:

1. Do one of the following:

■ Click the Save toolbar button

■ Choose the Save Image File command

■ Drag the image from the edit buffer to the Open/Save (disk) icon

In all cases, the Save Image Entity and File dialog box appears:

Note: This dialog box has been updated slightly in CA-Visual Objects 2.7
and now includes a Network push button. For detailed information, see the
online help.

2. Select a directory folder from the Look In combo box.

Use the Up One Level and Details toolbar buttons, respectively, in your
search for the desired drive and directory.

Use the New Folder toolbar button to create a new directory folder, if
necessary.

3. If you are saving the image for the first time, type a name in the Entity Name
edit control.

You will receive a warning if the entity already exists; in that case, specify a
different entity name. If there is already an entity name in the Entity Name
edit control, you may leave that name, or type over it to save the image
under another entity name.

4. Click Save to save the icon, cursor, or bitmap file and create or make changes
to the entity.

Using Images in Applications

Chapter 10: Using the Image Editor 487

Note: All of the bitmap images used to create a Ribbon entity are saved as a
single .BMP file, which you may use subsequently for creating a toolbar for a
window in the Window Editor.

Generating Code In addition to saving the image you designed as an icon (*.ICO), cursor (*.CUR),
or bitmap (*.BMP) file, this action also causes the Image Editor to generate the
following code using the file and entity names you specified in the save dialog
box:

■ An icon, cursor, bitmap image, or ribbon entity

You can double-click on this entity in Repository Explorer’s list view pane to
begin editing it with the Image Editor.

■ An appropriate subclass—Icon subclass for icons, Pointer subclass for
cursors, or Bitmap subclass for bitmaps and ribbons—using the name of the
menu

■ An Init() method to instantiate the Icon subclass

■ A resource entity identifying the generated .ICO, .CUR, or .BMP file name

Using Images in Applications
Once you have created an icon, cursor, bitmap image, or ribbon entity, you can
use it in designing applications. The table below describes where image objects
can be used when you design an application:

Object Type Cursor Icon, Bitmap, or Ribbon

Application Not applicable Application Properties dialog
box, Icon button; Menu Editor
(Menu Properties window)

Shell window Mouse Pointer Icon Name

Data window Mouse Pointer Icon Name

Datadialog window Mouse Pointer Icon Name

Dialog window Mouse Pointer Not applicable

Window controls
(fixed icon, push button,
radio button, and check
box)

Not applicable Caption (for fixed icons only);
Image (for other window
controls)

In the case of choosing an icon for the application, you must click the Icon button
in the Application Properties dialog box. Choose one of the available icons, and
click OK to close the dialog box. The new icon will be displayed in the
Repository Explorer, as well as when the application is minimized.

Using Images in Applications

488 CA-Visual Objects IDE User Guide

In all other cases, you indicate the image object using a value cell in the
appropriate Properties window. In some cases, such as with the fixed icon
control, you must enter the name directly. In other cases, you can select the
name from a drop-down list of all cursor, icon, bitmap image, and ribbon entities
in your application. The appropriate source code will be generated by the
Window Editor to link entity and file to the window.

In addition, once the Image Editor creates the related class, Init() method, and
resource entity, you can utilize your images directly in the source code you
create. CA-Visual Objects also contains several system icons and system cursors
which you can utilize. See the Icon and Pointer class descriptions in the online
help system for a listing of the available system icons and cursors. The system
icons and cursors cannot be utilized as described above; instead you must use
them by writing custom source code.

Chapter 11: Debugging Your Applications 489

Chapter

11 Debugging Your Applications

With a CA-Visual Objects application, there are three distinct types of error that
can occur: compiler errors, runtime errors that are trapped by the error handling
system, and logic errors in the application that cannot be trapped as errors.

Compiler Errors When you attempt to build an application, you may receive compiler errors for
such things as incorrect syntax usage. Detection of certain error conditions at
this stage can be controlled with compiler options. For example, whether the use
of undeclared variable names is considered a compiler error is controlled by the
Undeclared Variables option.

The resolution of compiler errors is fairly straightforward. You simply read the
error message to pinpoint the cause of the error, locate the error, and fix it.
However, in large applications with many modules and entities, there may be
many errors at this stage and locating them in the source code can be difficult.
To make locating compiler errors easy, CA-Visual Objects provides two tools: the
Error Browser and the visual indicators in the Repository Explorer.

Runtime Errors After all compiler errors are resolved, you will get a successful build for your
application and can run it to see what happens. However, the program may not
run perfectly because of additional programming errors—runtime errors—that
could not be detected at compile time. Some examples of runtime errors are a
missing file or a variable that is referenced before it is initialized.

Resolving errors at this stage is also not difficult. The application will display an
error message to indicate exactly where the application failed and why, and you
can resolve the problem appropriately. For example, make sure the missing file
is properly located on the disk or correct the source code by putting in an
initialization statement for the variable in question.

Using Images in Applications

490 CA-Visual Objects IDE User Guide

Tip: You can minimize runtime errors by strongly scoping and typing
variables (and function and procedure declarations) and by deselecting the
Undeclared Variables compiler option. Doing this will trap any errors
involving the misuse of a variable or function call at compile time. See
“Variables, Constants, and Declarations” for more information on strong
typing and scoping of variables and “Functions and Procedures” for more
information on calling conventions for functions and procedures—both of
these chapters are located in the Programmer’s Guide.

Logic Errors You may also encounter errors in your application at runtime, known as logic
errors, that manifest themselves in less obvious ways than displaying error
messages.

This type of error resolution is definitely the most difficult because the only way
to detect logic errors is to recognize that the application is not behaving as
intended. For resolving errors of this nature, CA-Visual Objects provides you
with the Debugger, a comprehensive tool designed for just this purpose.

This chapter discusses how to use the various tools and features of CA-Visual
Objects to detect and resolve all types of errors. In this chapter, you will learn
how to:

■ Use the Error Browser and the visual indicators in the various browsers to
pinpoint and resolve compiler errors

■ Set debugging options at the application, module, and entity levels

■ Recognize and resolve runtime errors using both the comprehensive runtime
error reporting system that is built into every CA-Visual Objects application
and the Debugger for less obvious runtime errors

■ Use the Debugger to track down and correct logic errors in your application

Note: In CA-Visual Objects 2.7, there are several new debugging features and
options, including AutoStart debugging and DLL debugging, as well as minor
changes to the Error Browser window and the Evaluate Expression dialog box.
For details, see the online help.

A Sample Debugging Application

Chapter 11: Debugging Your Applications 491

A Sample Debugging Application
Before you begin working through this chapter, you must import the sample
application and add a new module:

1. From the Repository Explorer, choose the File Import menu command.

The Import Application dialog box appears:

2. Select the CA-Visual Objects \SAMPLES\DEBUG directory, and double-
click on the file named SALES.AEF.

CA-Visual Objects imports the Sales Totals application and returns you to
the Repository Explorer.

Note: If you installed CA-Visual Objects to a drive or directory other than
the default directory, then the Application Options dialog box displays.
Here you can change the path of the application. (You will also need to
change the path for SALES.DBF in the Sales DB Server entity.)

3. To view the modules for the Sales Totals application expand the applications
tree by clicking on the + button to the left of the application.

In the Repository Explorer’s tree view pane, you will see four modules: App
Start, EVHandle, Sales Data Wind, and Sales DB Server.

The source code in the EVHandle module contains a single method,
CellDoubleClick(), that is an over-simplified example designed with intentional
errors to demonstrate the tools available for debugging an application in
CA-Visual Objects. It is used as an example and refined throughout the rest of
this chapter as you walk through the various stages of debugging.

Resolving Compiler Errors

492 CA-Visual Objects IDE User Guide

Resolving Compiler Errors
The Repository Explorer has indicators to show the compilation status of
applications, modules, and entities, as has already been discussed in the
“Working in the Desktop” and “Using the Repository Explorer” chapters earlier
in this guide.

The Repository Explorer’s list view pane shows that the modules of the Sales
Totals application need to be compiled, as indicated by a red X through each of
the module’s icons and the “Uncompiled” status in the Vitality column:

Compilationindicators

Once you build the application, these indicators change based on the success or
failure of the build, on an entity-by-entity basis. If there are errors, the indicators
show you the general location of the errors, while the Error Browser allows you
to pinpoint their exact location.

The Error Browser is automatically displayed after an unsuccessful build.
However, if you close it before resolving all the errors, you can reopen it at
anytime by choosing the Error Browser command from the Tools menu.

Resolving Compiler Errors

Chapter 11: Debugging Your Applications 493

Building the Application

For example, click the Build toolbar button now to compile the Sales Totals
application.

You are launched immediately into the Error Browser, indicating compiler
errors and/or warnings in lines 16, 26, and 33 of the CellDoubleClick() method,
located in the EVHandle module:

Using the Error Browser

The Error Browser displays errors in a tree-like structure that can be expanded or
collapsed. In this structure, the first level indicates the module, the second level
indicates the entity, and the third (and final) level indicates the line number and
error or warning message. This structure is a convenient mechanism for zeroing
in on the error you want to correct.

An error is indicated by a red circle with an “E” inside it. Similarly, warnings
and their corresponding severity levels are indicated as follows:

Icon Color Severity
Indicator

Description

Dark yellow circle “1” Level 1 warning (most critical)

Yellow circle “2” Level 2 warning

Light yellow circle “3” Level 3 warning

White circle “4” Level 4 warning (least critical)

Resolving Compiler Errors

494 CA-Visual Objects IDE User Guide

Similar to the Repository Explorer, you can manipulate the tree by clicking on
the –/+ buttons to collapse or expand, respectively, a particular level (or branch),
and the Expand All or Collapse All toolbar button to expand or collapse the
entire tree.

For example, if your application contains several modules, you might want to
collapse all the branches and then expand one module at a time to view and
correct its errors.

Correcting the Errors

To immediately go to the source of an error, simply double-click on the error
message in the Error Browser. This action takes you directly into the Source
Code Editor, with the cursor located on the line where the error occurred. For
example:

1. Double-click on the second error message in your current Error Browser to
open the Source Code Editor as follows:

2. Insert } (a right brace) just before the right parenthesis at the end of the line to
correct this error.

3. Close the Source Code Editor and save your changes.

To go to the next item:

1. Switch back to the Error Browser.

Note: To do this, choose the Error Browser from the list of open windows in
the Windows menu or press Ctrl+Tab until you reach the Error Browser.

2. Double-click on the message for line 33.

Resolving Compiler Errors

Chapter 11: Debugging Your Applications 495

Your Source Code Editor window should now be positioned at line 33, as
shown here:

This is actually a warning, not an error, and it occurred because
ResumeNotification() is not a valid method name for the Sales class. Sales
inherits most of its methods, including this one, from the DBServer class.

To correct the error:

1. Change the method name from ResumeNotification() to ResetNotification().

2. Close the Source Code Editor and save your changes.

We still have not dealt with the item pertaining to line 16, but this is a warning
message that we will ignore for now.

Tip: When trying to resolve compiler errors, you can use your online help
reference to quickly view the correct syntax and usage of the item in
question.

Resolving Compiler Errors

496 CA-Visual Objects IDE User Guide

Close the Error Browser and build the application again—this time, the status
bar will indicate that there are warnings:

Messageindicateswarnings

If your application raises only warnings, the Error Browser is not launched
automatically, but it can be opened manually using the Tools Error Browser
menu command. If you open it now, you will see the warning message for line
16, which we have not yet resolved.

Note: You can set up your system so that warnings are displayed as errors. See
Setting Compiler Options in the “Working in the Desktop” chapter for detailed
information.

Unlike errors, however, warnings do not prevent the application from compiling
and may not present any runtime implications either. You can see in the
Repository Explorer that the Vitality column now displays “Compiled” and no X
appears through the icons.

You have seen how the CA-Visual Object debugging tools allow you to quickly
pinpoint and resolve compiler errors, and you will soon see the successfully
compiled application in action.

Setting Debugging Options

Chapter 11: Debugging Your Applications 497

Setting Debugging Options
Before running the application, however, let’s take a moment to examine the
debugging indicators in the various browsers. In CA-Visual Objects, you can set
debugging options at any level—application, module, or entity—and override
the current default setting at the next lower level. This feature enables you to
debug a new application piece-meal by setting the application-level debug flag
on and selectively turning off the debug flags for modules and entities that you
are not currently interested in debugging.

The Repository Explorer has a Debug column, which displays the debug flag
status for each level in the application’s hierarchy. D<On> indicates that
debugging is turned on for the current level, D<Off> indicates that debugging is
turned off for the current level, and D<Auto> indicates that debugging at
another level will apply.

Important! Whenever you change a debug setting, you must rebuild the application to
have it take effect. Because the system only rebuilds what you have changed, the rebuild
is usually instantaneous.

Application Level As discussed earlier in this guide, when you initially create an application, you
can turn its debug flag on or off. Each module within the application then
automatically inherits the application’s debug flag setting.

For example, our sample Sales Totals application was created with the debug
flag turned on, so all modules in that application that are created subsequently
will have a “D<On>” indicator displayed in the Debug column:

Debuggingindicator

With the debug option turned on, the compiler automatically includes
debugging information in each new module so that you can run the application
using the Debugger and, by default, debug any entity defined in the application.

If, however, an application’s debug flag is not turned on, all modules will have
debugging turned off and their debugging indicators will be Auto. Furthermore,
unless you have debugging turned on for a particular entity, any attempt to run
the application using the Debugger will simply run it straight through without
giving you the opportunity to use any of the Debugger features.

Setting Debugging Options

498 CA-Visual Objects IDE User Guide

Note: At any point during the lifetime of an application in the repository, you
have the option of resetting the debug flag using the Properties dialog box
(accessed via the Application Properties toolbar button or menu command). See
Modifying Your Application’s Properties in “Using the Repository Explorer” for
more information about setting application options.

Module Level Since you may at times want to override the default debug setting for a
particular module, the system allows you to change the debug setting at the
module level. For instance, if you are debugging an application and are not
interested in looking at entities in a particular module, you can turn the module
debug flag off.

In the Sales Totals application, for example, the EVHandle module is the only
one in question, so you could disable debugging for the other modules, as shown
here:

1. Highlight the Sales DB Server module.

2. Click the right mouse button and choose Properties from the local pop-up
menu that displays:

The Properties (Module) dialog box appears:

Note that the Debug drop-down list is set to Auto, indicating that the
selected module is currently using the debug flag set at the application level.

Resolving Runtime Errors

Chapter 11: Debugging Your Applications 499

Note: This dialog box has also been changed slightly in CA-Visual
Objects 2.7. The Debug drop-down list box has been replaced by three radio
buttons: Auto, On, and Off. Additionally, it indicates whether source control
is available or not and, if so, the source control status of the specified
module. For detailed information about the new Source Code Control
Interface, refer to the online help.

3. Select the Off setting to turn debugging off for this module, and then click
OK.

Entity Level CA-Visual Objects allows you to set the debug flag at the entity level in a similar
manner.

To change the debug flag for an individual entity:

1. Click on the specified module to display its entities, and then highlight the
specified entity (for example, Sales).

2. Click the right mouse button, and then choose Properties from the local pop-
up menu that displays.

The Properties (Entity) dialog box, which is almost identical to the Properties
(Modules) dialog box, appears.

3. Choose any one of the three debugging options: Auto, On, or Off.

Important! For the sample application, the debug flag for the EVHandle module and all
of its entities must be set to On or Auto, as should the debug flag for the App:Start()
entity. Make sure this is the case before continuing with the instructions in this chapter.

Resolving Runtime Errors
Now, let’s move into the next stage of debugging by running the application and
looking for runtime and logic errors.

If you have changed any of the debug flags according to the instructions in the
previous section, you will need to rebuild the Sales Totals application now.
Then, run the application by clicking the Run toolbar button.

The application executes, displaying a scrolling list box containing sales figures
by sales representative. The application instructs you to double-click on a sales
representative to show a total amount, but when you do this, the edit control
opens in edit mode.

This is because there is an error in the logic of the program preventing the
double-click event from being processed correctly. This type of error is not easy
to track down because there are no error messages or visual indicators in the IDE
or the application to give you clues.

