

Visual Objects
For

Windows 2000® and Windows XP®

South Seas Adventures

An Exploration of VisualObjects
Version 2.7

Contents iii

Contents

Chapter 1: Introduction
Welcome to South Seas Adventures!... 13

Using the Integrated Development Environment.. 15
Creating the Application Building Blocks .. 15

What You Should Know ... 16
What Are Objects? ... 16
What Can Objects Do? ... 17
Are Objects Defined? ... 17
How Are Objects Created and Destroyed?.. 17
How Do Objects Interact?... 17
When Does It All Begin and End? ... 18
How Are Objects Used in South Seas Adventures? .. 18

South Seas Adventures Application Design .. 19
Creating the Primary Building Blocks .. 19

Data Tables, Servers, and Fields ... 19
Data Windows... 20
Shell and Dialog Windows .. 21
Window Controls .. 21
Event Handlers .. 22
Reports ... 22
Help Systems .. 23
Icons, Cursors, and Draw Objects .. 23

Linking the Primary Building Blocks... 24
Completing the Remaining Building Blocks .. 24

Developer-Coded Entities... 25
System-Generated Entities .. 26

Linking the Remaining Building Blocks .. 26
Begin Your South Seas Adventure... ... 27

iv CA-Visual Objects South Seas Adventures

Chapter 2: Exploring the CA-Visual Objects 2.7 Integrated
Development Environment
Overview ... 29

Choosing a Directory Structure .. 29
The South Seas Directory Structure ... 30
Creating Path-Independent Applications ... 31

The CA-Visual Objects 2.7 Multi-Tiered Repository .. 31
Application Component Hierarchy ... 32
Automated Make and Entity-Level Compiling .. 32

Grouping Your Entities into Modules .. 32
Module Design Considerations .. 32
Module Naming Conventions ... 33

Exercise ... 35
Using the Repository Explorer ... 35
Importing the Application .. 37
Configuring Your Application Environment .. 38

Application Options .. 38
Compiler Options .. 39

Viewing the Application Modules ... 40
Building the Application .. 41
Running the Application .. 42

Running the Program Dynamically... 42
Creating and Running an Executable File ... 43

Summary ... 43

Chapter 3: Working with Data Servers
Overview ... 45
Exercise ... 47

Creating a Customer Data Server .. 47
Invoking the DB Server Editor ... 47
Importing a .DBF File ... 49
Importing an Index ... 51
Saving the Data Server .. 53

Creating a SQL Server .. 53
Installing ODBC Drivers .. 54
The ODBC Administrator ... 55
Using the SQL Editor ... 58

Contents v

Programming with Servers ... 60
Importing a Support Module .. 60
Viewing the Server Source Code ... 61
Running the Application.. 62

Event Notification ... 62
Client Data Forms.. 62
Child Servers .. 63
Manual Notification .. 64
Broadcast Message Activation ... 65

Summary ... 67

Chapter 4: Defining Field Specifications
Overview ... 69
Exercise .. 70

Creating and Modifying Field Specifications.. 70
Planning Data Server Field Properties ... 71
Attaching a Field Spec to a Data Server Field ... 72
Creating Field Specs from the DB Server Editor ... 74

Summary ... 75

Chapter 5: Creating and Using Windows
Overview ... 77

Single Document Interface Applications ... 77
Top Application Windows .. 77

Multiple Document Interface Applications ... 78
Shell Forms.. 78
Dialog Forms .. 78
DataDialog Forms.. 79
Child Application Windows .. 79
Data Forms .. 80
Server Use... 80
Data Propagation .. 80
Form and Browse View ... 80

Data Validation.. 81
Using the Window Editor ... 81
Disconnected Controls.. 81

vi CA-Visual Objects South Seas Adventures

Exercise ... 82
Viewing a MDI Application ... 82

The Shell Form ... 82
Adding Functionality ... 82

Creating a Modal Dialog Box .. 84
Warning Box Modal Dialog Forms ... 84
Retrieving Values from Modal Dialog Forms .. 85

Creating a Data Form ... 87
Importing a Support Module .. 88
Creating a Data Window Template ... 88
Designing Your Window Layout ... 90
Adding a Push Button .. 91
Compiling and Testing Your Changes .. 93

Summary ... 94

Chapter 6: Adding Controls to Your Windows
Overview ... 95
Exercise ... 96

Single-line Edit (SLE) Controls... 96
Multiline Edit (MLE) Controls ... 98

Moving the MLE Control.. 98
Viewing Your Results ... 98

Combo Box Controls.. 99
Check Box Controls ... 102
Radio Button and Radio Button Group Controls .. 102
List Box Controls .. 105
Group Box Controls ... 107
Fixed Icon Controls.. 108
Push Button Controls .. 109
Programming Techniques .. 110

Tab and Group Stops .. 110
Control Order and Multiple Groups ... 112
Naming Controls .. 112

Summary .. 113

Contents vii

Chapter 7: Inheritance and Subclassing
Overview .. 115
Exercise ... 117

Customizing Generated Code .. 117
Summary .. 118

Chapter 8: Creating Menus and Toolbars
Overview .. 119
Exercise ... 119

Creating a New Module ... 119
Creating the Menu .. 120
Using Auto Layout ... 121
Previewing Your Menu.. 122
Collapsing/Expanding the Menu Structure ... 123
Adding an Item to the Hierarchy ... 123
Changing the Hierarchy of a Menu Item .. 124
Removing Menu Items from the Hierarchy .. 125
Specifying Menu Actions to Perform.. 125

SSAWindow Event Name.. 126
Providing Menu Shortcuts ... 126
Checking a Menu Item .. 127
Creating a Toolbar .. 128
Changing Toolbar Button Positions ... 130
Spacing Between Toolbar Buttons .. 131
Other Modifications to the Toolbar ... 132
Saving the Menu.. 132
Attaching a Menu to a Data Window ... 133
Putting It All Together .. 134
Designing a Menu .. 135
Customizing a Menu .. 135

Disabling Menu Items ... 135
Editing Toolbar Buttons ... 136

Summary .. 138

viii CA-Visual Objects South Seas Adventures

Chapter 9: Accessing and Updating Data
Overview .. 139
Narrative... 139

Xbase Compatibility ... 139
Access and Assign Methods .. 140
Generated Data Server Classes ... 141
Base DBServer and SQL Classes .. 142
Data Forms ... 143
Data Servers Attached to Data Forms ... 144
Controls .. 144

Summary .. 146

Chapter 10: Customizing Window Event Handlers
Overview .. 147
Exercise .. 149

Using the EditChange() Method .. 150
Viewing Your Results .. 152

Using the Notify() Event Handler ... 153
Creating the Method ... 153
Viewing Your Results .. 154

Using the QueryClose() Event Handler .. 155
Summary .. 156

Chapter 11: Working with Icons and Cursors
Overview .. 157

Creating an Icon .. 157
Saving the Icon.. 160
Attaching Icons to Data Forms.. 161
Labeling Your Application with an Icon ... 162
Icons in the Program Group .. 162
Attaching Icons to Shell Forms ... 164
Displaying an Icon on a Window ... 165
Using Predefined Cursors .. 166
Creating and Modifying Cursors.. 166

Summary .. 169

Contents ix

Chapter 12: Working with Draw Objects
Overview .. 171
Exercise ... 172

Making the Dialog Box Resizable ... 173
The Resize Event ... 174
Using Bitmaps .. 175

Declaring a .BMP File as a Resource... 175
Creating a Bitmap Object .. 176
Drawing a Bitmap on a Window.. 177

Using Text Objects .. 178
Dynamic Positioning of Controls ... 179
Viewing the Results in the Application.. 180

Summary .. 180

Chapter 13: Reporting with the Report Editor
Exercise ... 181

Using the Report Editor.. 181
A Quick Tour .. 187
Adding Your Personal Touch... 188
Saving Your Work .. 191
Running Your Report Within Your Application .. 191
Report Parameters .. 192
Passing Parameters to the Report Editor from CA-Visual Objects 195
Verifying the Results .. 197