Resolving Runtime Errors

500 CA-Visual Objects IDE User Guide

Using the Online Help Reference to Isolate an Error

The first thing you want to consider is the action itself. In this case, the action is a
double-click. A good place to start is the CellDoubleClick() method:

1. Close the Sales Totals application by clicking on the Close button in the title
bar of its shell window.

2. Bring up the entity list view for the EVHandle module by clicking on the
module.

3. Find the CellDoubleClick() method, and note that it is defined for the
DataWindow class:

EntitylistviewforEVHandlemodule

StatusbarindicatesCellDoubleClick()isinDataWindowentity

4. Choose the Help Index menu command to display the Index tab control in
the Help window.

5. Type CellDoubleClick in the edit control.

You will see in the Topics Found list box that this method is defined for the
DataBrowser class, not DataWindow.

6. Choose Cancel to close the Help window and return to the Repository
Explorer.

Resolving Runtime Errors

Chapter 11: Debugging Your Applications 501

Correcting an Error Using the Source Code Editor

Now, you can easily correct this error using the Source Code Editor. To do so:

1. Double-click on the CellDoubleClick() method to show the source code for
the method.

2. Change the first statement reading

METHOD CellDoubleClick() CLASS DataWindow

to:

METHOD CellDoubleClick() CLASS DataBrowser

3. Choose the Save toolbar button to save your changes, and then close the
Source Code Editor.

4. Click on the Build toolbar button to build the application. In this case, no
information was available to help you resolve the runtime error. In some
cases, however, a runtime error message dialog box will give you clues as to
the source of the runtime error.

The Error Dialog Box

The level of detail in CA-Visual Objects runtime error message dialog box allows
you to pinpoint the exact location of the error in your source code. It tells you
the class name, entity name, and line number, as well as a description of the
error.

Important! You should record this information—this is the only place where the exact
location of a runtime error is pinpointed.

After analyzing the information in the Error dialog box, you typically have three
options: Ignore, Debug, or Abort.

Ignore The Ignore option lets you move on to the next step in the program. This
typically is not recommended unless you know that ignoring the error will not
adversely affect the rest of the application.

Debug If the debug flag is on, the Debug option opens the Debug Source Code window
exactly at the offending line of code. If not, the Debug Source Code window is
empty; however, you can use either the various Debug menu commands or the
View toolbar button to view variables, breakpoints, etc.

Abort Use the Abort option to break out of the current error handling sequence in the
application. Note that this option may or may not terminate the application,
depending on how it is structured. Refer to the BEGIN SEQUENCE statement in
the online help system for more information.

Resolving Runtime Errors

502 CA-Visual Objects IDE User Guide

To see an example of the Error dialog box:

1. Run the Sales Totals application again.

2. When the application starts, double-click on a sales representative.

The Error dialog box appears:

The Error dialog box tells you that:

■ The error is a data type error

■ The method is CellDoubleClick() of the DataBrowser class

■ The legal argument type is an array, but the code shows it as numeric

3. After recording the error information, choose Abort and close the
application.

Correcting Errors Using the Debugger

To get to the bottom of this error, you will run the application again—this time
using the Debugger, so that you can see what is going on in the code while the
application is in progress.

1. Click the Debug toolbar button or choose the Debug Run command.

The Enter an Expression dialog box is displayed:

In this dialog box, you can enter any expression that can be evaluated in the
context of the current application. For example, if you have an isolated
function that you want to debug, you can type its name with the necessary
arguments in parentheses.

Resolving Runtime Errors

Chapter 11: Debugging Your Applications 503

Notice that, by default, it is assumed that you want to debug the entire
application; therefore, it contains the Start() entity.

Note: If the new Debug AutoStart option was selected in the System
Options dialog box when you initially set up your system, then this dialog
box does not appear and you are brought straight into the Debugger.

2. Choose OK.

This launches the Debugger with the source code for the Start() method
loaded in the Debug Source Code window:

DebugSourceCodewindow

Note: The Debugger cannot load source code for any entity that does not have
its debug flag turned on. Therefore, if the Start() entity has its debug flag turned
off, the Debugger will not pause as indicated here. Instead, it will run the
application until an entity is encountered for which the debug flag has been
turned on.

Resolving Runtime Errors

504 CA-Visual Objects IDE User Guide

The Debugger Workspace

Before moving on to debug the error in the Sales Totals application, here is a
brief overview of the Debugger to familiarize you with its features.

The Debugger has its own workspace, including a menu bar and a window for
displaying source code:

Debuggertoolbar

Highlight

DebugSourceCodewindow

Statusbar

When the Debugger is active, the commands on the Debug menu also become
available.

Debug Source
Code Window

The Debug Source Code window is the main Debugger window. It owns all
other windows that you can open using the Debug menu. Therefore, actions
that you perform on the Debug Source Code window (such as maximize,
minimize, or close) also affect the other Debugger windows. Closing this
window terminates the debugging process.

Tip: If there are other windows open when using the Debugger (for
example, other Repository Explorers and editors), you may want to
minimize or rearrange those windows to reduce the clutter in the CA-Visual
Objects desktop. Then, you can use the Window Tile menu command to
conveniently arrange the remaining open Debugger windows.

Highlight The highlight in the Debug Source Code window indicates the current point of
execution in the source code. You can scroll through this window using the
scroll bars and position the cursor using the mouse, but the highlight can only be
moved via a toolbar selection or menu command.

Resolving Runtime Errors

Chapter 11: Debugging Your Applications 505

Toolbar In addition to the Debug menu commands available in the CA-Visual Objects
menu bar, the Debug Source Code window has its own toolbar. This toolbar
contains the following buttons (which correspond to some of the commands
available on the Debug menu):

Evaluate

Reset

ExecuteNextLine

ExecutetoEnd

Find

Run
TraceEntity

FindNext

View

Set/ResetBreakpoint

All of these buttons, except Find and Find Next, are discussed in this chapter.
Find and Find Next are performed using standard Windows techniques, and you
can refer to your online help system for further information.

Tip: For the name and a quick description of these toolbar buttons, look at
the tooltips as the mouse pointer passes over the buttons.

Resolving Runtime Errors

506 CA-Visual Objects IDE User Guide

Execution Commands

The Debugger allows you to run an application in several execution modes using
various toolbar buttons and menu commands, as summarized in the following
table:

Debug Menu Command Toolbar Button

Run
Run

Step
Execute Next Line

Step In
Trace Entity

Step Out
Execute to End

Step To Cursor N/A

Reset Process
Reset

Breakpoint
Set/Reset Breakpoint

Each execution command is described in more detail below.

Note: Use the Reset toolbar button to stop execution and restart the application
from the beginning.

Run To execute an application in run mode, use the Debug Run menu command or the
Run toolbar button. The application returns control to the Debug Source Code
window when:

■ It terminates normally

■ A runtime error occurs

■ A breakpoint is encountered

■ The AltD() function is executed

Step To execute an application in single step mode, use the Step command or the
Execute Next Line toolbar button.

Single stepping lets you execute a single line of code at a time, viewing the
output and examining variables as you go. Called entities are executed in run
mode and are not displayed in the Debug Source Code window.

Resolving Runtime Errors

Chapter 11: Debugging Your Applications 507

Step In To step into an entity, or execute in trace mode, use the Step In command or the
Trace Entity toolbar button.

Tracing an entity is similar to the single step mode in that it allows you to
execute one line of program code at a time. However, the trace mode displays
the code for called entities in the Debug Source Code window and allows you to
single step through them.

Tip: Remember, you can control which entities and modules the Debugger
will step into using individual debug settings at these levels. See Setting
Debugging Options earlier in this chapter for more information.

Step Out The Step Out command (or Execute to End toolbar button) executes in run mode
until the end of the current entity is encountered. It behaves as if a breakpoint
were set at the last statement in the entity.

Step To Cursor The Step To Cursor command executes the application in run mode up to the
current cursor position. It behaves as if a temporary breakpoint were set at the
cursor.

Note: See Setting Breakpoints later in this chapter for more information on
breakpoints.

Analyzing the Problem

Now that you have an overview of the Debugger workspace and execution
commands, you are ready to use it to resolve the problem in the Sales Totals
application.

Setting Breakpoints

As your application becomes larger and more complex, it may be more difficult
to remember how the flow of the application proceeds. For example, you may
know that there is a bug in a certain module or even a specific entity, but
stepping to it might take a long time.

Use a breakpoint to stop running the application at the line where you place the
breakpoint, and to display the source of the entity containing that line in the
Debug Source Code window.

Breakpoints are set from within the Debug Source Code window or by using the
AltD() function in your application. (For more information about AltD(), see the
online help.)

Resolving Runtime Errors

508 CA-Visual Objects IDE User Guide

Breakpoints can also be set in the Source Code Editor by placing the cursor on a
line of code and clicking on the Set/Reset Breakpoint toolbar button of the
Source Code Editor. The line will be highlighted in red to denote that the
breakpoint has been set.

Note: See the online help for detailed information about the System Options
dialog box’s new Activate on Break option. This option, if selected,
automatically activates the IDE and brings it to the foreground when a debugged
application reaches a breakpoint.

Setting a Breakpoint For example, when you last ran the application, the program resulted in a
runtime error in the CellDoubleClick() method. By loading this entity into the
Debug Source Code window, you can cause the application to pause its
execution and return control to the Debugger using a breakpoint.

To do this:

1. With the Debugger still running, switch to the Repository Explorer. (Tile
these windows if you like.)

2. Select the EVHandle module in Sales Total to display its entity list, and then
double-click on its CellDoubleClick() method.

The source code for the method is loaded in the Debug Source Code window
as shown below:

Note that this code is appended to that of the Start() module.

3. Move the cursor to the line of code reading:

oSDW:oDCFT_RepTot:Show()

Resolving Runtime Errors

Chapter 11: Debugging Your Applications 509

4. Click the Set/Reset Breakpoint toolbar button or use the Debug Breakpoint
command.

The system highlights the specified line in red, denoting that a breakpoint is
set at that location.

You can set other breakpoints using this same procedure—just click on the
desired line then click Set/Reset Breakpoint. The only thing to be aware of is
that you cannot load entities that do not have their debug flag set (either directly
or through inheritance from the module or application).

Viewing/Clearing
Breakpoints

Note also that the Set/Reset Breakpoint toolbar button acts as a toggle switch—
clicking it when the cursor is positioned in a breakpoint line clears that
breakpoint.

You can also clear breakpoints using the View Breakpoints command on the
Debug menu. Choosing this command displays the Breakpoints dialog box:

This dialog box allows you to:

■ View all breakpoints currently set in an application

■ Delete one or more breakpoints using the Remove or Remove All push
buttons

(Remove deletes just the selected breakpoint, while Remove All clears all
breakpoints.)

■ Scroll to the line containing the currently selected breakpoint in this dialog
box by choosing the Show Source push button

Doing so places the execution highlight at that line in the Debug Source Code
window.

To close this window, click Cancel.

Resolving Runtime Errors

510 CA-Visual Objects IDE User Guide

Running with a Breakpoint

Once the breakpoint is set:

1. Run the application using the Run toolbar button.

2. When the application window appears, click the Restore button of its shell
window and move and/or size the window so that you can view the
application and Debugger windows at the same time.

3. Double-click on the first sales representative.

This will bring you to the breakpoint you defined in the CellDoubleClick()
method.

4. Click the Execute Next Line button or choose the Debug Step menu
command to step through the application. Continue to step through the
application until an error occurs. This will help you isolate the line of code
causing the error.

5. Once the error is isolated, close the Debug Source Code window to shut
down both the Debugger and the Sales Totals application.

The Debugger is closed and you are returned to the EVHandle entity list
view.

Correcting the Error

Once you have located the lines where errors occur, you are ready to fix the
problems.

The lines of code identified earlier indicate that you need to define the local
variable nTotal as an array. Double-click on the CellDoubleClick() method to
load it into the Source Code Editor, and make the following corrections:

1. Change the line

LOCAL nTotal AS INT

so that it reads:

LOCAL aTotal := {} AS ARRAY

2. Change the line

nTotal := oSales:Sum(#Amount,{||...

so that it reads:

aTotal := oSales:Sum(#Amount,{||...

3. Change the line

oSDW:SLE_RepTotAmt := nTotal

so that it reads:

oSDW:SLE_RepTotAmt := aTotal[1]

4. Close the Source Code Editor window, saving your work.

The error is corrected.

Resolving Runtime Errors

Chapter 11: Debugging Your Applications 511

5. Rebuild the application.

More Debugging

If you run the application, you will not get another error message; however, you
will find that nothing displays in the “Totals for Sales Rep” single-line edit
controls when you double-click on a sales representative. This section of the
application is controlled by single-line edit controls.

To get to the root of the problem, you need to find out what variable names are
used for the single-line edit controls:

1. If you are still running the Sales Totals application, close it now.

2. Click on the Sales Data Wind module, and then click on the Group By Type
toolbar button to display a listing of its entities.

3. Click on the Access entity in the Repository Explorer’s tree view pane.

You will see the entity names, SalesDW:SLE_REPTOTAMT and
SalesDW:SLE_REPTOTNAME, listed. Each is defined as an access.

4. Similarly, click on the Assign entity in the Repository Explorer’s tree view
pane. You will now see the entity names, SalesDW:SLE_REPTOTAMT and
SalesDW:SLE_REPTOTNAME, listed.

5. If you click on the Class entity in the Repository Explorer’s tree view pane
and then double-click on the SALESDW class, you will also see
SLE_REPTOTAMT and SLE_REPTOTNAME displayed as instance variables
in the Souce Code Editor:

These are the variable names for the single-line edit controls in this
application. Note the names of these variables, as you will use them later in
the debugging process.

6. Close the Source Code Editor.

Resolving Runtime Errors

512 CA-Visual Objects IDE User Guide

7. Click on the Group By Module icon to display the Sales Totals application’s
modules.

8. Click the Debug toolbar button to run the application using the Debugger.
(If prompted to enter an expression, enter Start() and then choose OK.)

The Debugger opens.

Running with a Preset Breakpoint

In the Sales Totals application, the CellDoubleClick() method is responsible for
displaying information in the single-line edit controls. To view this method
using the Debugger and examine the code that calculates the single-line edit
control values:

1. From within the Repository Explorer, click on the EVHandle module to
display its entity listing.

2. Double-click on the CellDoubleClick() method.

The source code for this method is added to the Debug Source Code
window.

3. From within the Debugger, click the Find toolbar button.

The Find dialog box appears:

Note: The Find dialog box now displays its search history via a drop-down
list box. This new feature makes it easier to repeat a recent search for
specified text. For more information, see the online help.

4. Type SLE_REPTOTNAME in the Find What edit control.

5. Click Find Next twice, and then choose Cancel.

Resolving Runtime Errors

Chapter 11: Debugging Your Applications 513

The cursor is now located on the line of code that caused the compiler
warning earlier:

This line of code involves one of the single-line edit controls, so it is probably
the source of the problem.

6. Scroll down until you locate the AltD() statement.

AltD() is a function that invokes the Debugger automatically, just as if you
had set a breakpoint. We intentionally put this preset breakpoint in the
sample application to invoke the Debugger.

Note: Before executing the application, the breakpoint that was set earlier in
this chapter must be removed. Place the cursor on the line with the
breakpoint and click on the Set/Reset Breakpoint toolbar button.
Alternatively, select the Debug View Breakpoints menu command, and then
click on the Remove All button in the View Breakpoints dialog box.

7. To see how it works, click the Run toolbar button to launch the application.

8. When the application window appears, click the Restore button of its shell
window and move and/or size the window so that you can view the
application and Debugger windows at the same time.

9. Double-click on a sales representative, and you will see the highlight in the
Debug Source Code window move to the AltD() statement.

Resolving Runtime Errors

514 CA-Visual Objects IDE User Guide

Viewing Work Areas

Highlight the Sales Total application in the Repository Explorer’s tree view pane,
and then choose the Error Browser command from the Tools menu to refresh
your memory about the warning message received earlier. It tells you that the
variable named SALESRE does not exist or is not accessible. The line of code that
produced this message looks like this:

oSDW:SLE_RepTotName := oSales:SalesRe

Thus, SalesRe is supposed to be a field defined for the data server, oSales. To get
more information about the fields defined for this data server, you can open the
Database Work Area window. This window allows you to view information about
the databases open in the different work areas currently in use by an application.

To open the Database Work Area window:

1. Close the Error Browser, if it is open, and click on the Debugger’s View
toolbar button.

A local pop-up menu appears:

2. Choose the DB Workareas command.

Alternatively, choose the View DB Work Areas command from the Debug
menu.

The Database Work Area window appears.

Resolving Runtime Errors

Chapter 11: Debugging Your Applications 515

3. Click on the SALES alias to display the server information, as follows:

WorkAreaListpanel

WorkAreaInformationpanel

Field/RecordInformationpanel

Note that at this point, SALES.DBF is in use by your sample application. This
database file is being accessed by the oSales data server.

The Database Work Area window is divided into three separately scrollable
panels: Work Area List, Work Area Information, and Field/Record Information.

Work Area List The Work Area List panel displays a list of the work area number and alias for
each database file currently in use by the application. This list contains one
highlighted entry, which represents the database file about which this window is
displaying information.

If there are multiple work areas in use, you can view information about any other
listed work area by clicking on it in this panel—the Work Area Information panel
and the Field/Record Information panel are updated to reflect data for the newly
selected work area.

Work Area Information The Work Area Information panel displays a host of data about the selected
work area, including beginning and end of file status, current record number,
and filter. Of particular interest in this panel is the Index setting (you may need
to scroll the window down to see it).

Resolving Runtime Errors

516 CA-Visual Objects IDE User Guide

When you first open this window, the Index setting displays a single index file
name to the right and a View icon to the left, as shown below. (If there are
multiple index files, each one will have its own icon.)

Viewicon

Indexfilename

If you click on this View icon, more detailed information about the index file
(and the orders in the file) is displayed in a collapsible/expandable tree-like
structure:

Clicktocollapseallbranches

Clicktocollapse
thisbranch

You can manipulate this tree to customize the view.

Field/Record
Information

The Field/Record Information panel displays the database file structure of the
selected work area, including field names, types, lengths, and decimal settings.
It also displays the contents of the current record.

Using the Database Work Area window, and in particular the Field/Record
Information panel, you can see that there is no field named “SalesRe” in the
SALES.DBF file—rather, it is called “SalesRep.”

Resolving Runtime Errors

Chapter 11: Debugging Your Applications 517

Implementing a Temporary Fix

You can evaluate any expression (except one involving dimensioned arrays)
from within the Debugger using either the Expression command on the Debug
menu or the Evaluate toolbar button. This is a convenient way to change the
current value of a variable using the assignment operator or simply to view the
contents of a variable.

You will use this feature now to implement a temporary correction for the error
involving the SalesRep field. This will enable your program to display the totals
for the current sales representative. Later, you will need to make a permanent
correction using the Source Code Editor.

To implement the temporary fix:

1. Close the Database Work Area window.

2. Click the Evaluate toolbar button or choose the Debug Expression command:

The Evaluate Expression dialog box appears:

3. Enter the following expression in the Expression edit control:

oSDW:SLE_RepTotName := oSales:SalesRep

Note: In CA-Visual Objects 2.7, this dialog box displays its expression
evaluation history via the Expression drop-down list box. This new feature
makes it easier to repeat a recent expression evaluation. Additionally, the
Result edit control has multiple lines and is scrollable. For more
information, see the online help.

4. Click Evaluate.

The name of the current sales representative displays in the Result edit
control. This action evaluates the line of code that you entered, which is a
correction for the line we suspect is causing the application to fail.

5. Close the Evaluate Expression dialog box by choosing Cancel.

6. Click the Run toolbar button to continue running the application after the
preset breakpoint.

The name and total should now display properly.

7. Return to the Debug Source Code window and close it to shut down the
Debugger and the sample application. Then implement the permanent fix,
described below.

Resolving Runtime Errors

518 CA-Visual Objects IDE User Guide

Correcting the Final Error

This is the final error in the sample application, and you can now correct it.

1. If it is not already open, access the entity list for the EVHandle module.

2. Double-click on the CellDoubleClick() method to open the Source Code
Editor.

3. Change the line that reads

oSDW:SLE_RepTotName := oSales:SalesRe

to:

oSDW:SLE_RepTotName := oSales:SalesRep

4. Close the Source Code Editor, saving your changes.

5. Rebuild the application.

This time, the status bar will not show any warnings.

6. Run the application.

Since all errors have been corrected, the application should now work as
intended.

Even though there are no more errors, the remaining features of the Debugger
will be demonstrated using this application, so close it now and run it again
using the Debugger as you have already done several times (that is, click the
Debug toolbar button and choose OK if prompted to evaluate the Start()
expression).

Resolving Runtime Errors

Chapter 11: Debugging Your Applications 519

Viewing Local and Private Variables

To view local, static local, and private variables within an entity:

1. Select the Debugger’s View toolbar button.

2. Select the Locals command from the local pop-up menu.

The Local/Private Variables window appears:

If there are multiple variables displayed in this window, you can highlight a new
one by clicking on it.

For multi-component variables, such as arrays, objects, and structures, the View
icon to the left of the variable expands/collapses the variable to show/hide its
components. For example, click on the icon to the left of SELF to view its
components. You can then select the LIWINDOWCOUNT protect variable by
clicking on it.
Normally, this window displays the variables that are visible to the currently
executing entity. If the Call Stack window has focus, however, this window will
show the variables for the currently highlighted entity in the call stack. See
Viewing the Call Stack for more information.

Resolving Runtime Errors

520 CA-Visual Objects IDE User Guide

Modifying Local and Private Variables

By right-clicking on the current variable, you can access a local pop-up menu
with three commands for modifying variables:

Modify Variable This command allows you to change the value of the highlighted variable using
the Modify Variable dialog box:

In it, you can enter a simple value or an expression for the new value. (See
Viewing Sets later in this chapter for an example.) Note that this option is not
available for multi-component variables, such as arrays and objects.

Watch Variable This command sets the currently highlighted variable as a watch expression.
(See Using Watch Expressions later in this chapter.)

Set Range This command allows you to specify a range of elements to be displayed for an
array variable using the Change Array Index Range dialog box.

Tip: This local pop-up menu is also available for variables displayed in the
Global/Public Variable and Call Stack windows (discussed in Viewing
Global and Public Variables and Viewing the Call Stack, respectively, later in
this chapter.)

Viewing Global and Public Variables

There is a separate window available for viewing globals, static globals, and
public variables. Open the Global/Public Variables window by clicking the
Debugger’s View toolbar button and then selecting the Globals command from
the local pop-up menu.

The behavior of this window is identical to the View Local/Public Variables
window. For example, if you click on a variable, you can see its components.

See Viewing Local and Private Variables earlier in this chapter for more
information.

Resolving Runtime Errors

Chapter 11: Debugging Your Applications 521

Using Watch Expressions

The Debugger allows you to define as a watch expression any expression whose
value you want to monitor during execution except one involving dimensioned
arrays.

Each watch expression is evaluated according to the current scope of the
program when it stops during debugging, and the expression’s current value is
updated.

Note: Watch expressions are automatically evaluated whenever execution stops.
They are not, however, updated continually as the program runs.

Setting and Clearing Watch Expressions

Setting To set a watch expression that you can subsequently view in the Watch
Expression window:

1. Choose the Debug Watch Expression command.

The Add Watch Expression dialog box appears:

2. In the Expression edit control, enter the expression to be monitored (for
example, aTotal[1]).

3. Choose Add to add it to a list of watch expressions.

4. Repeat steps 2 and 3 to create as many watch expressions as you like.

5. Choose OK to close the dialog box and save the list of watch expressions.

The Watch Expression window appears, displaying all defined watch
expressions.

Clearing To clear one or more watch expressions:

1. Choose the Debug Watch Expression command.

2. Highlight the expression you want to remove, and click the Remove button.

3. To clear all watch expressions, click the Remove All button.

Resolving Runtime Errors

522 CA-Visual Objects IDE User Guide

4. Choose OK to close the dialog box and save the changes you have made to
the list of watch expressions.

Tip: You can also create watch expressions from variables in the
Local/Private Variables, the Global/Public Variables, and the Call Stack
windows by right-clicking on the specified variable and then selecting the
Watch Variable command from the local pop-up menu.

Viewing Watch Expressions

To view the current value of all watch expressions, use the Debugger’s View
toolbar button and select the Watch Expressions command from the local pop-up
menu.

The Watch Expression window appears:

Note: If the expression cannot be evaluated, an expression error message is
displayed instead of the value of the expression.
You can watch the contents of this window change as the expressions are
updated by the application. To do this, make sure that both the Debug Source
Code and the Watch Expression windows are visible (you may want to use the
Window Tile command to do this), and single step through the code.

Resolving Runtime Errors

Chapter 11: Debugging Your Applications 523

For example, in the Sales Totals application, aTotal[1] changes as soon as the line
of code initializing the array is executed within the CellDoubleClick method of
the DataBrowser class:

Viewing the Call Stack

A call stack is a list of all activations that are currently pending on the stack.
When a routine, such as a function or method, is called, it is added to the stack
where it remains until it returns control to its caller. You can view the call stack
using the Call Stack window.

To view the call stack for our sample Sales Total application:

1. Click the Debugger’s View toolbar button.

2. Select the Call Stack command from the local pop-up menu.

The Call Stack window appears, displaying the most recently called entity
first:

Note that this window is divided into two panels, each of which has independent
scroll bars. In the top panel of the Call Stack window, you can move the
highlight to any entity listed by clicking on it. The bottom panel shows the
name, data type, and current value for each of the parameters of the highlighted
entity.

Resolving Runtime Errors

524 CA-Visual Objects IDE User Guide

If the View Locals/Privates window is also open, it reflects the variables visible
to the highlighted entity. Double-clicking on an entity will bring it into the
Debug Source Code window.

Tip: By right-clicking on one of the parameters in the bottom panel, you can
access a local pop-up menu with three commands for modifying variables.
This menu is the same as the local pop-up menu available for the
Local/Private Variables window. See Viewing Local and Private Variables
earlier in this chapter for information about the available menu commands.

Viewing Sets

You can also view and modify the system settings for your application using the
System Settings dialog box. This dialog box displays the current system settings
and allows you to temporarily change them during the current debugging
session.

For example, if you have numerical output that is clearly not what you expected,
you may want to increase your decimal setting as an additional test of your
program’s logic as you debug the balance of the application. To do this:

1. Click on the Debugger’s View toolbar button.

2. Select the Sets command from the local pop-up menu.

The System Settings dialog box appears:

Note: This dialog box has been updated slightly in CA-Visual Objects 2.7.
Specifically, the Terminal and Terminal Ext. options are no longer available.

3. Highlight the name of a setting (for example, DECIMALS).

Resolving Runtime Errors

Chapter 11: Debugging Your Applications 525

4. Click the Change Value push button.

The Modify Setting dialog box appears:

5. In the New Value edit control, enter a value (for example, 5).

6. Choose OK.

You are returned to the System Settings dialog box.

7. Click on the Close push button.

8. Step through the remainder of your application.

If the subsequent numerical output for this debugging session is reasonable,
then you know that you should correct the decimal setting in application’s
source code (for example, include SetDecimal(5) in your App:Start() method)

Note: The options in the Show group box in the System Settings dialog box
allow you to define the level of settings to be accessed.

Other Debugging Techniques

CA-Visual Objects offers other debugging techniques, including “Just-In-Time”
debugging and a terminal window.

Just-In-Time Debugging

With Just-In-Time debugging, the Debugger will be invoked if a runtime error
has occurred while running the application from within the IDE. The application
does not necessarily need to have the debug flag turned on to utilize the
Just-In-Time debugging technique. If debug is turned on, the line of code that
caused the error will be displayed. If debug is not turned on, the Debugger will
be invoked but the offending line of code will not be displayed. However, the
call stack and variable information will be available.

Resolving Runtime Errors

526 CA-Visual Objects IDE User Guide

Terminal Window

CA-Visual Objects provides a terminal window that can be used for logging or
verification of data. By including the Terminal Lite library in an application’s
properties, a terminal window will be displayed at runtime. The following are
some of the functions and commands supported in the terminal window:

? SetAlternate()

?? SetPrinter()

INKEY() SetConsole()

WAIT SetColor()

Chapter 12: Importing and Exporting Applications 527

Chapter

12
Importing and Exporting
Applications

This chapter describes how to import and export applications, modules, and
several types of source files relating to an application and its components. You
can import and export the following types of files:

■ Application export files

■ Module files

■ Text-based source files

Tip: CA-Visual Objects also allows you to import and export database and
index files. For information about working with these files, see Chapter 7:
Defining Data Servers and Field Specifications earlier in this guide.

Note: CA-Visual Objects 2.7 has a new reference feature, the Recent Imports
List, which allows you to view all applications (.AEF files) that have been
imported recently. To access the Recent Imports List, choose the Recent Imports
command from the File menu.

Exporting Applications and Modules
You can export any application or module so that it is comprised in its entirety
in a single .AEF or .MEF file, respectively. This feature might be used to copy
an application or module to disk so that it can be copied onto another PC.
You can also export all the applications you have created in all your projects
with a single command. This allows you to easily create backups of your
repository.

The information denoting an application’s type—application, library, or
DLL—and any related information is preserved when the application is
exported as an .AEF file. If there are any associated external source code or
.DLL files, the code in those external source files, as well as information
regarding the locations of the .DLL files on disk, is also included in the export
file.

Exporting Applications and Modules

528 CA-Visual Objects IDE User Guide

Exporting Applications

Single Application To export a single CA-Visual Objects application as an .AEF file:

1. Choose the Export command from the File menu in the Repository
Explorer.

The Export Application dialog box appears:

2. Select a directory folder from the Save In drop-down list box.

Use the Up One Level and Details toolbar buttons, respectively, in your
search for the desired drive and directory.

Use the New Folder toolbar button to create a new directory folder, if
necessary.

3. If you do not want to use the default file name (for example, Order Entry),
enter the name of a new or existing file in the File Name edit control for the
exported application.

Note: You will be prompted to confirm before overwriting an existing
file.

4. Optionally, include all .DLL files used by the application by selecting the
Include DLLs check box.

Note: If this option is selected, any _DLL declarations referring to
Windows system DLLs (for example, USER32.DLL) will be included, too,
which is unnecessary and can increase substantially the size of your .AEF
file.

5. Choose Save.

Exporting Applications and Modules

Chapter 12: Importing and Exporting Applications 529

All Applications To export all user-created applications as .AEF files:

1. Choose the Export All command from the File menu from the Repository
Explorer.

The Export All Applications dialog box appears:

2. Enter the drive and path for the exported files in the Export to Path edit
control.

Note: By default, the exported files have the same names as those used
during the last export, but the path of the last export is ignored. Instead,
the .AEF files are placed in the directory that is specified here in the
Export All Applications dialog box.

3. Optionally, include all .DLL files used by the applications by selecting the
Include DLLs check box.

4. Optionally, include all applications associated with all projects by
selecting the All Projects check box.

5. Click OK.

Exporting a Module

Similarly, to export a module as an .MEF file, highlight it and choose the
Export command from the File menu.

The Export Module dialog box appears, allowing you to either specify a new
name in the File Name edit control for the exported module or choose an
existing .MEF file:

Exporting Source Files

530 CA-Visual Objects IDE User Guide

You can also include or exclude DLLs using the Include DLLs check box.

Note: If you choose an existing .MEF file, you will be prompted to confirm
before overwriting the file.

After selecting your export options, choose Save to export the specified
module.

Exporting Source Files
Source code can be exported only from within the Source Code Editor. To
export source code as a text-based source file:

1. Open a Source Code Editor window so that it contains the code to be
exported.

For example, double-click on App:Start in the Repository Explorer’s list
view pane when the Order Entry application is selected. The following
Source Code Window appears:

2. Choose the Export command from the File menu.

A standard Save As dialog box appears:

3. Select the desired drive and directory.

Importing Applications and Modules

Chapter 12: Importing and Exporting Applications 531

Use the Up One Level and Details toolbar buttons, respectively, in your
search for the desired drive and directory.

Use the New Folder toolbar button to create a new directory folder, if
necessary.

4. Enter the name of a new or existing .PRG file in the File Name edit control
for the exported source file.

Note: You will be prompted to confirm before overwriting an existing
file.

5. Choose Save.

Importing Applications and Modules
All exported applications are stored as .AEF files, including libraries and
DLLs; exported modules are stored as .MEF files. You can import either type
of file whenever you are in the Repository Explorer using the File Import
menu commands.

The information denoting an application’s type—application, library, or
DLL—and any related information is preserved when importing an .AEF file.

Important! When you export an application or module that has an external source
code library or .DLL files associated with it, the code in those external files is included
in the export file, as well as information regarding the locations of the files on disk. If
you import the file on any machine that does not have the same directory structure,
the external files are recreated on the disk from which you import (which may be a
floppy disk). You need to ensure that enough disk space exists for these files; otherwise
import errors can occur.