Summary .. 198

x CA-Visual Objects South Seas Adventures

Chapter 14: Debugging Your Application
Error Browser Exercise .. 199

Importing a Module with Errors .. 200
Resolving the Errors ... 201

Debugger Exercise .. 203
Viewing the Error ... 204
Introducing an Error... 205
Set Debugging On ... 206

Set Debugging at the Module Level ... 206
Running the Application Using the Debugger .. 207

Locating the Bug .. 208
Evaluating Expressions .. 209
Correcting the Error ... 210

Summary .. 211

Chapter 15: Adding Help to Your Applications
Overview .. 213

Context-Sensitive Help .. 213
Exercise .. 214

Implementing Context-Sensitive Help ... 214
Attaching Your Help File ... 214
Assigning Help to a Window ... 216
Assigning Help to a Control .. 217
Assigning Help to a Menu Command ... 217

Invoking Context-Sensitive Help.. 218
Viewing Help for a Control ... 219
Viewing Help for a Window .. 219
Viewing Help for a Menu Command .. 220

Implementing Direct Calls to Help .. 221
Menu Commands ... 221

Creating Help Files .. 222
Topic Files .. 222
Project File .. 222

Summary .. 223

Contents xi

Chapter 16: Using Win32 API Functions
Overview .. 225
Exercise ... 226

Windows Metric Information .. 226
Summary .. 227

Chapter 17: Using Libraries and Dynamic Link Libraries
Overview .. 229

Libraries ... 229
Dynamic Link Libraries ... 229

Exercise ... 230
Creating and Using a Library .. 230

Creating a New Library Application .. 231
Moving Modules Between Applications ... 232
Building the Library... 233
Using the Library ... 233

Creating and Using a DLL ... 234
Creating a New DLL Application ... 234
Copying Modules Between Applications .. 234
Using a DLL .. 235
Creating a .DLL File ... 236
Using a CA-Visual Objects .DLL .. 236

Summary .. 238

Chapter 18: Distributing Your Application
Overview .. 239
Exercise ... 240

Generating the Executable ... 240
Using the Install Maker.. 240

Specifying Other Files for Installation ... 242
Specifying File Properties .. 243

Creating a Project File ... 244
Creating Disk Images.. 245

Creating and Testing the Distribution Disks ... 245
Summary .. 246

xii CA-Visual Objects South Seas Adventures

Appendix A: Creating a Path-Independent Application
Establishing Drive and Directory Independence.. 248

Help Files .. 249
DB Server Data Files ... 249
Report Files ... 250
Icon, Cursor, and Bitmap Files .. 251

Summary .. 252

Index

Chapter 1: Introduction 13

Chapter

1 Introduction

Welcome to South Seas Adventures!
Take a hands-on tour of a sample application, South Seas Adventures, and
discover how quickly and easily you can begin developing your own
applications in CA-Visual Objects 2.7. This application has been partially
developed—allowing you to complete the development process as you work
through the tutorial:

South Seas Adventures simulates an operation support system that might be
used by the employees of a hypothetical company, South Seas, Inc. Employees of
the company act as booking agents to help customers plan an “adventure,”
consisting of several vacation activities—such as parasailing, jet skiing, or dinner
cruises.

Additionally, South Seas Adventures manages many other aspects of the
business, including subsystems to handle customer, employee, order-entry,
invoice, and payment information.

Some of the system operations that are covered in the tutorial are listed below:

■ Creation of an order for an adventure

■ Creation of an invoice

■ Recording of payment information

■ Preparing customer reports

■ Exporting data to an external SQL-based accounting system

Welcome to South Seas Adventures!

14 CA-Visual Objects South Seas Adventures

Not only does the application have all the proper components to satisfy the
needs of South Seas, Inc. operations, it also employs many user-friendly features,
such as windows and toolbars, found in your favorite Windows applications.

South Seas Adventures is an MDI (multiple document interface) application that
features a consistent, easy-to-use interface that demonstrates how standard
Windows features are created, using the CA-Visual Objects 2.7 IDE (integrated
development environment). The application allows you to view or browse
through information easily, as well as create or delete a customer record.

Some of these standard Windows features are shown below:

You will now discover how the application is developed—using
the CA-Visual Objects 2.7 IDE tools.

Welcome to South Seas Adventures!

Chapter 1: Introduction 15

Using the Integrated Development Environment

CA-Visual Objects provides both a visual and incremental development
environment. It integrates the many different types of building blocks, or
entities, required to build a Windows application like South Seas Adventures.
Visual editors allow you to create windows, menus, and other objects. Even
more importantly, they automatically generate the related source code entities.
You can then create and edit the relatively small number of source code entities
that define what happens when a push button is pressed or a menu command is
selected. Finally, you can create source code entities that incorporate business
and detailed program logic rules.

CA-Visual Objects 2.7
Multi-Tiered
Repository

All of the entities are stored in the CA-Visual Objects multi-tiered repository.
The repository allows you access to all of the entities associated with an
application. The entities are organized into modules so that similar entities can
be grouped together to make them easy to locate.

The CA-Visual Objects IDE is well-suited for incremental development. You can
create the data servers, windows, and menus in any order. Once the interface is
completed, you can start adding source code entities that define what happens
when a push button or menu command is selected. The repository manages all
the building blocks, compiles the changed entities, and allows you to run the
application, so that you can revise the overall design and recreate the building
blocks in an incremental fashion.

Creating the Application Building Blocks

You will have the opportunity to add some of the key building blocks to the
South Seas Adventures application. Since certain exercises require the use of a
building block created in an earlier chapter, you should work through the
chapters in sequential order.

After you have completed the development of the application, it will be capable
of accessing and updating information about customers, employees, adventures,
activities, invoices, and payments. This is accomplished through the use of a
variety data-aware windows, dialog windows, menus, and reports.

What You Should Know

16 CA-Visual Objects South Seas Adventures

Here are the building blocks that you will create:

■ A data server for customer data, based on the Xbase model of a .DBF file, and
two SQL servers for data to be exported to an accounting system

■ General field specifications, or field specs, that can be used with existing data
servers

■ A data-aware window to edit customer data, using the Auto Layout feature
with a data server

■ Controls for the customer data window

■ A menu and toolbar for the customer data window

■ An icon for the customer edit window

■ A resizable opening dialog box with a bitmap and a text object

■ A report that lists customers

■ A library and DLL for .INI file management activities

What You Should Know
The South Seas Adventures application was created using the CA-Visual Objects
object-oriented development system. If you are not familiar with object-oriented
systems, you can use the following background information to assist you in
getting the most out of this tutorial.

What Are Objects?

Objects are special types of programming entities—like windows, controls,
menus, or toolbars—that have properties associated with them (like a border or
caption) and can perform specific actions (like displaying itself on the screen, in
the case of a window, or toggling the check mark indicator, in the case of a check
box control).

These objects are generally created, and ultimately destroyed, in response to
something the end user does via the application interface. Every time a user
accesses a data table and it is connected to the application, a data server and
related field spec objects are created. Also, special objects that relate to a
problem-specific business process, such as creating an invoice, may be created.

What You Should Know

Chapter 1: Introduction 17

What Can Objects Do?

They can walk, talk, and listen! The developer can specify what actions are
possible for each type of object; this is done by creating source code entities
called methods. An object can also provide information for use by other objects or
by the business logic routines in the application; the way an object talks is
defined in access source code entities. An object can also receive information via
assign source code entities, which can modify its current state.

Are Objects Defined?

Objects are defined by a special kind of source code entity called a class.
Approximately 90 percent of all classes you need are defined automatically by
CA-Visual Objects. A class specifies the blueprint for each type of object and
typically inherits most of its properties from another class, called the parent class.

However, in some situations you may want to define a class from scratch. A
special Init() method defines all the related details of what must be done when
the object is created. Additional methods can be defined to specify the other
desired behaviors of the object, including what information can be received by it
(assigns) or provided by it (accesses).

How Are Objects Created and Destroyed?