Import Options

Both applications and modules can be imported with the same options
described below.

Application or
Module Name

The name of a CA-Visual Objects application or module is the text that
represents the application or module in the Repository Explorer.

Note: Application and module names can be up to 30 characters in length.

By default, the name of an exported application or module is stored in its
export file. When you import an .AEF or .MEF file, the name of the
application or module is read from the file and placed in the Repository
Explorer’s tree structure.

Importing Applications and Modules

532 CA-Visual Objects IDE User Guide

If you wish, when importing the .AEF or .MEF file, you can optionally specify
either a new name or the name of an existing application or module.

Specifying a new name allows you to change the name of the application or
module to something other than the name stored in the imported file. This is
useful either for simply renaming the application or module, or to avoid
deleting, or overwriting, an existing application or module that has the same
name as the one in the imported file.

Conversely, giving an export file the same name as an existing application or
module would allow you to quickly replace that existing application or
module with the newly imported version. For example, if someone gives you
an updated version of a module that you already have on your system, you
can quickly replace the out-of-date version using this technique.

Note: When importing multiple applications, Application Name is ignored.

Open as Read-Only If selected, the imported application/module cannot be changed. Note that any
further export operation will preserve this flag.

Overwrite Protection If you want to safeguard against deleting existing applications or modules
when importing, CA-Visual Objects provides a Delete Old Application option
that can be turned off to prevent overwriting any existing, same-named
application or module. If you choose not to delete the old application, you
will be prompted to make a decision if there is a conflict during the import
process.

Building the New
Application or
Module

When importing an application or module, you can specify whether to
immediately build the imported file as soon as it is imported. If not, the
imported application or module is not compiled until you explicitly build it.

Importing Applications and Modules

Chapter 12: Importing and Exporting Applications 533

Importing an Application

To import one or more CA-Visual Objects applications:

1. Choose the Import command from the File menu.

At the project level, the Import Application dialog box appears:

At the application level, the Import Application/Module dialog box
appears:

2. Select a directory folder from the Look In combo box.

Use the Up One Level and Details toolbar buttons, respectively, in your
search for the desired drive and directory.

Importing Applications and Modules

534 CA-Visual Objects IDE User Guide

Use the New Folder toolbar button to create a new directory folder, if
necessary.

3. Choose one or more applications (.AEF files) to be imported. Hold down
Shift to select multiple contiguous file names; hold down Ctrl to select
multiple non contiguous file names.

4. If you are importing a single application, select the name of an existing
application from the Application Name combo box, or optionally enter a
new name of up to 30 characters.

5. Specify whether to immediately build the imported application(s) using
the Build Application check box.

6. Specify whether to delete existing application(s) of the same name using
the Delete Old Application check box. If you do not check this box, you
will be prompted by a dialog box—similar to the one shown below—
regarding conflicts during the import process:

(See the online help for detailed information about this dialog box’s
options.)

7. Choose Open.

CA-Visual Objects imports the selected application(s).

Importing Applications and Modules

Chapter 12: Importing and Exporting Applications 535

Importing a Module

To import one or more CA-Visual Objects modules:

1. Choose the Import command from the File menu.

The Import Module dialog box appears:

Note: At the application level, the Import Application/Module dialog
box appears instead.

2. Select a directory folder from the Look In combo box.

Use the Up One Level and Details toolbar buttons, respectively, in your search
for the desired drive and directory.

Use the New Folder toolbar button to create a new directory folder, if
necessary.

3. Choose one or more modules (.MEF files) to be imported. Hold down
Shift to select multiple contiguous file names; hold down Ctrl to select
multiple non contiguous file names.

4. If you are importing a single module, select the name of an existing
module from the Module Name combo box, or optionally enter a new
name of up to 30 characters.

5. Specify whether to immediately build the imported module using the
Build Application check box.

6. Specify whether to delete an existing module of the same name using the
Delete Old Module check box. If you do not check this box, you will be
prompted regarding conflicts during the import process.

7. Choose Open.

CA-Visual Objects imports the selected module(s).

Importing Source Files

536 CA-Visual Objects IDE User Guide

Importing Source Files
Text-based source files can be imported only from within the Source Code
Editor.

Note: If you want the source code to be imported as its own module, create a
new module before importing the source file.

To import source code from a text-based source file:

1. Choose the File Import menu command while in a Source Code Editor
window.

A standard Import dialog box appears:

2. Select a directory folder from the Look In combo box.

Use the Up One Level and Details toolbar buttons, respectively, in your
search for the desired drive and directory.

Use the New Folder toolbar button to create a new directory folder, if
necessary.

3. Select the desired file.

Note that the default extension for imported source files is .PRG, but you
can import any text-based source code file. For example, you can click the
down arrow button in the List Files of Type box and change the selection
to *.CH to list header files.

4. Choose Open.

CA-Visual Objects imports the selected file in its entirety.

Importing Source Files

Chapter 12: Importing and Exporting Applications 537

For example, if you choose CHGINDEX.PRG from the GSTUTOR
subdirectory, the entire sample program will appear in the Source Code Editor
window:

Note: If you are importing the source code into its own newly created
module as suggested earlier, the current Source Code Editor window will be
empty beforehand. If, however, you are using an existing module, the current
Source Code Editor appends the imported text to the existing text.

Also, during the import, CA-Visual Objects analyzes the file, visually
separating each individual entity with a marker and color-coding the text
based on the current Source Code Editor options.

Once the import is complete, click the Save toolbar button to save the
imported code before you begin editing. Once you have completed editing
the code, close the Source Code Editor and save any additional changes to the
source code entity. When you attempt to save, you will be prompted to
resolve any conflicts with existing source code that may arise.

Exchanging Projects

538 CA-Visual Objects IDE User Guide

Exchanging Projects
In CA-Visual Objects, you can create and use multiple repositories which are
represented by projects. As mentioned earlier in this guide, all of the projects
that are available to you are managed through a project catalog.

Adding Projects to
a Catalog

A project can belong to only one catalog at a time. When you create a new
project, it is added automatically to your catalog. You can also add a new
project as long as it does not belong to another user’s catalog. To do so, use
the File menu commands, New Project and Add Project, to create or add
projects to the Repository Explorer, respectively.

Removing a
Project from a
Catalog

If you wish, however, to exchange your work with other members of a
development team, you can remove the project from your catalog. Note that
this action does not delete the project; the Delete from Catalog command,
accessible from a local pop-up menu, removes the project from the
Repository Explorer, but keeps the directory and contents of the repository
intact. This action simply allows another developer to add the existing
project to his or her own catalog.

Important! Projects cannot be moved between different versions of CA-Visual
Objects.

Deleting a Project Of course, you can delete a project in its entirety, using the Delete command
from the same local pop-up menu. This will delete the repository directory
and remove the project from the Repository Explorer.

For more detailed information about the New Project, Add Project, Delete from
Catalog, and Delete menu commands, see the Managing Projects section in
“Using the Repository Explorer.”

Appendix A: File Types 539

Appendix

A File Types

The following table contains a list of the various file types you will work with in
the IDE and CA-Visual Objects applications:

File Type Description

.AEF Exported application

.APP Internal repository file

.ASP Active Server Page file

.BMP Bitmap and ribbon files

.CDX FoxPro index file

.CH Xbase include file

.CUR Cursor file

.DBF Xbase database file

.DBG Temporary executable file for debugging

.DBT Xbase memo file

.DFL Xbase OLE file

.DLL Dynamic link library file

.EXE Executable program

.HTM HTML source file

.ICO Icon file

.IND Internal repository file

.INF Information file

Exchanging Projects

540 CA-Visual Objects IDE User Guide

File Type Description

.ISC Installation script file

.MAP Linker map file

.MDF Master document file

.MDX dBASE IV index file

.MEF Exported module

.NTX Index file

.OCX ActiveX control

.PRG CA-Clipper source code

.REG Registry import file

.RET CA-Report Writer reports

.SCC Project subdirectory for source code control

.TPL Template file for source generation

.UDC User-defined command file

.VO Internal repository file

.VOM Internal map file

Note: CA-Visual Objects also supports various SQL database file types, whose
file extensions depend on the corresponding ODBC driver.

Appendix B: CA-Visual Objects Registry Entries 541

Appendix

B CA-Visual Objects Registry Entries

This appendix is for reference purposes only, providing an overview of
important entries that CA-Visual Objects places in the System Registry. These
entries control environmental settings and compiler settings, as well as the
directories where important data files are stored.

Note: Any settings not documented here are not relevant for regular operation,
and consequently must not be touched! Moreover, changing registry settings
directly using the RegEdit program is not recommended, as deleting or
modifying registry entries might cause some programs to stop working.

The Multi-Tiered Registry
The registry is organized as a hierarchical tree structure in the following ways:

■ On the top level, there are six system-defined root keys. The important key
to look at for the active CA-Visual Objects 2.7 settings is
HKEY_CURRENT_USER.

■ Each key can have any number of subkeys. The CA-Visual Objects 2.7
entries are found under
HKEY_CURRENT_USER\Software\ComputerAssociates\
CA-Visual Objects 2.7.

The entries are grouped into different collections. The actual entries are
values of subkeys in
HKEY_CURRENT_USER\Software\ComputerAssociates\
CA-Visual Objects 2.7. Generally, a key can have any number of values as
well as any number of subkeys.

■ Each value consists of a name and an actual data value (e.g.,
ExecutablePath="C:\CAVO27\BIN").

Note: For more detailed information about the registry in CA-Visual Objects 2.7,
see the “Operating Environment” chapter in the Programmer’s Guide.

Adam Options Key

542 CA-Visual Objects IDE User Guide

Adam Options Key

Setting Function

StandardUDC Shows the name of the default .UDC file which, by default,
is STD.UDC.

Compiler Key

Setting Function Where Set

AcceptUDE Determines whether the program
accepts undeclared variables for Xbase
compatibility.

The Undeclared Variables check box
in the Default Compiler Options tab
of the System Settings dialog box
(File, Setup). The default is 0
(unchecked).

CheckClassPtr Determines whether the program
generates checks to ensure that objects
assigned to object variables are of the
right class.

The Class Checking check box in the
Default Compiler Options tab of the
System Settings dialog box . The
default is 1 (checked).

CompatibleDiv Determines whether dividing two
integers produces a floating point or an
integer result.

The Integer Divisions check box in
the Default Compiler Options tab of
the System Settings dialog box. The
default is 0 (not checked).

EnableProc Determines whether CA-Visual Objects
will support the ProcName() and
ProcLine() functions.

The PROCNAME/ PROCLINE
check box in the Default Compiler
Options tab of the System Settings
dialog box. The default is 1
(checked).

Generation Determines whether to optimize for
speed or size.

The speed and size radio buttons in
the Default Compiler Options tab of
the System Settings dialog box. Use
2 for speed and 3 for size in the
registry key. The default is 2.

MethodOperator Determines whether CA-Visual Objects
allows common operators such as +, –,
and * for method invocation.

The Operator Methods check box in
the Default Compiler Options tab of
the System Settings dialog box. The
default is 0 (unchecked).

DBServerEditor Key

Appendix B: CA-Visual Objects Registry Entries 543

Setting Function Where Set

OffsetCheck Determines whether CA-Visual Objects
generates runtime checks for numeric
overflow conditions.

The Overflow check box in the
Default Compiler Options tab of the
System Settings dialog box. The
default is 1 (checked).

OldAssignAllowed For Xbase compatibility, determines
whether the program allows you to
have the equal sign as an assignment
operator. When not used as the
assignment operator, any use of “=” is
considered the equality comparison
operator.

The Old Style Assignments check
box in the Default Compiler Options
tab of the System Settings dialog
box. The default is 0 (unchecked).

Optimization Level Determines the level of optimization
(high, medium, low, or none).

The radio buttons in the Default
Compiler Options tab of the System
Settings dialog box. The default is 0
(none). Other options are 1, 2, and 3
for low, medium, and high,
respectively.

RangeCheck Determines whether CA-Visual Objects
generates checks for attempts to access
dimensioned array elements outside the
current size of the array.

The Range Checking check box in
the Default Compiler Options tab of
the System Settings dialog box. The
default is 0 (unchecked).

Type Inference Determines whether CA-Visual Objects
attempts to infer the data type of
undeclared variables by looking at their
usage.

The Type Inference check box in the
Default Compiler Options tab of the
System Settings dialog box. The
default is 0 (unchecked).

WarningLevel Determines the level of warnings the
compiler generates. The options are 4,
3, 2, and 1, ranging from every type of
warning message to no warning
messages at all.

The radio buttons in the Default
Compiler Options tab of the System
Settings dialog box. The default is 2
(low).

DBServerEditor Key

Setting Function

ParentClass Specifies the parent class of the DBServer Editor, which you
can modify. The default is "DBSERVER".

Directories Key

544 CA-Visual Objects IDE User Guide

Directories Key

Setting Function Where Set

AEFPath Sets the default export and import path
for applications only. This entry does
not appear in the registry key until set
in the IDE.

In the Export or Import dialog box (File,
Export or Import when in the Repository
Explorer).

ApplicationsPath Sets the default project directory. Implicitly changed through switching
projects in the Repository Explorer.

ExecutablePath Sets the default directory where
generated .EXE and .DLL files are
stored.

In the System Settings dialog box.

MEFPath Sets the default export and import path
for modules only.

In the Export or Import dialog box (File
Export or Import from within a module).
Note that changing the setting in this
dialog box will not update the registry
key; however, the registry key will
update this dialog box.

PRGPath Sets the default directory where the
Source Code Editor looks for files and
the compiler looks for icon (.ICO) files
declared using the RESOURCE ICON
statement.

In the System Settings dialog box. Note
that changing the setting in this dialog
box will not update the registry key;
however, the registry key will update
this dialog box.

PrjCatPath Sets the directory that holds the project
catalog file (PRJCAT.VO). The project
catalog contains a list of the currently
available projects and their locations.

Only to be set by the installer.

Project Name of the currently selected project. Implicitly changed through switching
projects in the Repository Explorer. The
default is "Default Project".

SysPath Sets the path to the system repository Only to be set by the installer.

EnvironmentOpt Key

Appendix B: CA-Visual Objects Registry Entries 545

EnvironmentOpt Key

Setting Function Where Set

AskClose Determines whether CA-Visual
Objects will ask you to confirm that
you want to quit when you choose
File Exit or double-click the System
Menu.

The Confirm on Exit check box in the
System Settings dialog box (File,
Setup). The default is 0 (unchecked).

ColorLEDs Determines how the program
indicates compilation errors and
warnings in the Error Browser.

The Color LEDs check box in the
System Settings dialog box. The
default is non-0 (checked).

CreateDefaultModule Determines whether the system
creates a new empty module every
time you create a new application.

The Create Default Module check
box in the System Settings dialog
box. The default is non-0 (checked).

EditorTabStops Determines the tab stop setting for
the Source Code Editor.

This entry cannot be set from within
the IDE. The default tab stop setting
is 4, but you can change this setting
to range anywhere from 1 to 40.

EditShowBlocks Determines whether CA-Visual
Objects displays entity separators (a
red line separating entities) in the
Source Code Editor.

The Entity Markers option on the
View menu. The default is non-0
(checked).

NewModuleDebug Determines whether the system
automatically turns debugging on for
new modules.

The New Module Debug check box
in the System Settings dialog box.
The default is 0 (unchecked).

Show Determines what application types
(Executable, DLL, or Library) are
displayed in the Repository Explorer.

The Options dialog box (View,
Options). The default is 1;1;1,
meaning all items in this dialog box
are checked. You must choose File,
Save Desktop to save this entry for
all future sessions.

ShowPrototypes Determines whether the program
displays prototypes for entities (like
classes, methods, and functions) on
the status bar.

The Show Prototypes check box in
the System Settings dialog box. The
default is non-0 (checked).

Tools Key

546 CA-Visual Objects IDE User Guide

Tools Key

Setting Function

CAVODED.DLL Name of the DB Server Editor DLL

CAVOFED.DLL Name of the FieldSpec Editor DLL

CAVOIED.DLL Name of the Image Editor DLL

CAVOMED.DLL Name of the Menu Editor DLL

CAVOSED.DLL Name of the SQL Editor DLL

CAVOWED.DLL Name of the Window Editor DLL

Window Key

Setting Function

OLEObjInPlaceEnabled Determines if the Window Editor will allow
in-place editing of OLE objects. The default
is 1 (allows in-place editing).

Dynamic Memory
The Dynamic Memory System is not designed to replace database processing via
external disk space; however, it should keep the programmer from allocating
and freeing memory for local, global, and instance variables. The default
maximum size available for dynamic memory is 16MB. This can be verified by
checking the return value of the DynInfoFree() function.

If some applications need more dynamic memory, this size can be changed via
the System Registry:

Key HKEY_CURRENT_USER\Software\ComputerAssociates\
CA-Visual Objects Applications\Runtime

Value MaxDynSpace (DWORD), where MaxDynSpace represents the new value in
bytes either as a decimal (16777216 for 16MB) or hex (1000000 for 16MB). The
default setting for MaxDynSpace is 16777216. To increase the dynamic memory
to 32MB, you would set MaxDynSpace to 33554432.

Appendix C: Using the Install Maker 547

Appendix

C Using the Install Maker

The Install Maker, shown below, allows you to make an install set for a selected
application in your CA-Visual Objects repository by specifying what files (DLLs,
RDDs, and so on) in the Layout Files list view are to be included on the disk(s) or
CD-ROM. It also allows you to specify several options, such as floppy disk size,
directory for disk images, and Start menu name.

Menubar

Toolbar

ProjectPropertiesgroupbox

ApplicationListtreeview

LayoutFileslistview(currentlyempty)

Important! Since both need exclusive access to the repository, you cannot run the
Install Maker and CA-Visual Objects at the same time.

Program Components

548 CA-Visual Objects IDE User Guide

Program Components
Image Directory When you create installation disks or CD-ROMs for your application, the Install

Maker creates images of these disks. The disk images are stored in
subdirectories under the directory name specified in the Image Directory edit
control. The disk image subdirectories are named according to disk number
(e.g., DISK1, DISK2). Once they are created, you must copy each disk image to a
separate floppy disk. The install disks should then be tested before being
distributed.

Install Directory This edit control determines where the files will be installed.

Start Menu When you run the install disks created by the Install Maker, a folder will be
created and added to the Windows Start menu. The name of this folder is
specified in the Start Menu edit control. This name will also appear at the top
left-hand corner of the screen when the install program is run.

Disk Size The Install Maker program must know the size of the installation disks. Use the
Disk Size combo box to specify the disk size. Valid choices are: No Limit, 2.88
MB, 1.44 MB, 1.22 MB, 720 KB, and 360 KB. The default is 1.44 MB.

See Floppy Disk Utilization later in this appendix for more detailed information
about selecting floppy disk size for your install set.

Compress Option By default, the project files are compressed by CA-Visual Objects file
compression facility.

Note: If you deselect this option, you will receive a warning message if a file is
too large for the specified disk size.

Program Components

Appendix C: Using the Install Maker 549

Application List The Application List tree view displays all the applications in the current
CA-Visual Objects repository. When you click on an application, its
corresponding files display in the Layout Files list view. For example:

Note that you can select any number of applications for the specified installation
disk(s).

Tip: Just as you can customize the Repository Explorer’s list view pane, you
can do the same for the Install Maker’s Layout Files list view by selecting the
Large Icons, Small Icons, List or Details command from the View menu. You
can also arrange the icons by name, type, size, or date using the
corresponding Arrange Icons menu commands.

Layout Files The Layout Files list view displays the files for the selected application that will
be placed on the install disks created by the Install Maker. Files in this list can be
added or deleted—simply click the Add File or Delete File button, respectively.
(You can also choose the Delete command from a local pop-up menu when you
click on a file.)

Important! The Install Maker tries to find the best match for files associated with the
selected application. It is up to you to test the install disks and make sure that all files are
included. You have the option of deleting or adding files to the Layout Files list view.
Refer to the “Operating Environment” chapter in the Programmer’s Guide for more
information about preparing your application for delivery.

Program Components

550 CA-Visual Objects IDE User Guide

Add File Button This toolbar button opens a standard Open dialog box from which you can add
files to the Layout Files list view. This is useful if the Install Maker did not add
all of the files needed for the install. It is also necessary if you have ancillary
files (such as database, index, report, help, and read me files) that you need to
add to the install.

Delete File Button This toolbar button will delete the selected file from the Layout Files list view.
This is useful if the Install Maker has added unnecessary files to the Layout
Files list view.

Properties Button The Properties toolbar button will open the File Properties dialog box, shown
below, for the selected file allowing you to set the properties for each file in the
Layout Files list view (such as whether the file should be installed in the default
Install Directory or your Windows directory). You can also decide if a file will
be a program item and what name that program item will have. By default all
.EXE files are set as program items, but you may also want to include .HLP
files, for example.

Tip: You can also choose the Properties command from a local pop-up menu
when you right-click on a file.

Compression Options The Compression option on the main Install Maker window, if checked, provides
for global compression of all files listed in the Layout Files list view. (Checked is
the default setting.)

The File Properties dialog box, however, allows you to override the default
setting and to select compression options for individual files. Valid options are:

■ Always Compress the File

Select this option if there is a particular file that you always want to compress,
like a README.WRI file.

Program Components

Appendix C: Using the Install Maker 551

■ Do Not Compress This File

Select this option if there is a particular file that you never want to compress,
like a large .DBF file.

■ Use Project Compression Setting

This option—the default setting—confirms the project compression setting as
specified in the main Install Maker window.

Program Item To specify that a file be installed as a program item in the folder, select the Create
a Program Item option. Then enter a description in the Name edit control that
will appear as the item in the folder.

Note: All executable (.EXE) files are, by default, set to be program items in a
folder with the file name of each .EXE used as the description. If you want to
override the file name with more descriptive text, you can do so. Also, if you
have created a multi-application installation set where there is more than one
.EXE file and you do not want certain .EXE files to be installed as items, you can
override the default setting.

Destination Directory Select the destination directory on the target machine for the specified file. Valid
choices are:

■ Install

If selected, the destination directory is the Install directory that is specified in
the main Install Maker window.

Note: Most of the files in the Layout Files list view will be installed in the
Install directory, as these will be CA-Visual Objects-specific DLL and RDD
type files.

■ Windows

If selected, the destination directory is the Windows directory.

■ Windows System

If selected, the destination directory is the Windows System directory.

CA-Visual Objects automatically sets this property for you for the files that
CA-Visual Objects recognizes. If you have added any files to the Layout Files list
view that CA-Visual Objects does not recognize, they will default to the Install
directory. If these files need to be installed in either Windows or
Windows\System, you will need to change the property manually

Note: You should save the current Install Maker session to a project file, because
after testing you may find you want to modify certain file properties. If this is
the case, you can restart the Install Maker and open up your old project file and
modify it. See Project Files later in this appendix for more detailed information.

Program Components

552 CA-Visual Objects IDE User Guide

Details Button The Details toolbar button will open the Details dialog box, shown below,
which displays RDD Classes and Report Class information for the specified file.

This dialog box allows you to fine-tune the install set for your application,
excluding files or subsystems that you have determined to be unnecessary for the
proper operation of your application.

RDD Classes/Report
Classes

Each check box in the Details dialog box corresponds to a file or subsystem in
CA-Visual Objects. These components may or may not be present in your
install set depending on what libraries you selected when you created your
application.

Tip: To see exactly which files correspond to each check box in this dialog
box, look at INSTAPP.INF in your CAVO27\BIN directory.

Note that all boxes are initially checked by default, and that all files found in the
Files Layout list view will be included in the install set.

To fine-tune your install set:

1. Deselect any files or subsystems that you want to exclude from the Files
Layout list view.

2. Click OK.

If the files or subsystems were found in your original Files Layout listing,
those files will now be excluded when you return to the main Install Maker
window.

3. Save this Install Maker session to a project file.

After testing you may find you need certain components restored. If this is
the case, you can restart the Install Maker and open up your old project file
and modify it. See Project Files later in this appendix for more detailed
information.

Program Components

Appendix C: Using the Install Maker 553

Important! It is imperative that you install and test your application on a machine that
does not have CA-Visual Objects installed (or any remnants of a prior CA-Visual
Objects installation). You must ensure that all files necessary for your application are
included on the installation disks. Refer to the INSTAPP.INF file in the CAVO27\BIN
directory for a list of CA-Visual Objects files that are required for each library in your
application.

Make Disks Button This toolbar button creates the disk images from the files in the Layout Files list
view. It will also check if there are disk images in the current Image Directory.
If there are already images, it will give you the option of deleting these
directories or canceling the make disks process.

Floppy Disk Utilization

554 CA-Visual Objects IDE User Guide

Floppy Disk Utilization
Toiward the end of INSTAPP.INF there is a new group of settings, DISK SIZE,
that will determine the maximum utilization of your floppies at the end of the
make disks process. The value assigned to each floppy density is approximately
ninety percent (90%) of the size allowed for an empty, non-bootable floppy disk
of the selected density. This number can be modified up or down. Once
changed, it is effective for all Install Maker sessions.

The default disk size settings are shown below:

NoLimit = 2147483647

2.88MB = 2785126

1.44MB = 1384780

1.22MB = 1153254

720KB = 692390

360KB = 344371

You should never choose the maximum allowed size, as this will not allow for
space for the FAT table entries, especially when there are many small files. There
will probably also be a discrepancy between the sector size of your hard drive
and the sector size of the floppy. Both of these factors may result in overflowing
of the floppy when you actually try to copy the files to the floppy disk.

If you want to allow for expansion or inclusion of more files on the floppy
outside the control of the Install Maker, you can make the size smaller, but this
will affect all of the floppies. Each disk of your floppy install set will be limited to
the size selected.

If you choose the No Limit option, the Install Maker will copy all files to a DISK1
subdirectory. This is useful for creating a CD-ROM installation disk.

Important! You should always check that there is enough disk space on your
destination hard drive before you complete the make disks process. The Install Maker will
copy each file in the install set for a new IMAGE subdirectory that you create with the
Actions Make Disks menu command or the Make Disks button.

Project Files
Under the File menu, there are the New, Open, Save, and Save As options.
Using these commands, or their corresponding toolbar buttons, you can save all
the information for the current install set you defined. These options are useful
in case you need to make changes to the install set, such as adding a new file.

Producing Install Disks

Appendix C: Using the Install Maker 555

Producing Install Disks
In summary, the basic steps required to produce install disks for your application
are as follows:

1. After complete development of your application in the IDE, check the
application’s properties to make sure that the .EXE file name and the folder
name are as you want them to be.

2. Generate an executable file using the Make EXE toolbar
button.

3. Shut down CA-Visual Objects, then start the Install Maker from the
Windows Start menu.

4. In the Image Directory edit control, enter the directory where you want to
save the disk images.

5. In the Install Directory edit control, enter the name of the directory in which
the application will be installed on the end user’s computer.

6. From the Disk Size combo box, select the floppy disk size that your
application will be distributed on.

7. Enter the Windows Start menu name for your application in the Start Menu
edit control.

8. Optionally, deselect the Compress option.

Note: If you do so, you should select one of the compression options
available at the file level via the Properties dialog box. Otherwise, you may
receive a warning message.

9. Click on an application in the Application List tree view.

The Layout Files list view displays the default files needed by the
application.

10. Using the Add File button, add any additional files needed by your
application, such as .DBF and .HLP files.

11. Optionally remove any file from the Layout Files list view that you know is
not needed by your application using the Delete File button.

12. Highlight each file in the Layout Files list view and click on the Properties
button to make sure the file will be installed in the correct subdirectory and
to optionally designate the file as a separate program group item.

13. Make sure you have enough disk space on the drive indicated in the Image
Directory to path, and then press the Make Disks button to create the disk
images.

Producing Install Disks

556 CA-Visual Objects IDE User Guide

14. Choose Exit to close the Install Maker.

15. After the disk images are created, copy each disk image to a separate, newly
formatted floppy disk of the size selected.

16. Install your application on another computer that does not have CA-Visual
Objects installed, and retest it as thoroughly as you have already done
during dynamic execution from within the IDE.

Appendix D: Using the CA-Uninstall Utility 557

Appendix

D Using the CA-Uninstall Utility

The CA-Uninstall utility will remove CA-Visual Objects program files, registry
entries, Start menu entries, and all .EXE files in the BIN directory.

Starting CA-Uninstall
To start the CA-Uninstall utility, select the Uninstall program item from the
CA-Visual Objects 2.7 Start menu.

The CA-Uninstall dialog box appears:

Uninstalling CA-Visual Objects

558 CA-Visual Objects IDE User Guide

Uninstalling CA-Visual Objects
To uninstall CA-Visual Objects:

1. Select CA-Visual Objects 2.7 in the Select Product list box:

Selectproduct...

ClickontheUninstallbutton

2. Click on the Uninstall button.

Once the uninstall is complete, the CA-Uninstall dialog box closes.

To verify that the registry entries have been removed, run the RegEdit program.
Under the Software branch of the HKEY_CURRENT_USER and
HKEY_LOCAL_MACHINE key entries, the Computer Associates entry will be
removed.

Note: If you have other Computer Associates software installed, the Computer
Associates entries will remain but the CA-Visual Objects 2.7 entry will be
removed.

Index 559

Index

.

.AVI files, 199

.CH files, 95

.DBF files, 81

.DLL files, 43

.EXE files, 43

.MEF files, 43, 111

.UDC files, 30, 85, 94

A

Accelerator keys, specifying, 262

Accessing
databases, 80, 81
debugger, 502
editors, 24
Error Browser, 492
Source Code Editor, 273
visual editors, 24

Adding
columns to tables, 409
controls to windows, 144
data servers, 294, 325
DLLs, 90
fields, 300, 314
group footers, 398
group headers, 398
indexes, 309
libraries, 90
menu items, 267
menus/menu items, 255
predefined menus, 265

report details, 401
report sections, 397
rows to tables, 414
separators to menus, 260

Adjacent crosstab column, defining, 413

Aggregate functions
definition of, 450
using in reports, 450

AltD() function, 506

Animation controls
properties, 199
styles, 200

Application Gallery, 44, 76, 128

Application Wizard, 42, 43

Applications
.DLL path, specifying, 83
.EXE path, specifying, 83
.UDC files, associating, 85, 94
activating windows, 243
adding header files, 95
attaching menus to window forms, 268
browsing, 51
building, 20
copying, 99
creating with Application Gallery, 44, 76, 128
creating with Application Wizard, 42, 43, 76
database, accessing, 80, 81
debugging, 31, 490
debugging option, specifying, 82
deleting, 99
DLLs, 77, 79
executing, 21
exporting, 100
framework, specifying, 77, 79
icon, specifying, 85
importing, 100
interface, specifying, 78
Internet applications, 77, 79

560 CA-Visual Objects IDE User Guide

language style, specifying, 82
libraries, 77, 79
manipulating, 98
MDI, 79
MDI applications, 77, 79
moving, 99
name, specifying, 77
OLE server applications, 77, 79
OLE, specifying, 81
printing, 115
program folder, specifying, 83
properties

defining, 76
modifying, 88

renaming, 98
running, 21
samples, 77
saving, 19
SDI, 79
SDI applications, 77, 79
specifying icons, 95
step-by-step execution, 506
stepping through, 506
styles, specifying, 79
type, specifying, 77, 79
using reports, 464
version control, 71

Applying formatting to a field, 456

Arithmetic functions, in reports, 450

Arithmetic operators, using in reports, 448

Associating .UDC files, 94

Auto Layout
using

in Menu Editor, 265
in Window Editor, 342

Window Editor options
Master Detail, 345
Single Server, 343

Automation Server
accessing, 81
using, 32

AutoStart debugging, 42, 503

B

Background, moving graphics, 434, 438

Bitmaps, using in applications, 487

Borders, adding to reports, 420

Break fields, 398

Breakpoints
Activate on Break option, 508
clearing, 509
presetting in Source Code Editor, 283
using, 507
viewing, 509

Browse view, Window Editor, 349

Browsers
Error, 492
fonts, 34
overview, 22

Browsing
applications, 51
classes, 59
entities, 54
modules, 51
projects, 51

Building applications
background compiler and linker, 20

C

Call stack
modifying variables within, 524
viewing, 523

CA-Visual Objects
Application Gallery, 44, 76, 128
Application Wizard, 76
Automation Server, 32, 81
compiler, 20
debugger, 31
getting help, 16
IDE

browsers, 22
CA-Report Viewer, 374
database editors, 27
DB Server Editor, 288, 289
desktop, 17
Error Browser, 23, 492
FieldSpec Editor, 28
Image Editor, 28, 467