Objects are created in the runtime environment by the CA-Visual Objects 2.7
runtime system. End-user actions trigger source code that creates a new object;
this process is called instantiation since a new instance of the object is created.
Each object is given an internal name by the runtime system to allow it to
manage the activities and communications for all the existing objects. Objects are
destroyed as a result of end-user actions. For example, the menu, data server,
and controls for a data window are destroyed when the end user closes a
window. All windows are destroyed when the end user closes the application.

How Do Objects Interact?

All actions and communications between objects and other variables are
managed by the CA-Visual Objects runtime system. When an end user starts an
application, a well-defined environment, or universe, is created. Once objects are
created in response to end-user actions, all the behaviors and information
transfers progress according to the source code specifics. Each object is a well-
behaved automaton that does what is asked of it, speaks only when spoken to,
and accepts only certain kinds of information. An end user is the invisible hand
that triggers the creation, activities, and destruction of each object.

What You Should Know

18 CA-Visual Objects South Seas Adventures

When Does It All Begin and End?

The runtime universe begins when the user starts the application. This triggers
the App:Start() method. The App:Start() method defines the shell window to be
opened, and then triggers the running of the application with the App:Exec()
method. The end user then defines all the other events, including the creation
and destruction of objects. Finally, the application is closed when the App:Quit()
method is activated.

How Are Objects Used in South Seas Adventures?

If you have not used objects before, you should be reassured by the fact that
approximately 90 percent of all the classes, methods, accesses, and assigns in the
South Seas Adventures application are generated automatically by CA-Visual
Objects. Every time you use one of the visual editors and save whatever it is you
are creating, all the related source code entities are generated.

This tutorial also highlights the few classes that are not generated automatically.
These classes include dialog window classes that inherit properties of dialog
windows generated by the Window Editor, an Invoice class created from scratch,
and two file specification classes.

Creating Objects When you create an object, it is named in the source code like any other
variable, but the letter “o” is used as a prefix for the name. For example, since
“oDC” indicates that an object is a data-aware control, a single-line edit control
on a window could be named oDCFirst_Name. It would then be instantiated
with the following source code:

oDCFirstName := SingleLineEdit{...}

This control is instantiated from the parent class (the standard SingleLineEdit
class) according to the details and parameters within the {} braces. These curly
braces indicate that an object is being instantiated.

Working with Objects You can access character information from the object, by using the Value access
of the parent SingleLineEdit class:

cTempName := oDCFirstName:Value

Or, you can assign character information to the object with the Value assign of
the parent class:

oDCFirstName:Value := cNewName

If you want to clear the contents of this control, use the name of the object
followed by the Clear() method defined for the parent class, as follows:

oDCFirstName:Clear()

South Seas Adventures Application Design

Chapter 1: Introduction 19

Finally, remember that all the interactions between objects are handled
automatically by the CA-Visual Objects runtime engine. Once the end user starts
the application, all these details should be of no concern to the developer.

That is all you really need to know about objects to benefit from the South Seas
Adventures tutorial. Remember that as you create data servers, windows, and
menus with the visual editors, the related object-oriented code is generated
automatically. That means that the majority of your time as a developer can be
spent designing the interface and business logic, while you leave the intricacies
of creating a Windows application to CA-Visual Objects.

South Seas Adventures Application Design
Let’s now begin to take a closer look at the internal workings of the South Seas
Adventures application by examining its various components. This section can
be used as a road map to what follows in the tutorial.

Creating the Primary Building Blocks

Entities that are created by the CA-Visual Objects visual editors are discussed in
this section. You will learn how easily they can be created and incorporated into
an application.

Data Tables, Servers, and Fields

The South Seas Adventures application provides access to information about
customers, employees, adventures, activity items, invoices, and payments—the
six primary types of business data used in the application—by means of the
following data structures.

Data Tables The types of tables that are needed to store primary and other types of data are
listed below:

■ Individual DBF tables for storing customer, employee, item, and payment
information.

■ Paired DBF tables for adventures and invoices: one for header information
and the other for a varying number of detail records.

For example, an adventure is defined for a customer whose vacation travel
spans a fixed period of time (header information) and contains one or more
adventure activity items (detail information).

■ SQL tables for accounting invoices (AccInv) and accounting payments
(AccPay), simulating the external accounting system.

■ DBF lookup tables (State, SysKey, and Tender).

South Seas Adventures Application Design

20 CA-Visual Objects South Seas Adventures

Data Servers A data server must be created as an interface to each of these tables. You can use
the DB Server and SQL Editors to accomplish this task quickly and easily. The
IDE automatically creates the server entities and all the related field spec entities
when you save a server in its editor.

The South Seas Adventures application requires data servers for the DBF tables
and SQL data servers for the accounting tables. You will see how the Customer,
AccInvc, and AccPay servers are created in the “Working with Data Servers”
chapter.

Data Fields When a data server is created, the data fields for each server are defined in either
the DB Server or SQL Editor. Typically, the server is created by importing a
STRUCTURE from a .DBF file or an SQL table. If this is not done, the name,
length, and type must be specified for each data field. The related field spec
entities for each data field are automatically created when you save the server.

You will get the opportunity to examine the field specifications for various data
fields within the South Seas Adventures application.

Data Windows

Data windows not only provide access to information that you need, but also
allow the user to create, edit, and delete records. All the related source code
entities (classes, methods, accesses, assigns, and defines) needed to perform these
functions are created automatically when you save your window design.

The following data windows are used in the South Seas Adventures application:

■ Browser—Contains a subform that displays a table showing several data
fields for all records and an edit control for searching the table. One table is
used for each business data type.

■ Subform—Contains a multicolumn tabular display for use in the browser
window. One table is used for each business data type.

■ New—Used to create a new record. It applies to all business data types,
except invoices (since invoices are created from the Edit Adventure
window).

■ View—Used for viewing payment information, which is not editable.

■ Edit—Used to edit all fields of a single record. It applies to the customer,
employee, and item business data types.

■ Master-Detail Edit—Used to display header information and a detail subform.
It applies to adventure and invoice business data types.

■ Detail Subform—Contains a tabular display for use in a master-detail edit
window. It applies to adventure and invoice detail data.

You will learn how to create the Edit Customer data window as part of this
tutorial.

South Seas Adventures Application Design

Chapter 1: Introduction 21

Shell and Dialog Windows

A shell window provides the framework for all the other windows and menus in
your application. Dialog windows provide a way to communicate with the end
user. These windows are also designed using the Window Editor; all the related
source code entities are created automatically when you save the window
design.

The South Seas Adventures application contains a single shell window and
several dialog windows, including:

■ Shell window: SSAWindow

■ Navigational dialog windows: Opening, FileNew, FileOpen

■ Print dialog windows: CustAdv, CustRpt, InvcRpt, PayRpt, Printer,
PrintReport

■ Other dialog windows: About, Find, Login, NewPassword, Progress

Window Controls

CA-Visual Objects has many types of controls that can be used in a window
design. These controls are derived from standard classes. When you save a
window design, the required source code for each control is automatically
generated. Alternatively, you can make use of these controls by writing source
code directly.

The majority of the controls are called “data-aware” controls, because they can be
directly linked to a field in a data server, and therefore, can directly communicate
with a field in a data table. When the Window Editor generates source code, the
object name is prefixed with the three letters “oDC”.

A few types of controls are not data-aware—for instance, push buttons, radio
buttons, fixed text objects, fixed icons, and group boxes. Object names for these
controls are prefixed with “oCC.”

Chapter 6: Adding Controls to Your Windows steps you through the process of
placing controls on the Edit Customer window created in Chapter 5: Creating
and Using Windows.

Menus allow a user to communicate with an application to perform an action.
The Auto Layout feature of the Menu Editor can be used to get a quick start on
your menu design. You can then add or delete menu items. You can also define
a toolbar for the menu. When you save a menu design, the Menu Editor
automatically generates all the source code entities for the menu.

South Seas Adventures Application Design

22 CA-Visual Objects South Seas Adventures

The SSAShellMenu menu is the one associated with the main shell window that
you see when the application begins. It allows you to select the next window to
be opened. This child window has an associated SSAChildMenu menu that
invokes various data windows.

In Chapter 8: Creating Menus and Toolbars, you will create the CustomerMenu
menu, which will then be attached to the Edit Customer window.

Event Handlers

Once the primary building blocks are created, you can begin to write the source
code that defines what should happen, for instance, when the user activates a
push button or a particular menu command. A Window class method (or event
handler) can be created that holds the code that is executed when a push button
is clicked. The Window Editor allows you to write this source code while
designing a window, by invoking the Source Code Editor. In the Menu Editor,
you must specify the name of a window, report, or method for each menu item.

In addition, you can create special methods that are activated when certain
events occur in a window, for example, when any button on a window is clicked
or the contents of any edit control are modified. This type of source code must
be included in special window event handler methods, which can also be done
easily while still in the Window Editor.

You will learn about window event handlers for the South Seas Adventures
application in Chapter 10: Customizing Window Event Handlers.

As you define the event handlers for your controls and menu items, the building
blocks of your application are linked together. At this point in the development
process, you can begin to run the application from the IDE to see how the
various components work together.

Reports

Reporting can be a powerful feature in a business application. The CA-Visual
Objects Report Editor allows you to specify which tables are to be used in a
report by defining the data server names. Once you select a report style—
tabular, form, labels, letter, or freestyle—a basic report definition is generated
which you can then modify. When you save the report definition, an external
REPORT EDITOR file (.RET) is generated, as well as several related source code
entities.

There are several reports that are supplied with the South Seas Adventures
application that you can examine. In Chapter 13: Reporting with the Report
Editor, you will also create a report that lists all customers.

South Seas Adventures Application Design

Chapter 1: Introduction 23

Help Systems

Another primary building block of an application is the help system. This can be
an important part of making your application easy to use.

Context-sensitive help can easily be integrated into your application. First, you
must create a help file that has all the required help topics. You must then attach
the help file to the application by specifying the help file name as a property of
the shell window. An individual help topic can be designated in the visual
editors for each window, control, menu item, server, and field. Thus, there are
many linkages between the application and the help file.

You will add help to the South Seas Adventures application in Chapter 15:
Adding Help to Your Applications.

Icons, Cursors, and Draw Objects

In addition to the primary building blocks, there are a few more entities that you
can add to your application that can enhance the “look” of your application,
including icons and cursors.

You will create an icon (MyIcon) in Chapter 11: Working with Icons and Cursors
of this guide. You will also see how to work with bitmaps and text objects in
Chapter 12: Working with Draw Objects and learn how the Window:Draw()
method can be used to display them.

South Seas Adventures Application Design

24 CA-Visual Objects South Seas Adventures

Linking the Primary Building Blocks

The following diagram illustrates the basic structure of the South Seas
Adventures application and the relationships among the primary building blocks
(those that can be created using the editors in the CA-Visual Objects 2.7 IDE):

Note: Rectangles with thick borders are the primary building blocks, while
those with thin borders are external files. Design linkages are shown as thick
lines, while external linkages are shown with thin lines.

The main application window is the shell menu, which allows you to open a data
or dialog window. Menus are associated with windows, and data servers act as
the interface between data windows and external data files. There can be many
linkages to the help file. Finally, each report is linked to an external report
definition file which provides a linkage to the data files.

Completing the Remaining Building Blocks

At this point, you have learned how the CA-Visual Objects 2.7 visual editors help
simplify the development process when creating many of the required
application entities. Now, let’s look at some of the remaining building blocks
that you will need.

South Seas Adventures Application Design

Chapter 1: Introduction 25

The following table summarizes how the different types of application entities
are created:

Visual Editor Design
Entities

Developer-Coded
Entities

System-Generated
Entities

Cursors Functions Defines

Data servers Global variables Resources

Field specs Classes Classes

Icons Accesses Accesses

Menus Assigns Assigns

Reports Methods Methods

SQL servers

Windows

Aside from the visual editor design entities, the remaining entities are created
either by the developer or the system. You do not need to be concerned with the
system-generated entities, since they are generated automatically.

Depending on the amount of customization you want to make to your interface
design and the complexity of the event handler methods, about one-third to one-
half of your development time may be spent on creating the visual editor-
generated building blocks, while the remaining time can be spent developing
your own custom code.

The next two sections describe developer-coded and system-generated entities in
greater detail.

Developer-Coded Entities

Your part in the development process lies in the creation of methods—such as
event handlers—that describe what should happen when an end user clicks on a
push button or selects a menu command.

In the South Seas Adventures application, subclasses for some dialog windows
are used to demonstrate how code reuse can greatly reduce your overall
development time. (Subclassing is discussed in greater detail in Chapter 7:
Inheritance and Subclassing.) A few special window event handlers are also
used, as you will see in Chapter 10: Customizing Window Event Handlers.

South Seas Adventures Application Design

26 CA-Visual Objects South Seas Adventures

System-Generated Entities

Entities that are generated automatically by CA-Visual Objects typically
represent approximately 80 to 90 percent of the entities for an application like
South Seas Adventures. The define entities make up about a third of the entities
in the entire application. The vast majority of the other system-generated
entities—including classes, access methods, and assign methods—are
automatically generated by the IDE visual editors.

Linking the Remaining Building Blocks

The following diagram illustrates the entire structure of the South Seas
Adventures application, including the supplementary building blocks, and the
relationships among all the entities:

Note: As noted earlier, rectangles with thick borders are the primary building
blocks, while those with thin borders are external files. Design linkages are
shown as thick lines, while external linkages are shown with thin lines.

This diagram expands upon the primary building block diagram, showing
several additional relationships among the application entities.

Begin Your South Seas Adventures...

Chapter 1: Introduction 27

The diagram shows the controls that you can place on each window when you
are using the Window Editor. There are two types of controls—data controls,
which could be linked directly to the fields in a data server (and, therefore, to a
data file), and other controls, which are not data-aware. These other controls are
used to accept user actions associated with push buttons and radio buttons or as
inanimate display objects, such as group boxes, fixed icons, and fixed text.

Secondly, the important role played by field specs is shown as the rectangle
adjacent to the data server. Note the design linkage to the data controls (via the
name of the data server associated with a window). A dialog window may
contain both types of controls, but there is no connection between a dialog’s data
controls to the fields in a data server and data file.

Lastly, you will notice the areas where the developer can explicitly code methods
to describe how the application should act when the user makes certain control
choices. These methods fall into the developer-generated entity category. Each
place where a developer-coded method could be created is indicated by the letter
“M.” There are three types of such event-oriented methods:

■ Push button methods

Can be added to indicate what should happen when the user clicks on a
specific push button (refer to Chapter 5: Creating and Using Windows and
Chapter 6: Adding Controls to Your Windows for more information).

■ Menu event methods

Can be added to indicate what should happen when the user selects a
specific menu command. As discussed in Chapter 8: Creating Menus and
Toolbars each menu item has a related event, which can either be the name
of a window, report, or method.

■ Event handler methods

Can be added to any type of window. These methods are activated when the
user takes certain actions on a window, such as clicking a mouse button or
changing the contents of any edit control on the window (refer to
“Customizing Window Event Handlers” for more information).

Begin Your South Seas Adventures...
Now, it is your turn to explore the world of CA-Visual Objects. The tutorial
exercises take some time to work through, so try to complete a few chapters in
each work session. Most importantly, you should complete the chapters in
order, since certain exercises depend upon the building blocks created in earlier
chapters.

Enjoy your adventure!

Chapter 2: Exploring the CA-Visual Objects 2.7 Integrated Development Environment 29

Chapter

2
Exploring the CA-Visual Objects
2.7 Integrated Development
Environment

This chapter demonstrates how to use the CA-Visual Objects 2.7 IDE to first
import the South Seas Adventures application and then view its components.
You will also learn how to build and run the application.