Menu Editor, 245
Report Editor, 363
reports, 363
Source Code Editor, 269

Index 561

SQL Editor, 288, 324
status bars, 19
toolbars, 19
tools, 21
visual editors, 27
Window Editor, 117

Install Maker, 547
introduction, 13

linker, 20
options

Activate IDE on Break, 36
application-specific compiler settings, 39
compilation status, 43
Confirm on Exit feature, 43
Debug AutoStart, 42
debugging new modules, 43
default compiler settings, 38
default paths, 43
Grid Lines, 71
LED indicators, 43
Select Entire Row, 71
Show Parameter Tips, 36
Show Prototype, 43, 71
Show Source Control Icons in List View, 71
Show Source Control Icons in List View
option, 48
Track Selection, 71
Use Spaces for Tabs, 36
Use Wizard, 42, 43

repository, 47, 269
Repository Explorer, 45
setting system setup options, 34
Source Code Control Interface, 19, 71, 105, 114,
499
Source Code Editor, 26
Standard Application, 78, 87
supported file types, 539
System Registry, 541
UDC Tester, 29
version control, 19, 71

Check box controls
properties, 155
styles, 157

Classes
browsing, 59
collapsing tree, 54, 58, 62
expanding tree, 60

entire branch, 61
inherited properties, 64
showing additional, 63
viewing, 64

Cloning
forms, 126
windows, 126

Code
deleting, 280
editing, 279
entering, 279
generating, 26, 126, 143, 288, 313, 329, 334, 374
inserting new line, 280
loading

entire module, 277
single entities, 276

markers, 272

Color indicator, 471

Color palette, 471

Colors, Image Editor, 474

Column categories, changing for reports, 385

Column controls
properties, 188

Column headings, customizing for reports, 378

Columns, snaking in reports, 428

Combo box controls
properties, 162
styles, 163

Commands, user-defined (UDC)
creating, 29
testing, 29

Common controls
animation controls, 199
horizontal sliders, 202
hotkey edits, 200
list views, 190
OLE objects, 215
overview, 144
progress bars, 201
rich edit controls, 196
tab controls, 212
tree views, 194
vertical spinners, 209

Common properties
controls, 148
windows, 129

Compilation status
Error Browser, 48
Repository Explorer, 48

562 CA-Visual Objects IDE User Guide

Compiler options
CA-Clipper compatibility, 41
default settings, 38
entities, 114
general, 41
modules, 106
optimization, 40
runtime checking, 40
settings

application-specific, 39
default, 38

warnings, 40

Compiling
CA-Clipper preprocessor, 95
CA-Visual Objects preprocessor, 95
vitality (status), 48

Computed fields, 448
arithmetic operators, 448
definition of, 440
displaying definition of, 443, 444
using functions, 450

Conditional functions, 451

Conditional paragraphs, defined, 425

Controlling order
changing, 311, 319
specifying, 311, 319

Controls
animation controls, 199
check box, 155
columns, 188
combo box, 162
ComboBoxEx control, 122, 144, 146
common properties, 148
data list view, 122, 144, 146
date time picker, 122, 144, 146
fixed icons, 179
fixed text, 179
group boxes, 178
horizontal scroll bars, 182
horizontal sliders, 202
horizontal spinners, 207
hotkey edits, 200
IP address, 122, 144, 146
list box, 159
list views, 190
month calendar, 122, 144, 146
multi-line edit controls, 175
OLE object controls (OCX), 215
overview, 143
placing, 144
progress bars, 201

push button, 165
radio button groups, 170
radio buttons, 168
reordering tab stops, 242
rich edit controls, 196
single-line edit controls, 172
sub-data windows, 185
tab controls, 212
tree views, 194
types, 143
vertical scroll bars, 184
vertical sliders, 205
vertical spinners, 209

Conventions used in this guide, 15

Conversion functions, 451

Copy/Paste button, 470

Copying
applications, 99
controls, 238
field specs, 336
modules, 109

Creating
applications, 44, 76
band-style toolbars, 251
cursors, 28
data servers, 294, 325
DLLs, 96
entities, 24, 112
fields, 300, 314
flat toolbars, 251
Help About dialog boxes, 128
icons, 28
indexes, 309
libraries, 96
menu hierarchy, 258
menus, 249
modules, 100, 101
projects, 71
reports, 364
ribbons, 484
splash screens, 128
windows, 125, 339

Cross tabular reports
creating, 383
customizing, 383
horizontal pagination, 429

Cursor Editor. see Image Editor

Cursor mode, 472

Index 563

Cursors
clearing, 483
creating, 28
editing, 477
loading, 472
saving, 486
setting hot spot, 478
using in applications, 487

Customizing the Repository Explorer, 64, 67

D

Data files
exporting, 278, 322
importing, 278

Data servers
associating, 342
creating, 27, 294, 325
defined, 27
modifying, 314, 329

Data windows
associating data servers, 342
creating, 340
using Auto Layout, 342

Database files, importing, 320

Databases
accessing, 81

SQL, 80
Xbase, 80, 81

Date and time data types for reports, 441

Date and time functions, 451

Date/time stamps, updating, 20

Dates, formatting, 459

DB Server Editor
adding fields, 300, 314
adding indexes, 309
creating

data servers, 294, 325
indexes, 309

defining
data server properties, 299, 327
field properties, 304, 329
index properties, 312

editing index files, 319
exporting files, 322

importing files, 320
overview, 27
toolbar, 290
workspace, 289

Debugger
accessing, 502
Activate IDE on Break feature, 36
AutoStart debugging, 31
Call Stack window, 519, 523
Database Work Area window, 514
DLL debugging, 31
execution commands, 506
Global/Public Variables window, 520
highlight, 504
source code window, 504
terminal window, 526
toolbar, 505
Watch Expression window, 522

Debugging
Activate on Break option, 508
applications, 31
AutoStart feature, 31
Debug AutoStart option, 490, 503
DLL debugging, 31
DLL debugging feature, 490
entities, 114
Just-In-Time technique, 525
modules, 43, 105
overview, 490
setting options

entity level, 499
globally, 497
module level, 498

step-by-step execution, 506
stepping through an application, 506
terminal window, 526
tracing into called entity, 507

Defining
application properties, 76
data server properties, 299, 327
data servers, 285
field specs, 285, 333
libraries for a new application, 89
search path, 89

Delete button, 470

Deleting
applications, 99
code, 280
entities, 113
menu items, 267
modules, 111

564 CA-Visual Objects IDE User Guide

report sections, 405
report table styles, 408
source code entities, 280

Designing reports, 393

Dialog boxes
Add Project, 74
Add Watch Expression, 521
Application Gallery, 44, 76
Application Options, 39, 90, 91, 93, 94, 95, 96, 97
Auto Layout (Menu Editor), 265
Auto Layout (Window Editor), 343, 345, 360
Auto Layout Field Selection, 344, 347, 360
Automation Server Base Class Generation, 32
Breakpoints, 509
Browse, 228, 310
CableDBMessage, 461
CA-Report Editor, 460
CA-Visual Objects Data Source Selection, 369
CA-Visual Objects Report Editor, 370
CA-VO Report Editor, 383
Change Array Index Range, 520
Color, 37, 129, 148
Command Line, 28
Confirm Deletion, 74, 99, 111
Control Order, 188, 241
Create Module, 100, 101, 250, 340
Crosstab Report Definition, 370, 383
Database Field Definition, 442
Database Field Mapping, 390
Define Parameter, 444
Define Table Style, 407
Delete Query, 389
Delete Table Style, 408
Details, 552
Duplicate Field Error, 321
Edit Field Definition, 446, 447
Edit Parameter, 233
Edit Query, 391
Enter an Expression, 502
Error, 501, 502
Evaluate Expression, 517
Export, 322
Export Index, 322
Export Query, 393
Export Report to File, 465
Field Formula, 443, 449, 452, 456, 457, 463
File Properties, 550
Fill Using, 159, 163, 218
Find, 279, 512
Font, 35, 135, 139, 421
Format Body Section, 403, 408, 422, 423, 461
Format Field, 443, 457, 462
Format Group Section, 403, 424, 461

Format Line, 431, 432
Format Page, 427, 428, 429
Format Paragraph, 426
Format Paragraph., 419, 420
Format Picture, 436, 438
Format Rectangle, 433, 434
Format Section, 385, 403, 422, 461
Function Editor, 452, 453, 463
Icons, 95
Image Editor Options, 471
Import, 296, 320
Import Application, 292
Import Query, 388
Insert Field, 381, 445, 449, 452, 456
Insert Footer, 397, 399
Insert Header, 397, 399
Insert Object, 227
Insert OLE Control, 229
Insert Paragraph, 415
Insert Section, 397, 400
Insert Table Row, 414, 416
Invoke Control Method, 232
List of Entities, 280
Menu IDs, 264
Modify Setting, 525
Modify Variable, 520
New Application, 44, 76
New Project, 72
New Report, 371, 372
Open, 101
Open Picture File, 436
Open Report Definition, 373
Open Type Library, 33
Options, 67, 68, 69, 70
Print, 460
Print Setup, 460
Printing Application List, 115
Printing Entity List, 115
Printing Module List, 115
Printing Project List, 115
Printing Visual Objects 2.7Tree, 115
Project Properties, 39, 72
Properties, 498
Properties (Entity), 39, 113, 114, 499
Properties (Module), 39, 105, 498, 499
Query Name, 391
Register OLE Control, 230
Report Defaults, 368
Report Editor Joins, 370
Report Parameters, 446
Report Properties, 386, 411, 417, 439, 460
Report Summary, 371
Select Data Source, 326, 369
Select File for the UDC, 30
Select Label Style, 380

Index 565

Select Query for Query Name, 390
Set Report Query, 388
Setup OLE Controls, 230
SQL Editor, 327
System Options, 503, 508
System Settings, 34, 35, 37, 38, 42, 524
Table Format Column, 410, 412, 413
Toolbar Buttons, 263
UDC Tester, 29
Window Editor, 126, 340

DLLs
Active Server Page (ASP), 79
adding, 90
creating, 96
ISAPI, 79

Drag-and-drop, Image Editor, 476

Dynamic memory, changing size, 546

E

Edit area, 469
clearing, 483
colors, 477
grid, 472
using, 477

Edit buffer, 469
clearing, 483
using, 477

Edit Field Definitions command, 442

Editing
an entire module, 107
cursors, 477
entities, 112
field specs, 334
fields, 330
forms, 126
icons, 477
menus, 266
modules, 107
source code, 279
windows, 121, 269

Editors
accessing, 24
creating entities within, 24
DB Server Editor, 289
FieldSpec Editor, 331
Image Editor, 467

Menu Editor, 245
overview, 23
Source Code Editor, 269
SQL Editor, 323
Window Editor, 117

Embedding
OLE controls, 224
OLE objects, 224

Entities
browsing, 54
collapsing/expanding display, 271
compiler options, 114
creating, 24, 112
debugging, 114
deleting, 113
editing, 112
loading into Source Code Editor, 276
menu, 487
opening, 25
printing, 115
setting properties, 113
showing, 280
subtypes, 54
tracing into, 507
types, 54

Error Browser, using, 492

Exporting
applications, 100
modules, 111
reports to files, 465
source code, 278

Expressions, evaluating, 21, 28

F

Field labels, customizing for reports, 380

Field specs
copying, 336
defining, 333
editing, 334

Fields. See also Computed fields, Parameter fields,
Database fields, Calculated columns

break, 398
creating, 300, 314
data, 440
editing, 330
formatting, 455, 456
ordering, 318

566 CA-Visual Objects IDE User Guide

specifying properties, 329
system-defined, 440
types, 440

Fields button, 444

FieldSpec Editor
accessing, 331
copying field specs, 336
defining a field spec, 333
editing field specs, 334
overview, 28
toolbar, 332
using, 331
workspace, 332

Files
.AEF, 100, 527, 539
.APP, 539
.ASP, 539
.AVI, 199
.BMP, 539
.CDX, 539
.CH, 539
.CUR, 539
.DBF, 81, 289, 318, 322, 539
.DBG, 539
.DBT, 539
.DFL, 539
.DLL, 43, 527, 539
.EXE, 21, 43, 539, 557
.HTM, 539
.ICO, 539
.IND, 539
.INF, 539
.ISC, 540
.MAP, 540
.MDF, 540
.MDX, 540
.MEF, 43, 111, 527, 540
.NTX, 540
.OCX, 540
.ODQ, 540
.OLB, 33
.PRG, 540
.REG, 540
.RET, 540
.SCC, 540
.TLB, 33
.TPL, 540
.UDC, 30, 85, 94, 540
.VO, 540
.VOM, 540
application, 100
CAVOWED.INF, 124
database, 289

executable, 17, 21
header (.CH), 95
index, 289
module, 111
removing link, 103
STD.UDC, 29
types, 539, 540

Financial functions, 451

Finding matching tokens, 283

Fixed icon controls
properties, 179
styles, 179, 181

Fixed text controls
properties, 179
styles, 180

Fonts, changing in reports, 420

Form letters
customizing for reports, 383
guidelines for reports, 382

Form reports, 379

Form view, Window Editor, 349

Format strings, 441, 455

Formatting
dates and time, 459
fields, 455
numbers, 457

Formatting group sections, 402

Forms
cloning, 126
editing, 126

Free style reports
creating, 382 to 83
customizing, 383
guidelines for reports, 383

Functions
aggregate, 450
arithmetic, 450
conditional, 451
conversion, 451
date and time, 451
DynInfoFree(), 546
financial, 451
lookup, 450 to 51
string manipulation, 451
using computed fields, 450

Index 567

G

Generating
an executable file, 21
code, 26, 143, 329, 334, 374

Getting help, 16

Globals
modifying, 520
viewing, 520

Group box controls
properties, 178
styles, 178

GUI controls, overview, 143

Gutters, 409

H

Help About dialog boxes, creating, 128

Help, getting, 16

Hierarchies
menu, 258
Repository Explorer, 45

Horizontal pagination, 429

Horizontal scroll bar controls
properties, 182
styles, 183

Horizontal slider controls
properties, 202
styles, 203

Horizontal spinner controls
properties, 207
styles, 208

Hotkey edit controls
properties, 200
styles, 201

Hyperlabels, overview, 288

I

Icon mode, 472

Icon/cursor bar, 470

Icons
clearing, 483
creating, 28
editing, 477
loading, 472
saving, 486
specifying for

applications, 95
toolbar, 263

using in applications, 487

Image Editor
background colors, 474
color indicator, 471

using, 474
color palette, 471
Copy/Paste button, 470
cursors

setting hot spot, 478
Delete button, 470
drag-and-drop, 476
drawing colors, 474
edit area, 469

clearing, 483
colors, 477
grid, 472
using, 477

edit buffer, 469
clearing, 483
using, 477

features, 467
icon/cursor bar, 470
loading cursors, 472
loading icons, 472
Mode buttons, 470
modes, 472
Open/Save button, 470
overview, 28
saving images, 486
starting, 467
status bar, 471
temporary buffers, 469
tool palette, 469, 478

Fill, 479
Filled Ellipse, 481
Filled Rectangle, 481
Flip Horizontally, 482
Flip Vertically, 482
Hollow Ellipse, 481
Hollow Rectangle, 480
Line, 480
Pencil, 478
Rotate Clockwise, 482
Rotate Counterclockwise, 483
Select Area, 480

568 CA-Visual Objects IDE User Guide

toolbar, 469

Image files, supported file types, 435

Importing
applications, 100
modules, 111
source code, 278
source files, 26, 278

Index files, importing, 320

Indexes
adding, 309
creating, 309
defining properties, 312

Inserting
DataWindows, 353
new line in source code, 280
sub-data windows, 353

Install disks, making, 547

Install Maker, overview, 547

Interfaces
GUI, 78
user-defined, 78

Internet applications, 79

L

Label guidelines for reports, 380

Label reports, using report style, 380 to 82

Libraries
adding, 90
CA-Visual Objects, 47
Console Classes, 89
creating, 96
dynamic link library (DLL), 47
GUI Classes, 78, 89
Internet, 89
Internet Server API, 89