In addition, several CA-Visual Objects application design techniques will be
discussed as follows:

■ How to best organize files on your hard drive

■ How to name your modules

■ How to group entities into modules

Overview
Before you begin working on the tutorial exercises in this guide, there are some
fundamental concepts that you should know about the way the components of a
CA-Visual Objects application are organized and designed.

As a programmer, you know the importance of working with a development
environment that is easy to manage. You must design a directory structure,
define modules that hold all application entities, and be able to access them
quickly.

Many of the details that commonly make your life difficult, in other
programming environments, are automatically handled in CA-Visual Objects.

Choosing a Directory Structure

This section describes how the files related to the South Seas Adventures
application are organized on your hard disk. Creating a separate subdirectory
allows you to easily separate the various application components when you
create install disks and backup sets. For the purposes of this tutorial application,
a distinct subdirectory has been created. A more detailed description of the
directory structure is presented later in this guide.

Overview

30 CA-Visual Objects South Seas Adventures

For example, the South Seas Adventures application was placed in a
subdirectory called \SAMPLES\SSATUTOR. If you have installed CA-Visual
Objects 2.7 to C:\CAVO27, the Windows Explorer will display the following
directory structure:

The South Seas Directory Structure

This section describes each subdirectory within the South Seas Adventures
application development environment.

SSATUTOR This is the main runtime subdirectory. Any files necessary to run the application
will be placed here, such as:

� The application executable, DLL, and help files (.EXE, .DLL, and .HLP,
respectively)

� CA-QRT report files (.RET)

� Data files (for example, .DBF and .NTX)

SSATUTOR\FILES This subdirectory is for resource files, such as bitmap (.BMP), icon (.ICO) and
cursor (.CUR) files. Since these files are included in the executable file (.EXE or
.DLL), your users do not really need the files in this subdirectory. You can also
use this area to keep any application (.AEF) and module (.MEF) export files.

Overview

Chapter 2: Exploring the CA-Visual Objects 2.7 Integrated Development Environment 31

SSATUTOR\HELP Creating context-sensitive help for the application is a project in itself. It can be
easily segregated from the main development area. See the “Adding Help to
Your Application” chapter for more information on creating help. The actual
help file (SSA.HLP) associated with the application will be placed in the
\SSATUTOR subdirectory.

The reasons for using this directory structure for the South Seas Adventures
application are:

1. The application development directory structure resembles a user’s directory
structure when the system is installed—resulting in a similar environment.

2. It is easy to create an installation set since the runtime files are kept in one
place. The only other files needed by a user to run the application are the
DLLs required by CA-Visual Objects 2.7. (For more information on DLLs,
see Chapter 18: Distributing Your Application in this guide.

Creating Path-Independent Applications

CA-Visual Objects runtime file handling depends on the location of certain files
(including database, report, and help files), as well as how you specify their
locations when you create the server, report, and help building blocks.

To the extent possible, you should refrain from either specifying or hard coding
any path information for these building blocks in order to maintain drive and
directory independence for your application. There are also several steps you
need to perform when you design entities using the CA-Visual Objects visual
editors.

It is recommended that you refer to Appendix A: Creating a Path-Independent
Application for more information related to path-independent applications.

The CA-Visual Objects 2.7 Multi-Tiered Repository

Many of the traditional development details are handled by the CA-Visual
Objects 2.7 repository. The repository stores and organizes all of the application
building blocks (or entities). It also manages other details of your application,
including:

■ Source code files

■ Compiled code files

■ Binary design components (such as windows and menus)

■ Compiler options

■ Directory information

■ Dependency information

Overview

32 CA-Visual Objects South Seas Adventures

When you save an application, all the relevant information is stored in the
repository files. This information can then be viewed or utilized while you are
working in the CA-Visual Objects IDE.

The Repository Explorer provides you with a combination tree view and list
view to browse projects, applications, libraries, DLLs, modules, entities, classes,
and errors. It allows you easy access to the many parts that define the
application.

Application Component Hierarchy

Application Level The application is the top level in the hierarchy. GLOBAL variables are visible
across the entire application.

Module Level Modules exist on the second level of the hierarchy. Modules are similar in nature
to traditional source code files, since they contain and encapsulate the supporting
entities. STATIC GLOBAL variables are visible only within the module.

Entity Level Entities are the smallest identifiable components of your application and are
analogous to the functions, procedures, constants, and class definitions of
traditional source files. The CA-Visual Objects repository manages each entity as
a separate unit. LOCAL variables are visible to the creating entities only.

Automated Make and Entity-Level Compiling

The repository also keeps cross-reference information between the entities of
your application. When you build your application, CA-Visual Objects knows
which entities it has to compile, based on the changes you have made—only the
entities that have changed will get recompiled. This is known as “entity-level”
incremental compiling. Hence, you no longer need a traditional “make” file.

Grouping Your Entities into Modules

Module Design Considerations

As a programmer, you may often find yourself wondering how many modules
are appropriate for the given application. There are a few general rules that may
be helpful in this process, as described below:

1. The IDE visual editors place all source code entities related to a primary
design entity in the same module as the design entity.

2. To avoid confusion, do not mix data servers, menus, and windows in the
same module.

Overview

Chapter 2: Exploring the CA-Visual Objects 2.7 Integrated Development Environment 33

3. To avoid having too many entities in a module, restrict a module so that it
contains no more than two or three windows or one menu, if possible.
Although a question of personal choice, most modules should have between
20 and 100 entities.

4. Where possible, place all custom source-code entities (developer-coded) in a
module other than the one in which the window or menu resides. You may
have to cut and paste or drag-and-drop entities between modules to
accomplish this.

5. Use descriptive names for the modules.

In the South Seas Adventures application, many of the module names begin the
name as one of the business data types: adventure, customer, employee, invoice,
item, and payment. The second part of the module name is a word such as class,
data, windows, menu, methods, or reports. This naming convention indicates
what is contained in the module. Note that the developer-coded methods are
placed in the Methods modules.

Module Naming Conventions

This section discusses some of the tutorial modules in depth in order to
demonstrate how the design considerations were applied. What you are striving
for in your naming convention is ease of management in the future. Take
advantage of long names for modules as well as entities. This will make the
components of your application easier to recognize.

The names of the South Seas Adventures application modules are all two-part
names separated by a colon (for example, Adventure:Data). The first part
defines the primary focus of the entities in the module and the second part
identifies for what the entities are used. For example, “:Forms” indicates that the
module contains data windows, dialog windows, or a shell window.

To give you a practical idea of how these naming conventions are applied, let’s
now examine some of the Adventure modules:

Adventure:Data This module contains all entities related to the two data servers associated
directly with an adventure, the adventure header file (ADVHDR.DBF) and the
adventure detail file (ADVDTL.DBF).

Overview

34 CA-Visual Objects South Seas Adventures

Adventure:Forms This module contains all the entities required for the adventure forms. The
Window Editor was used to create these forms; therefore, the entities of the most
concern within this module are naturally the window entities. There are actually
five forms (window entities) in this module that let you add, edit, or browse data
in the data servers mentioned above. These forms are named as follows:

■ AdventureBrowser

■ AdventureDetailSubform

■ AdventureSubform

■ EditAdventureWindow

■ NewAdventureWindow

The AdventureSubform is a tabular display used on the AdventureBrowser
window, and the AdventureDetailSubform is a tabular display of the items in the
master-detail EditAdventureWindow.

Adventure:Methods This module contains all the methods that were not generated automatically by
the CA-Visual Objects editors. This code was separated from the generated code
to make it easier to locate.

In addition to modules that relate to one of the six business data types, you will
also need some application-related modules. These contain entities used in
several places. In the South Seas Adventures application, the general purpose
modules include:

Password:Forms This module contains the password dialog window and related entities.

SSA Child:Menu This module contains the menu attached to the child windows.

SSA Shell:Forms This module contains the shell window (SSAWindow) for the application.

SSA Shell:Menu This module contains the menu attached to the shell window.

App:Misc This module contains miscellaneous entities that can become a library or a DLL.