OLE, 32, 89
OLE Server, 89
RDD Classes, 81, 89
Report Classes, 89
SQL Classes, 89
system, 47
System Classes, 89
System Library, 90
Terminal Lite, 89, 526

user-defined, 47
Win32 API Library, 89

Linking
OLE controls, 224
OLE objects, 224

List box controls
properties, 159
styles, 160

List view controls
properties, 190
styles, 191

Loading
cursors, 472
icons, 472

Lookup function, 450 to 51

M

Mailing labels. See Label reports

Margins, of reports, 381

Markers, using, 272

MDI applications, 79

Menu commands
Add Item, 302, 309
Add Page, 221
Add Separator, 260
Application Properties, 38
Arrange Icons, 65
Automation Server, 32
Build, 20
Command Line, 21, 28
Copy, 99
Cut, 99
Cut Link to External File, 103
Delete, 74, 99, 111, 113, 280
Delete from Catalog, 73
Delete Item, 318, 320
Delete Line, 280
Delete Page, 221
Edit, 112
Edit All Source in Module, 107
Edit Page, 221
Execute, 21, 506
Expand Prototype, 282
Explore, 98
Expression, 517
Find Matching Token, 283

Index 569

Go To, 280
Import, 278
Include Libraries, 63
Insert Line, 280
Insert Page, 221
Insert Prototype, 282
Make DLL, 21
Make EXE, 21
New Application, 76
New Project, 72
Next Page, 221
Options, 67, 68, 69
Paste, 99
Previous Page, 221
Print, 98
Properties, 72, 90, 98, 104, 113
Recent Imports, 527
Reindex Project, 31
Rename, 98, 110
Select from Palette SubDataWindow, 353
Setup, 34
Step, 506
Step In, 506
Step Out, 506
Step To Cursor, 506
Stop, 506
Styles, 221
Tab Order, 241
Test Mode, 361
Tools, 24
Touch, 20, 98
Touch All Entities, 20
UDC Tester, 29
Watch, 521

Menu Editor
band-style toolbars, 251
editing menus

clearing, 266
copying, 266
cutting, 266
deleting lines, 266
deleting text, 266
pasting, 266

flat toolbars, 251
Menu Item Properties window, 248, 253, 261
Menu Properties window, 252, 253
overview, 245
preview menu bar, 249
printing, 268
Properties window, 247, 259, 266
tasks, 247
toolbar, 247
workspace, 247

Menus
adding

menus/menu items, 255
predefined menus, 265
separators, 260

attaching to window forms, 268
copying menus/menu items, 266
creating

custom menus, 249
hierarchy, 258
toolbars, 254

cutting menus/menu items, 266
deleting menus/menu items, 266
designing custom menus, 245
pasting menus/menu items, 266
previewing, 261
printing, 268
specifying properties

accelerator, 262
initial state, 263
menu name, 253

terms, 246

Mode buttons, 470

Modifying
application properties, 88
call stack, variables within, 524
data servers, 314, 329
entities, 112
field specs, 334
fields, 314
Global/Public variables, 520
local/private variables, 520
menus, 266
modules, 107
source code, 279
windows, 234

Modules
browsing, 51
compiler options, 106
copying, 109
creating, 100, 101
debugging, 43, 105
deleting, 111
editing, 107
editing whole source code, 107
exporting, 111
external

creating, 101
removing link to external file, 103

importing, 111
internal

creating, 100

570 CA-Visual Objects IDE User Guide

loading into Source Code Editor, 277
moving, 108
opening, 107
printing, 115
renaming, 110
setting properties, 104
types, 100, 101

Moving
applications, 99
controls, 238
modules, 108
windows, 236

Multi-line edit controls
properties, 175
styles, 176

N

Navigating in the Repository Explorer, 49

Numbers, formatting, 457

Numeric data types in reports, 441

O

Object linking and embedding (OLE)
basic terms, 224
control containers, 225
controls, 225
overview, 224

Offset option, for sections, 404

OLE
accessing OLE technology, 81
Automation Server, 81
using, 81

OLE control containers, overview, 225

OLE controls
embedding, 224
inserting, 229
invoking methods, 232
linking, 224
overview, 225
registering, 230
setting up, 230

OLE object controls (OCX)
properties, 215

styles, 217

OLE objects
embedding, 224
inserting, 226
linking, 224

OLE server applications, 79

Online help, accessing, 16

Open/Save button, 470

Opening
cursor files, 472
entities, 25
icon files, 472
modules, 107

Operators (arithmetic) in reports, 448

Options
compiler, 38
fonts

browsers, 34
Source Code Editor, 34

showing prototypes, 43
Source Code Editor colors, 36
system settings, 42
system setup, 34

Orders, controlling, 311, 319

P

Page breaks in reports, 422

Page size, of reports, 381

Page titles, customizing for reports, 378

Pages
breaks, horizontal, 429
layout, 427
size, setting, 427

Pagination
for reports, 425
horizontal, 429

Paragraphs (report)
aligning text, 418
conditional

description, 425
formatting, 417

Parameter fields, in reports, 455

Pictures (in reports)

Index 571

deleting, 439
inserting, 434
moving, 438

to background, 438
overlapping, 439
sizing, 437, 438

Preferences, setting for reports, 386

Presetting breakpoints, 283

Previewing menus, 261

Print status messages, defining, 461

Printing
applications, 115
entities, 115
menus, 268
modules, 115
projects, 115
source code, 284

Progress bar controls
properties, 201
styles, 202

Projects
adding, 74
adding to project catalog, 74
browsing, 51
creating, 72
deleting from catalog, 73
deleting from repository, 73
managing, 71
printing, 115
properties, 72
reindexing, 31
renaming, 75
version control, 71

Properties
setting

for applications, 88
for entities, 113
for modules, 104

Properties and methods, viewing, 64

Properties windows
Animation, 199
changing defaults, 124
changing layout, 124
Check Box, 155
Column, 188
Combo Box, 162
common properties

controls, 148
windows, 129

Data Dialog, 137
Data Window, 133
DB Server, 291, 298, 299
Dialog Window, 139
FieldSpec, 303, 304, 324
Fixed Icon, 179
Fixed text, 179
Group Box, 178
Horizontal Scroll Bar, 182
Horizontal Slider, 202
Hotkey Edit, 200
Index, 311
List Box, 159
List View, 190
Menu Item Properties, 247, 248, 256, 259, 261, 266
Menu Properties, 252, 259, 266
Mult-Line Edit, 175
OLE Object, 215
Order, 311
Progress Bar, 201
Push Button, 165
Radio Button, 168
Radio Button Group, 170
Rich Edit Control, 196
Shell Window, 132
Single-Line Edit, 172
SQL Editor, 324, 327
Sub-Data Window, 185
Tab Control, 212
Vertical Scroll Bar, 184
Vertical Spinner, 209

Prototypes
filling in, 282
jumping to, 281
showing, 43, 282
viewing, 281

Push button controls
properties, 165
styles, 167

R

Radio button controls
properties, 168
styles, 169

Radio button group controls
properties, 170
styles, 171

Reindexing the repository, 31

572 CA-Visual Objects IDE User Guide

Removing link to external file, 103

Renaming
applications, 98
modules, 110

Report columns
adding, 409
centering, 410
deleting, 412
gutter, 409
mapping to report fields, 389
moving, 411
snaked, 428
using, 409
width, changing, 409

Report definition
associating multiple queries, 387
query

changing default name, 390
deleting, 389
editing, 391
exporting, 393
mapping columns, 389
selecting, 388

Report Editor
CA-Report Viewer, 363
CA-Report Writer, 363
creating reports, 364
overview, 363
viewing reports, 374

Report groups, break fields, 398

Report query
associating multiple queries, 387
changing default query name, 390
editing, 391
exporting, 393
mapping columns, 389
overview, 387

Report rows
adding, 414
blank lines between, 415
converting to text, 415
deleting, 415
moving, 414
using, 413

Report sections
adding details, 401
deleting, 405
formatting, 402, 403

Report tables
cells, 406

columns, 409
moving in, 409
rows, 413
styles

defining, 406
deleting, 408

using, 406

Report text, display options, 419

Report titles, customizing for reports, 380, 383

Reporting with CA-Report Writer, 363

Reports
activating, 464
adding

columns to tables, 409
details, 401
footers, 397
group footers, 398
group headers, 398
headers, 397

changing column categories, 385
changing column width, 409
combining columns of like data, 413
computed fields, 448
converting rows to text, 415
converting text to rows, 415
creating, 364
cross tabular, 383
customizing a form letter, 383
customizing column headings, 378
customizing field labels, 380
customizing free style, 383
customizing page titles, 378
customizing titles, 380
data types, 441
deleting table styles, 408
design techniques, 393
designing, 366
exporting, 465
field types, 440
form letter guidelines, 382
form report, 379
formatting, 417
formatting dates, 459
formatting fields, 455
formatting sections, 402
forms, 379
free style, 382 to 83
free style guidelines, 383
label guidelines, 380
labels, 380 to 82
page breaks, 422
page layout, 427

Index 573

pagination, 425
picture file names, 436
previewing, 374
printing, 460
section types, 395
setting margins, 381
setting preferences, 386
supported picture file types, 435
table styles, 406
tabular, 377
using in applications, 464
using tables, 406
viewing data, 374

Reports, customizing cross tabular, 383

Repository
integration with Source Code Editor, 269
reindexing, 31

Repository Explorer
collapsing class tree, 54, 58, 62
compilation status (vitality), 48
customizing, 64, 67
display

customizing, 67
limiting by name, 68
limiting by type, 67
limiting details, 69
restoring, 69

expanding class tree, 60
expanding tree

all branches, 53
entire branch, 52
single level, 52

icons, 47
navigation

moving pane to pane, 49
moving up a level, 49
resizing panes, 50
scrolling, 49

organizing the display, 64
overview, 45
printing in, 115
Recent Imports List, 527
restricting the display, 64
source control indicators, 48
tasks, 46
toolbar, 48
tree graphics, 47
view options, 67

Ribbons
creating in Image Editor, 484
using in applications, 487

Rich edit controls

properties, 196
styles, 197

Rich Text Format (RTF). See RTF file

RTF file, exporting to, 465

S

Saving
applications, 19
current desktop, 44
cursors, 486
entities, 19
icons, 486
image files, 486
reports, 459

SDI applications, 79, 80

Search path
adding items, 91
defining, 89
modifying, 90
removing items, 92
reordering, 93

Setting
application properties, 76
breakpoints, 283
debugging options

entity level, 499
globally, 497
module level, 498

entity properties, 113
module properties, 104
options

compiler, 38
system, 42
system setup, 34

search path, 89
view options, 67

Showing
entities, 280
prototypes, 43, 281, 282

Single-line edit controls
properties, 172
styles, 173

Solid colors, 474

Source code
creating, 26
deleting, 280

574 CA-Visual Objects IDE User Guide

editing, 26, 279
entering, 279
generating, 26, 126, 143, 288, 313, 329, 334, 374
importing text-based source files, 26, 278
loading

entire module, 277
single entities, 276

printing, 284

Source code control, indicators, 48

Source Code Editor
accessing, 273
Activate IDE on Break feature, 36, 270
automatic method insertion, 270, 279
bookmarks, 279
collapsing/expanding entities, 271
exporting code, 278
finding matching tokens, 283
importing code, 278
inserting prototypes, 282
jumping to prototypes, 281
markers

setting, 272
using, 272

overview, 269
parameter tips, 270, 279
presetting breakpoints, 283
printing, 284
search history, 279
setting

colors, 36
fonts, 34
markers, 272

Show Parameter Tips feature, 36
showing entities, 280
status bar, 271
toolbar, 270
Use Spaces for Tabs feature, 36
using, 279
using markers, 272
using spaces for tabs, 270
viewing prototypes, 281

Specifying
accelerator keys, 262
control properties, 147
control styles, 147
menu item properties, 261
window properties, 128

Splash screens, creating, 128

SQL Editor
editing fields, 330
overview, 27

toolbar, 324
workspace, 324

Standard Application, 78, 87

Standard conventions used in this guide, 15

Status bars
Image Editor, 471
Menu Editor, 248
overview, 19
Source Code Editor, 271
Window Editor, 121

String manipulation functions, 451

Sub-data window controls
properties, 185
styles, 187

Sub-data windows, 353

System options
Activate IDE on Break, 36
Debug AutoStart, 42
default paths, 42
Grid Lines, 71
miscellaneous

Confirm on Exit feature, 43
debugging new modules, 43
LED-style indicators, 43
showing prototypes, 43

Select Entire Row, 71
Show Parameter Tips, 36
Show Prototype, 71
Show Source Control Icons in List View, 71
Show Source Control Icons in List View option,
48
Track Selection, 71
Use Spaces for Tabs, 36
Use Wizard, 42, 43

System Registry, CA-Visual Objects entries, 541

System-defined field, 440

T

Tab controls
manipulating pages, 220
properties, 212
styles, 214

Tab stops, reordering, 242

Index 575

Table cells
definition of, 406
editing, 416

Tabs, in text files, 465

Tabular reports, 377

Temporary buffers, 469

Terminal window, displaying, 526

Text functions. See String manipulation functions

Time, formatting, 459

Tokens, finding matching token, 283

Tool palette, 469, 478
Fill, 479
Filled Ellipse, 481
Filled Rectangle, 481
Flip Horizontally, 482
Flip Vertically, 482
Hollow Ellipse, 481
Hollow Rectangle, 480
Line, 480
Pencil, 478
Rotate Clockwise, 482
Rotate Counterclockwise, 483
Select Area, 480

Toolbar buttons
Add Item, 247, 267
Add Project, 74
Application Properties, 39, 48, 90
Auto Layout, 122
Auto Layout (Menu Editor), 247, 265
Auto Layout (Window Editor), 342, 343, 345, 360
Breakpoint, 270
Browse/Form View, 122, 349, 350, 353, 360
Build, 20, 48, 122, 247, 270, 290
Clear, 247, 252, 270, 290
Collapse All, 247, 258, 270
Copy, 122, 247, 270, 352
Create Module, 340
Cut, 122, 247, 270, 352
Debug, 48
Demote Item, 247, 258, 259
Details, 48, 66
Evaluate, 505
Execute, 21, 48, 122, 247, 270, 290
Execute Next Line, 505, 506
Execute to End, 505, 506
Expand All, 247, 258, 270
Find, 270, 505
Find Next, 270, 505
Go to Entity, 280

Go To Entity, 270
Group By Class, 48, 60, 64
Group By Module, 46, 48, 64
Group By Type, 48, 57, 64
Import, 48, 270, 278, 290
Large Icons, 48, 65
List, 48, 66
Make EXE, 21, 48
New, 48, 72, 76
New Entity, 251
New Folder, 30
New Module, 250
Open, 122
Paste, 122, 247, 270, 352
Print, 48, 122, 247, 270, 290
Promote Item, 247, 258
Replace, 270
Reset, 505, 506
Reset Breakpoint, 505
Run, 505, 506
Save, 122, 247, 270, 290, 459
Set Breakpoint, 505
Set/Reset Breakpoint, 283
Show/Hide Grid, 122, 146
Small Icons, 48, 65
Trace Entity, 505, 506
Trace Expression, 122, 247, 270, 290
Undo, 270
Up One Level, 30, 48, 49
View, 505

Toolbars
band-style toolbars, 251
creating, 254
DB Server Editor, 290
debugger, 505
FieldSpec Editor, 332
flat toolbars, 251
Image Editor, 469
Menu Editor, 247
overview, 19
Repository Explorer, 48
Source Code Editor, 270
SQL Editor, 324
Window Editor, 122

Tracing into a called entity, 507

Transparent colors, 474

Tree view controls
properties, 194
styles, 195

576 CA-Visual Objects IDE User Guide

U

Uninstalling CA-Visual Objects, 557

User-defined field. See Computed fields

Using
Application Gallery, 76
Application Wizard, 76
Auto Layout

in Menu Editor, 265
in Window Editor, 342

Automation Server, 32
breakpoints, 507
CA-Report Writer, 363
CA-Visual Objects desktop, 17
DB Server Editor, 288
debugger, 490
Error Browser, 492
grid, 146
Image Editor, 467
Install Maker, 547
markers in source code, 272
Menu Editor, 245
New Application wizard, 76
OLE, 81
Report Editor, 363
report fields, 440
Repository Explorer, 45
Source Code Editor, 279
SQL Editor, 288
terminal window, 526
watch expressions, 521
Window Editor, 117