App:Resources This module contains any cursors, bitmaps, and icons that the application needs.

App:Start This module contains the application Start() method and any global entities for
the application.

Exercise

Chapter 2: Exploring the CA-Visual Objects 2.7 Integrated Development Environment 35

Exercise
Now that you know the basics about how application components are handled
and designed, you are ready for a hands-on tour of the IDE. You will discover
the ways it can help you work with your application—during various stages of
development.

In the following exercise, you will open the CA-Visual Objects 2.7 IDE, import
the South Seas Adventures application, set some application properties, compile
the application, and then run it.

Using the Repository Explorer

The Repository Explorer provides you with a logical way to access and view the
components of your application. There are several ways to view your
applications in the CA-Visual Objects 2.7 Repository Explorer, including the tree
view and the list view.

Let’s look at the Repository Explorer by performing the following steps:

1. Start CA-Visual Objects 2.7 from its Windows folder by clicking on the Start
Menu and selecting the Programs folder. After selecting the Programs
folder, choose the CA-Visual Objects 2.7 folder and select CA-Visual
Objects 2.7.

The Repository Explorer is displayed showing the tree view and list view:

Initially, the Repository Explorer displays the Default Project and all of the
libraries supplied with CA-Visual Objects 2.7. Each library is represented by
a branch in the tree view. Similarly, the applications and libraries that you
create also appear as branches on the tree.

Exercise

36 CA-Visual Objects South Seas Adventures

Note: The Lock icon in the Name column is only displayed if Visual Source
Safe is installed on your machine.

2. Notice the CA-Visual Objects 2.7 default icons that are displayed on the
Repository Explorer. These distinctive icons help you visually distinguish
between applications and libraries.

The following table shows the default CA-Visual Objects icons:

Icon Description

CA-Visual Objects System library icon

Application icon (which you can create)

User-defined library icon

User-defined DLL icon

You can also create your own application icon, which you will learn more
about in Chapter 11: Working with Icons and Cursors in this guide.

3. The Repository Explorer allows you to create, update, and manage your
applications easily. Selecting the File menu will allow you to create new
applications and projects or import and export existing applications:

Exercise

Chapter 2: Exploring the CA-Visual Objects 2.7 Integrated Development Environment 37

The Import and Export commands are provided to allow you to move
applications to and from external disk files, since applications are stored in
the repository. You will find these options useful for trading applications
with other developers and for backup purposes.

Importing the Application

Let’s begin by importing the South Seas Adventures application, which is used
throughout the remainder of this tutorial:

1. Select the Default Project branch from the Repository Explorer tree view.

2. Choose the Import command from the File menu.

The Import Application dialog box appears:

3. Select SSA.AEF. This is the South Seas Adventures application export file. It
can be found in your CA-Visual Objects 2.7\SAMPLES\SSATUTOR\FILES
subdirectory.

4. Choose OK.

Exercise

38 CA-Visual Objects South Seas Adventures

After the application is imported, a new branch appears on the Repository
Explorer tree view. This branch represents the South Seas Adventures
application, as shown below:

Notice the palm tree icon on the South Seas Adventures branch:

This icon is associated with the application through the Application Options
dialog box, which you will learn about in the next section.

Configuring Your Application Environment

For the purposes of the tutorial, there are a few settings that you may have to
modify, based on how you installed CA-Visual Objects 2.7. You will also look at
the compiler options that are available to you.

Application Options

As suggested previously, you should create a subdirectory for each application
or library that you create. This ensures that your disk stays organized, by
keeping files for each application separate, and eliminates confusion about what
files belong to a specific application. The path for EXE and DLL files can then be
set to the application’s subdirectory.

Exercise

Chapter 2: Exploring the CA-Visual Objects 2.7 Integrated Development Environment 39

You can modify the properties of an application or library at any time during
development. The Application Properties dialog box allows you to specify the
following:

■ Application name

■ Application type

■ Libraries to include in your search path

■ Path for a generated file (.EXE or .DLL)

■ Folder in which to place the generated .EXE file

■ Default debugging status

■ Whether the generated .EXE or .DLL file should include CA-Visual Objects
2.7 runtime files

Now, let’s see how this applies to the South Seas Adventures application:

1. Select the Application Properties toolbar button or right-click on the
application and select Properties from the local pop-up menu.

The Properties of South Seas dialog box appears:

2. In the Path for EXE and DLL Files edit control, redirect the executable to the
SSATutor directory by setting the path to:

%CAVOSAMPLESROOTDIR%\SSATUTOR\SSA.EXE

Compiler Options

Before attempting to compile the application, it is wise to review its compiler
options. You can specify different compiler options for each application at any
time during the development process.

Exercise

40 CA-Visual Objects South Seas Adventures

Let’s now look at the compiler options for the South Seas Adventures
application:

1. Select the Compiler Options tab in the Application Options dialog window
to view the compiler options available to you:

2. Set the Compiler Options. This is accomplished by selecting each items
check box or radio button.

3. Choose OK to close the Application Options dialog box.

Viewing the Application Modules

In the following exercise, you will expand the CA-Visual Objects Repository
Explorer to examine the entities in a module, and use the list view to look at the
various types of entities.

1. Open the South Seas Adventures application by double-clicking on its
branch on the Repository Explorer.

2. Double-click on the Adventure:Data module to examine its entities.

Exercise

Chapter 2: Exploring the CA-Visual Objects 2.7 Integrated Development Environment 41

The list view displays the entities in the module:

Note: The red X denotes that the entity needs to be compiled. We will
compile all of the entities in the following Building the Application section.

There are two server entities (AdvHdr and AdvDtl), each associated with
many field spec entities. Further down in the list, you will find the two data
server classes and related methods, accesses, and assigns.

3. Scroll through the list, and double-click one of the two Init() methods and a
few access and assign entities to see the kind of source code that is generated
by the DB Server Editor.

Building the Application

Once you have imported (or finished developing) your application, it can be
easily compiled. To build the South Seas Adventures application:

1. Click on the South Seas Adventures application branch on the Repository
Explorer tree view.

2. Click the Build button on the toolbar.

Note: When you import an application, none of the entities are compiled. The
South Seas Adventures application could be considered a medium-sized
application, so this initial build could take some time. Subsequent builds will be
much faster, since only those entities that need compiling, based on your
changes, will be compiled.

Once your program compiles successfully—indicated by the word Compiled in
the Vitality column of the List View and by the removal of the red X from each
entity—you can run your program. The next section discusses how to do this.

Exercise

42 CA-Visual Objects South Seas Adventures

Running the Application

During development, you can either run your application dynamically from the
IDE or you can generate an .EXE file and run it from Windows.

Regardless of the option you choose, when the application is run, the current
directory will be set to the path specified in the Application Options dialog box.
This allows you to test both versions from the same directory.

Running the Program Dynamically

As you incrementally develop your application, and then compile your latest
changes, you can run it without even having to leave your IDE environment. To
do this, perform the following steps:

1. Click on the South Seas Adventures application branch on the Repository
Explorer Tree View:

2. Click on the Execute toolbar button to run the program
from the IDE.

3. Choose OK in the South Seas Adventures opening dialog box:

The Login dialog box appears:

4. You can enter the system by logging in using the following procedure:

– Type User in the Name edit control.

– Type Trainee in the Password edit control.

– Choose OK.

5. Close the South Seas Adventures application by double-clicking the system
menu and select Yes when prompted.

Summary

Chapter 2: Exploring the CA-Visual Objects 2.7 Integrated Development Environment 43

Creating and Running an Executable File

Typically, after you have finished development, you will want to create a
stand-alone executable program (.EXE) which can be run without the CA-Visual
Objects IDE.

To create the .EXE file and run this program, perform the following steps:

1. Click on the South Seas Adventures application branch on the Repository
Explorer Tree View.

2. Click on the Make EXE toolbar button.

Once the .EXE file has been generated, your application
will be in the folder specified in the Application Options
dialog box.

3. You may now run the program by clicking the South Seas
Adventures application item in the folder.

The opening dialog box appears.

4. Choose OK.

The Login dialog box appears.

5. You can enter the system by logging in using the following procedure:

– Type User in the Name edit control.

– Type Trainee in the Password edit control.

6. Choose OK.

7. Close the South Seas Adventures application by double-clicking the system
menu and select Yes when prompted.

Summary
This chapter provided a brief overview of the IDE, as well as some useful tips to
make your application development easier. If you need more information on
using and navigating through the IDE, see the CA-Visual Objects 2.7 IDE User
Guide.

Chapter 3: Working with Data Servers 45

Chapter

3 Working with Data Servers

This lesson introduces you to the basic concepts of data servers. You will:

■ Create a Customer data server based on the Xbase model of a database file
(.DBF) and two SQL data servers

■ Use the data servers in data windows

■ Look at server notification

■ Explore programming techniques used to implement data servers

Overview
Data servers are the object-oriented means by which your applications
communicate with databases. CA-Visual Objects 2.7 applications can
communicate with DBF databases and SQL databases. These database formats
are very different and, in other programming languages, require drastically
different approaches when writing applications.

CA-Visual Objects overcomes this difficulty through data servers. The
DataServer class is the base class from which all data servers are derived. It
defines a common set of methods and properties, based on a common database
paradigm, which all server objects use. This means that you no longer have to
code specifically for a particular data model.

Overview

46 CA-Visual Objects South Seas Adventures

The following table displays the data server methods that are designed to be
compatible with the Xbase DML (data manipulation language):

Xbase (CA-Clipper) Data Server Classes

USE Customer ALIAS Cust NEW

DO WHILE CUST->(!EOF())

 IF Cust->Sex == “M”

 Cust->(DBDelete())

 ELSE

 Cust->Salary += ;

 Raise(Cust_Name)

 ENDIF

 Cust->(DBSkip())

ENDDO

USE

NEW oCust := Customer{}

DO WHILE !oCust:EOF

 IF oCust:Sex == “M”

 oCust:Delete()

 ELSE

 oCust:Salary +=;

 Raise(oCust:Name)

 ENDIF

 oCust:Skip()

ENDDO

oCustServer:Close()

Two editors, the DB Server Editor and the SQL Editor, are used to create data
servers. The DB Server Editor creates a class which is derived from the DBServer
class. The DB Server Editor will also create the associated entities to accompany
this class creation. This class is used to access DBF-type databases. The SQL
Editor creates a class (and associated entities) which is derived from the
SQLTable class. This class is used to access SQL databases via ODBC.

The main difference between these classes is in the way you instantiate them.
Also, each data server contains methods and properties specific to the type of
database they serve.

Exercise

Chapter 3: Working with Data Servers 47

Exercise
In this lesson, you will create the data servers used by the South Seas Adventures
application to access customer and invoice data.

Creating a Customer Data Server

At one time, South Seas Inc. relied on a customer-tracking system written in CA-
Clipper for the character mode environment. Now, they wish to incorporate the
data from that system into the new South Seas Adventures application in
Windows.

Invoking the DB Server Editor

You are now going to create the data server from an existing .DBF file, using the
DB Server Editor:

1. Open the South Seas Adventures application by double-clicking on its
branch on the Repository Explorer.

2. To create the data server in a new module, choose the New Module toolbar
button—the Create Module dialog box appears.

3. In the Enter module name edit control, type Customer:Data and choose OK.
This adds the Customer:Data branch to the South Seas Tree View on the
Repository Explorer.

4. Select the Customer:Data Module.

5. Select the DB Server Editor command from the Tools menu (or click on the
Open Entity toolbar button and choose DB Server Editor from the local
pop-up menu).

Exercise

48 CA-Visual Objects South Seas Adventures

The DB Server Editor is displayed. It consists of a workspace and a floating
Properties window:

Initially, the Properties window displays properties associated with the
server as a whole, as indicated by the title “DB Server Properties.”

The Properties window changes depending on which edit control is active in
the editor workspace. For example, when the active control is the Indexes
list box, the Properties window displays Index properties. If the active
control is a field in the Include list box, the Properties window displays field
specification properties.

Each of these windows is displayed below:

Exercise

Chapter 3: Working with Data Servers 49

Importing a .DBF File

The DB Server Editor allows you to create a data server from scratch, or from an
existing .DBF file. The CUSTOMER.DBF file already exists, so let’s use the
Import feature to read in its structure:

1. Choose the Import command from the File menu (or click on the Find
button located to the right of the File Name edit control).

The Import dialog box is displayed:

2. Select the CUSTOMER.DBF file located in the CA-Visual Objects 2.7
SAMPLES\SSATUTOR subdirectory and choose OK.

The Import feature fills in the Name and File Name edit controls, as well as
the Include list box control in the Fields group box:

The file name is placed in the Name edit control. This name serves as the
data server name and the class name for the data server. It acts as a prefix to
the classes created for each field in the database.

Exercise

50 CA-Visual Objects South Seas Adventures

The physical character mode file name, including the full path, is placed in
the File Name edit control.

Important! If you choose to leave the full path as is, the resulting application
attempts to find the Customer database in that directory. This limits the installation
options for your application. Refer to Appendix A: Creating a Path-Independent
Application, for information on how to modify this path at runtime.

3. Remove the drive and directory information from the File Name edit control,
leaving only CUSTOMER.DBF.

4. The Include list box is populated with the names of the fields in the
Customer database. The fields are listed in the order in which they are
defined in the database. Select the CUST_ID field from the Include list box:

The Properties window now displays the properties for the Cust_ID field:

Each field of a data server has a field specification which is made up of many
properties.

Tip: Scroll down through the FieldSpec Properties window to see the
various properties.

Exercise

Chapter 3: Working with Data Servers 51

The Include and Exclude list boxes allow you to control which fields are
accessible through this data server. Fields in the Exclude list box are
inaccessible while using this server.

Importing an Index

Now, let’s select the index files for use in the South Seas Adventures application:

1. Click the Find button located to the right of the Indexes list box.

The Browse dialog box displays.

2. Select the CUST1.NTX file located in the CA-Visual Objects 2.7
SAMPLES\SSATUTOR directory and choose OK.

CUST1.NTX now appears in the Indexes list box:

The check mark indicates that this is the controlling index, which means that it
contains the order used to control the logical order in which the database file
will be processed.

Notice that the properties window now displays the Index Properties:

These properties specify the index file name and the number of orders within
the index.

Exercise

52 CA-Visual Objects South Seas Adventures

3. Click the Filename property and remove the drive and directory information,
leaving only CUST1.NTX.

In order to support multiple index files (such as .CDX and .MDX), the index
orders are displayed in the Orders list box, with the controlling order also
indicated by a check mark:

Since .NTX files can only support one order, no more than one order can be
added to this list.

4. Click the CUST1 order.

The properties window now displays the Order Properties of the
CUST1.NTX index:

This is where you define the properties of the index order. The CUST1.NTX
index will be in ascending order by the contents of the Cust_ID field.

5. Repeat steps 1 through 3 for the CUST2.NTX index file.

Remember to remove the paths from each of the index file names.

When all these steps are completed, the DB Server window should look as
follows:

Exercise

Chapter 3: Working with Data Servers 53

Saving the Data Server

Now, you are ready to save the data server:

1. Save the data server by clicking the Save toolbar button.

CA-Visual Objects 2.7 now creates the entities required for your program.
Watch the DB Server Editor’s status bar as it creates these entities.

2. Close the DB Server Editor by double-clicking its system menu.

3. To see the entities created, open the Customer:Data module by clicking its
branch.

The Repository Explorer displays the entities in the Customer:Data module:

4. Scroll through the entities in the Customer:Data module to see what was
created when you saved your work.

There are many entities related to the data server. Each field has a FldSpc
binary entity, a FieldSpec subclass, an Init() method, an access method, and
an assign method. For the data server, there is a server entity, a DBServer
class, an its Init() method.

Creating a SQL Server

The South Seas Adventures application serves as a front-end management and
point-of-sale tool. The invoices and payments created using this system must be
sent to the Accounting department.