Utilities
CA-Uninstall, 557
Install Maker, 547

V

Variables
global

modifying, 520
viewing, 520

local
modifying, 520
viewing, 519

private
modifying, 520
viewing, 519

Version control, 19

Vertical scroll bar controls
properties, 184
styles, 185

Vertical slider controls
properties, 205
styles, 206

Vertical spinner controls
properties, 209
styles, 211

View options, setting, 67

Viewing
additional classes, 63
breakpoints, 509
call stack, 523
globals, 520
inherited properties, 64
local variables, 519
private variables, 519
reports, 374
work areas, 514

Visual editors
accessing, 24
defining entities within, 24, 26
Menu Editor, 245
overview, 27
Report Editor, 363
Window Editor, 117

Vitality, compilation status, 48

W

Watch expressions
clearing, 521
defining, 521
setting, 521
viewing, 522

Window Editor
browse view, 349
form view, 349
OLE 2.0 support, 224
Properties window, 123
status bar, 121
tasks, 121, 269
tool palette, 122
toolbar, 122

Windows
arranging, 18
Automation Server Base Class Generation, 32

Index 577

Call Stack, 523
cloning, 126
creating, 125
data-aware windows, 339
Database Work Area, 514
DataServer Index Properties, 291
DataServer Properties, 289, 299
Debug source code, 504
features

DataDialog, 119
DataWindow, 118
DialogWindow, 120
ShellWindow, 120

FieldSpec Properties, 291, 324, 329
forms, 121
Global/Public Variables, 520
Index Properties, 312
Index Properties, 311
manipulating, 18
Menu Item Properties, 247, 248, 252, 256, 259, 261,
266
Menu Properties, 252, 259, 266
nesting, 353

Order Properties, 312
Order Properties, 311
predefined templates, 121
printing, 243
Properties window, 123
Quick Query, 392
SQL Editor Properties, 324, 327
sub-data windows, 353
terminal, 526
types

DataDialog, 119
DataWindow, 118
DialogWindow, 119
OLEDataWindow, 118, 126, 339, 340
ShellWindow, 120

using in applications, 243
Watch Expressions, 522

Wizard, using, 76

Work areas, viewing, 514

	CA-Visual Objects 2.7 IDE User Guide
	Contents
	Chapter 1: Introduction
	What You Need to Know
	General Typographic Conventions
	Getting Help

	Chapter 2: Working in the Desktop
	Desktop Basics
	Arranging and Manipulating Windows
	The Toolbars
	The Status Bars
	Saving, Building, and Executing
	Saving Your Work
	Building an Application
	Executing an Application
	Generating an EXE

	The IDE Tools
	Repository Explorer
	Browsing Projects, Applications, and Modules
	Browsing Entities
	Browsing Classes
	Browsing Errors

	Editors
	Accessing the Editors
	Creating and Editing Source Code
	The Visual Editors
	The Data Server Editors
	The FieldSpec Editor
	Creating and Editing Images

	Command Line
	UDC Tester
	Testing a UDC
	Creating and Saving a UDC

	Debugger
	Reindexing the Repository
	Automation Server

	Setting System-Wide Options
	Selecting Fonts
	Setting Editor Options
	Selecting Source Code Editor Colors
	Setting Compiler Options
	Compiler Warnings
	Optimization
	Runtime Checking
	Runtime Checking
	CA-Clipper Compatibility
	General Options

	Setting System Options
	Default Path Options
	Miscellaneous System Options

	Saving the Current Desktop

	Chapter 3: Using the Repository Explorer
	The Repository Explorer
	Repository Explorer Graphics
	The Toolbar

	Navigating Basics
	Browsing Projects, Applications, and Modules
	Expanding the Initial Tree
	By a Single Level
	An Entire Branch
	All Branches in the Tree

	Collapsing the Tree

	Browsing Entities
	Viewing Entities at the Module Level
	Viewing Entities at the Application Level
	Collapsing and Expanding the Display
	Viewing Additional Entities

	Browsing Classes
	Expanding the Display
	By a Single Level
	An Entire Branch
	All Branches in the Tree

	Collapsing the Tree
	Showing Additional Classes
	Viewing Inherited Properties and Classes

	Customizing the Repository Explorer
	Icons
	List and Details Toolbar Buttons
	Setting View Options
	Limiting by Type
	Limiting by Name
	Limiting Details
	New Customization Options

	Managing Projects
	Creating a Project
	Deleting Projects
	Adding a Project
	Renaming a Project

	Creating a New Application
	Using the Wizard
	Modifying Your Application’s Properties
	Modifying the Application’s Caption
	Setting the Search Path
	Associating .UDC Files
	Choosing an Icon
	Adding Clipper Headers

	Creating Libraries and DLLs
	Manipulating Applications
	Renaming Applications
	Moving Applications
	Copying Applications
	Deleting Applications

	Importing and Exporting Applications and Libraries

	Creating Modules
	Creating an Internal Module
	Creating an External Module
	Setting Module Properties
	Editing Modules
	Manipulating Modules
	Moving Modules
	Copying Modules
	Renaming Modules
	Deleting Modules

	Importing and Exporting Modules

	Creating Entities
	Editing Entities
	Setting Entity Properties

	Printing in the Repository Explorer
	Printing the CA-Visual Objects 2.7 Tree
	Printing Lists

	Chapter 4: Using the Window Editor
	Window Types
	Workspace Overview
	Window Forms
	The Tool Palette
	The Toolbar
	The Properties Window

	Creating a Window
	Specifying Window Properties
	Common Properties
	HyperLabel Tab

	Generating Code

	Control Types
	Placing Controls on a Form
	Using the Tool Palette
	Using the Select from Palette Menu Commands
	Using the Grid

	Specifying Control Properties and Style Settings
	Common Properties
	HyperLabel Tab
	General Tab
	Styles Tab
	ExStyles Tab

	Check Box Properties and Style Settings
	General Tab
	Styles Tab

	List Box Properties and Style Settings
	General Tab
	Styles Tab

	Combo Box Properties and Style Settings
	General Tab
	Styles Tab

	Push Button Properties and Style Settings
	General Tab
	Styles Tab

	Radio Button Properties and Style Settings
	General Tab
	Styles Tab

	Radio Button Group Properties and Style Settings
	General Tab
	Styles Tab

	Single-Line Edit Properties and Style Settings
	General Tab
	Styles Tab

	Multi-Line Edit Properties and Style Settings
	General Tab
	Styles Tab

	Group Box Properties and Style Settings
	General Tab
	Styles Tab

	Fixed Icon Properties and Style Settings
	General Tab
	Styles Tab

	Fixed Text Properties and Style Settings
	General Tab
	Styles Tab

	Fixed Bitmap Properties and Style Settings
	General Tab
	Styles Tab

	Horizontal Scroll Bar Properties and Style Settings
	General Tab
	Styles Tab

	Vertical Scroll Bar Properties and Style Settings
	General Tab
	Styles Tab

	Sub-Data Window Properties and Style Settings
	General Tab
	Styles Tab

	Column Properties Window and Styles Settings
	General Tab

	List View Properties and Style Settings
	General Tab
	Styles Tab

	Tree View Properties and Style Settings
	General Tab
	Styles Tab

	Rich Edit Control Properties and Style Settings
	General Tab
	Styles Tab

	Animation Control Properties and Style Settings
	General Tab
	Styles Tab

	Hotkey Edit Control Properties and Style Settings
	General Tab
	Styles Tab

	Progress Bar Properties and Style Settings
	General Tab
	Styles Tab

	Horizontal Slider Properties and Style Settings
	General Tab
	Styles Tab

	Vertical Slider Properties and Style Settings
	General Tab
	Styles Tab

	Horizontal Spinner Properties and Style Settings
	General Tab
	Styles Tab

	Vertical Spinner Properties and Style Settings
	General Tab
	Styles Tab

	Tab Control Properties and Style Settings

	OLE Object Control Properties and Style Settings
	General Tab
	Styles Tab
	Defining Arrays for List and Combo Boxes
	General Tab
	Styles Tab

	Push Button Controls and Actions
	Manipulating Tab Control Pages
	Linking and Embedding OLE Objects and Controls
	Basic Terms
	Linking and Embedding
	Controls and Control Containers

	Inserting an OLE Object
	Inserting an OLE Control
	Setting Up OLE Controls
	Invoking OLE Control Methods

	Modifying a Window
	Editing Window Properties
	Editing Controls
	Changing Tab Order by Reordering Controls

	Printing Windows
	Using the Window in an Application

	Chapter 5: Using the Menu Editor
	Menu Terms
	Workspace Overview
	Defining a Menu
	Creating a Menu
	Specifying Menu Properties
	Adding Menus and Menu Items
	Creating the Hierarchy
	Adding Separators
	Previewing the Menu Bar
	Specifying Menu Item Properties
	Generating Code

	Adding Predefined Menus
	Modifying a Menu
	Editing Menu Properties

	Printing Menus
	Using the Menu in an Application

	Chapter 6: Using the Source Code Editor
	Workspace Overview
	Accessing the Source Code Editor
	Creating New Entities
	Loading Single Entities
	Loading All Entities
	Importing a File
	Editing and Saving

	Editing Source Code
	Deleting Lines of Code
	Inserting a New Line
	Going Directly to an Entity
	Viewing Prototypes
	Filling in Prototypes
	Finding Matching Tokens
	Presetting Breakpoints

	Printing Source Code

	Chapter 7: Defining Data Servers and Field Specification
	What Is a Data Server?
	What Is a Field Specification?
	What Is a Hyperlabel?
	The Data Server Editors
	Using the DB Server Editor
	The DB Server Editor
	Defining a Data Server in the DB Server Editor
	Importing a Data Server
	Creating a New Data Server
	Specifying Data Server Properties
	Adding Fields
	Specifying Field Properties
	Adding Index Files
	Specifying Index File and Order Properties
	Generating Corresponding Files

	Generating Code
	Modifying a Data Server
	Editing Data Server Properties
	Editing Fields
	Editing Index Files and Orders

	Importing Database and Index Files
	Exporting Database and Index Files

	Using the SQL Editor
	The SQL Editor
	Defining an SQL Server
	Creating an SQL Server
	Specifying SQL Editor Properties
	Defining a WHERE Clause
	Defining an ORDER BY Clause
	Specifying Field Properties

	Generating Code
	Modifying an SQL Server
	Editing SQL Editor Properties
	Editing Fields

	Using the FieldSpec Editor
	The FieldSpec Editor
	Defining a Field Specification
	Generating Code
	Editing Field Specifications
	Modifying a Field Specification
	Copying a Field Specification

	Printing

	Chapter 8: Creating Data-Aware Windows
	Creating a Data-Aware Window
	Associating Data Servers
	Using Auto Layout
	Customizing a Data-Aware Window

	Browse and Form View
	Working in Browse View
	Form View

	Sub-Data Windows
	Creating a Sub-Data Window Using Auto Layout
	Manually Creating a Sub-Data Window
	Modifying a Sub-Data Window

	Chapter 9: Using the Report Editor
	Report Styles and Definitions
	Workspace Overview
	The Toolbar
	The Rulers

	Creating a Report
	Creating a New Report
	Opening a Report
	Generating Code

	Viewing Report Data
	Customizing Report Definitions
	Tabular Reports
	Form Reports
	Label Reports
	Form Letter Reports
	Free Style Reports
	Cross Tabular Reports
	Creating a Cross Tabular Report
	Changing the Column Category for the Report

	Setting Report Properties
	Working with Queries in Reports
	Associating Multiple Queries with a Report Definition
	Selecting a Query to Use with a Report
	Deleting a Query
	Mapping Columns from a Query to a Report

	Changing the Default Query Name
	Renaming a Query

	Editing a Query
	Editing a Report Query

	Exporting a Report Query

	Designing Reports
	Working with Sections
	Report Section Types
	Adding a Section to a Report
	Working with Group Headers and Footers
	Adding Report Details to Sections
	Formatting Sections
	Deleting a Section

	Working with Tables
	Defining Table Styles
	Defining a New Table Style
	Copying an Existing Table Style

	Deleting a Table Style
	Using Columns in Tables
	Adding Columns to a Table
	Changing Column Width
	Centering Columns
	Moving Columns
	Deleting Columns
	Defining an Adjacent Crosstab Column

	Working with Rows
	Adding Rows to Tables
	Moving Rows
	Inserting Blank Lines Between Rows
	Deleting Rows
	Converting Text to Rows and Rows to Text

	Selecting a Table Cell for Editing

	Formatting a Report’s Appearance
	Aligning Paragraph Text
	Formatting Text Displays
	Adding Borders to Paragraphs
	Changing Font, Font Size, Style, and Color
	Creating a Report Title Page
	Controlling Page Breaks
	Keeping a Section on a Page
	Keeping Sections Together
	Paginating Cross Tabular Reports

	Using Conditions to Determine Report Data
	Using a Subreport in a Conditional Paragraph

	Determining Page Layout
	Setting Page Size, Orientation, and Margins
	Snaking Columns on a Page
	Using Horizontal Pagination

	Adding Graphics
	Drawing Lines
	Changing a Line’s Color and Thickness
	Moving a Line
	Resizing a Line

	Drawing Rectangles
	Changing a Rectangle’s Color, Fill, and Border
	Moving a Rectangle
	Resizing a Rectangle

	Inserting Graphic Images in a Report
	Moving a Graphic
	Resizing a Graphic
	Moving Graphics to the Background

	Working with Overlapping Graphics
	Deleting a Line, Rectangle, or Graphic

	Using Report Fields
	Types of Fields
	Data Types

	Viewing and Editing Field Definitions
	Inserting, Moving, and Deleting Fields
	Inserting a Field in a Report Definition
	Moving a Field
	Deleting a Field

	Defining Computed Fields
	Defining a Simple Computed Field
	Using Functions to Define a Computed Field
	Types of Functions

	Defining a Computed Field Using a Function
	Using the Function Editor Dialog Box

	Defining a Sum Field with the Sum Button

	Using Parameter Fields
	Formatting Fields
	Applying Formatting to a Field
	Editing the Format of a Field
	Formatting Numbers
	Formatting Dates

	Saving Reports
	Printing a Report
	Pausing Printing
	Previewing a Report as It Prints
	Adding Print Status Messages

	Using the Report in an Application
	Exporting a Report to a File

	Chapter 10: Using the Image Editor
	Starting the Image Editor
	Workspace Overview
	Image Editor Components

	Customizing the Image Editor
	Loading Images
	Using the Color Indicator
	Solid Colors
	Transparent Colors

	Using Drag-and-Drop
	Using the Edit Area
	Setting Colors
	Using the Tool Palette
	Clearing the Edit Area

	Creating a Ribbon
	Saving Images
	Using Images in Applications

	Chapter 11: Debugging Your Applications
	A Sample Debugging Application
	Resolving Compiler Errors
	Building the Application
	Using the Error Browser
	Correcting the Errors

	Setting Debugging Options
	Resolving Runtime Errors
	Using the Online Help Reference to Isolate an Error
	Correcting an Error Using the Source Code Editor
	The Error Dialog Box
	Correcting Errors Using the Debugger
	The Debugger Workspace
	Execution Commands
	Analyzing the Problem
	Setting Breakpoints
	Running with a Breakpoint
	Correcting the Error

	More Debugging
	Running with a Preset Breakpoint
	Viewing Work Areas
	Implementing a Temporary Fix

	Correcting the Final Error
	Viewing Local and Private Variables
	Modifying Local and Private Variables
	Viewing Global and Public Variables
	Using Watch Expressions
	Setting and Clearing Watch Expressions
	Viewing Watch Expressions

	Viewing the Call Stack
	Viewing Sets
	Other Debugging Techniques
	Just-In-Time Debugging
	Terminal Window

	Chapter 12: Importing and Exporting Applications
	Exporting Applications and Modules
	Exporting Applications
	Exporting a Module

	Exporting Source Files
	Importing Applications and Modules
	Import Options
	Importing an Application
	Importing a Module

	Importing Source Files
	Exchanging Projects

	Appendix A: File Types
	Appendix B: CA-Visual Objects Registry Entries
	The Multi-Tiered Registry
	Adam Options Key
	Compiler Key
	DBServerEditor Key
	Directories Key
	EnvironmentOpt Key
	Tools Key
	Window Key
	Dynamic Memory

	Appendix C: Using the Install Maker
	Program Components
	Floppy Disk Utilization
	Project Files
	Producing Install Disks

	Appendix D: Using the CA-Uninstall Utility
	Starting CA-Uninstall
	Uninstalling CA-Visual Objects

	Index