For purposes of this tutorial, assume that the Accounting department of South
Seas Inc. uses a separate system on a SQL database. This database is accessible
via Open Database Connectivity (ODBC).

Exercise

54 CA-Visual Objects South Seas Adventures

CA-Visual Objects provides ODBC drivers for many major databases.

If you did not select all the components when you originally installed CA-Visual
Objects 2.7, refer to the Installing ODBC Drivers section in this chapter.

To simulate access to the Accounting department’s data, you will access .DBF
files via the dBASE ODBC driver provided with CA-Visual Objects.

Tip: This is a great way to prototype applications which will eventually be
connected to a SQL database. For development purposes, you can use the
dBASE ODBC driver. When creating your .DBF files, make the DBF layout
the same as the SQL accounting database. For the final release, simply
modify the SQL server to use the new data source and recompile.

Installing ODBC Drivers

The CA-Visual Objects 2.7 installation program allows you to install any number
of the available ODBC drivers. For this lesson, you need to have the dBASE
ODBC driver installed. If you already installed this driver, skip to the next
section, The ODBC Administrator.

To install the dBASE ODBC component on your hard drive:

1. Insert the CA-Visual Objects CD-ROM in the CD-ROM drive.

2. For Microsoft Windows or NT, click the Start button and then click Run.

3. In the Command Line box, enter:

cd-rom_drive:\setup

Where cd-rom_drive represents the drive letter of the CD-ROM drive—for
example, you might type e:\setup.

4. Choose OK.

This will invoke the CA-Installer. A text window displays containing
important information regarding the installation of CA-Visual Objects.

5. Choose OK.

The Registration window displays. The Registration information is required
in order to proceed with the installation.

6. Enter your Registration information and click OK.

7. A window appears containing the default directory where CA-Visual Objects
will be installed. You can specify another directory by typing in the full
path.

Exercise

Chapter 3: Working with Data Servers 55

8. Choose Continue.

The Selected Components Window appears.

9. Click the Deselect All push button.

10. Scroll through the available options, and click the dBASE driver component:

12. Click the Install push button.

13. The CA-Installer will proceed to install the dBASE ODBC driver. Simply
follow the on-screen prompts to proceed with the installation.

The ODBC Administrator

Before you use the SQL Editor to define a SQL table for the first time, you must
define the data sources using the Windows ODBC Administrator.

The ODBC Administrator allows you to add, delete, or configure data sources. A
data source is the data you want to access and the information needed to get to
that data.

The ODBC Administrator is accessed through the Windows Control Panel, as
follows:

1. Click the Start Button.

2. Highlight the Settings Folder.

Exercise

56 CA-Visual Objects South Seas Adventures

3. Click the Control Panel icon. The window is displayed:

Note: For Windows users, the name of this icon is “32-bit ODBC.” For
Windows NT users this icon is named “ODBC.”

4. Double-click the 32-bit ODBC program icon to launch the ODBC
Administrator. The Data Sources dialog box appears:

Exercise

Chapter 3: Working with Data Servers 57

5. Add a new data source by clicking on the Add button.

The Add Data Source dialog appears, displaying all of the drivers that you
have installed:

6. Select CA DbaseFile 3.10 32-BIT DBaseFile (*.dbf) from the Installed ODBC
Drivers list box, and then click Finish.

The ODBC dBASE Driver Setup dialog box appears:

7. In the Data Source Name edit control, type Accounting.

This is the name that is searched for when choosing a data source from
inside of the SQL Editor.

8. In the Description edit control, type Accounting Department Data.

Exercise

58 CA-Visual Objects South Seas Adventures

9. In the Database Directory edit control, type in the path to the
SAMPLES\SSATUTOR subdirectory, which is located in the CA-Visual
Objects 2.7 installed directory (for example,
C:\CAVO27\SAMPLES\SSATUTOR).

10. From the Create Type drop-down list box, select Clipper.

This ODBC driver allows access to all Xbase data.

11. Change to the Advanced tab and confirm that the Locking is set to RECORD
and the Lock Compatibility is set to Clipper.

You are now finished defining the data source.

12. Choose OK.

You should see your new entry in the Data Sources (Drivers) list box when
the Data Sources dialog box reappears:

13. Choose the OK push button, and then close the Control Panel by
double-clicking on the system menu.

Using the SQL Editor

Now, you are ready to use the SQL Editor:

1. Open the South Seas Adventures application (if not already open) by double-
clicking its branch on the Repository Explorer tree view.

2. To create your SQL server in a new module, select the New Module
command from the File menu or click the New Module toolbar button.

3. Name the new module Accounting:Data and choose OK.

Exercise

Chapter 3: Working with Data Servers 59

4. Select the Accounting:Data module.

5. Click on the Open Entity toolbar button and select SQL Editor, or select the
SQL Editor command from the local pop-up menu.

The SQL Editor window appears:

6. In the Name edit control, type ACCINVC.

The SQL Editor uses this name to create the AccInvc class, which you are
going to use later to access the data from your program.

Now that you have a name, you may select the data source that the AccInvc
server accesses.

7. Click the Find button, which is located to the right of the Source edit
control.

The SQL Data Sources dialog box displays.

8. Select the Accounting data source from the Machine Data Source tab and
click OK.

The Tables list box is now populated with a list of the .DBF databases or
tables that are in the directory you specified for the Accounting data source.

9. Select the ACCINVC table from the list:

Exercise

60 CA-Visual Objects South Seas Adventures

This is the destination file for the invoice information sent by the South Seas
Adventures application.

The SQL Editor fills the Include list box with the columns (fields) of your
table. As with the DB Server Editor, you can choose to exclude columns
from the server. Excluding columns has no affect on the actual table, they
simply are not accessible by the server that excludes them.

Field spec entities have also been created for each column. Since you are not
going to use this server as part of a window, the default field specifications
need no modification.

If you require the table rows to be filtered, you can add an SQL WHERE
clause in the WHERE clause multi-line edit control. You can also specify an
SQL Order clause to sort the rows.

10. For the purposes of this lesson, this SQL Server definition is complete.
Therefore, select Save from the File menu.

11. Select the New Server toolbar button to clear the current editor.

12. Repeat steps 5 through 10 to create the AccPay server. The AccPay table also
resides in the Accounting data source.

13. Once this is done, exit the SQL Editor by double-clicking on its system menu.

Programming with Servers

You will now look at a support method that demonstrates how a data server is
typically used. It actually implements the transfer of data from the South Seas
Adventures application to the Accounting Department.

Importing a Support Module

First, you must import a support module export file (.MEF), containing the
predefined OptionsSubmit() method, using the following steps:

1. Select the South Seas application and choose the Import command from the
File menu.

2. From the Import dialog box, select the files of type combo box and select
Mod.Import files (*.mef). After choosing the .MEF files, select the
TUTSERV.MEF file located in the SAMPLES\SSATUTOR\FILES
subdirectory.

3. Choose Open.

Notice that a new module called Tutorial:Servers has been added to the
South Seas Adventures application.

Exercise

Chapter 3: Working with Data Servers 61

Viewing the Server Source Code

View the source code using the following steps:

1. Open the Tutorial:Servers module by clicking its branch on the Repository
Explorer.

2. Open the Source Code Editor by double-clicking on the OptionsSubmit()
method of the SSAWindow class in the Repository Explorer list view.

Notice that the code uses the AccInvc and AccPay SQL servers in the same
way that data servers based on .DBF files are used. In fact, had you not just
created the servers, you would probably not know what type of server they
are.

In the OptionsSubmit() method, you will find two loops—one for processing
invoices, the other for processing payments.

The payment processing loop proceeds as follows:

1. Define and create the necessary data server objects:

LOCAL oAccPay AS AccPay
LOCAL oPayment AS Payment
oAccPay := AccPay{}
oPayment := Payment{}

2. Position the Payments data server at the first record:

// Submit payments
oPayment:GoTop()

3. Loop while there are records to process and the user wants to continue. This
method uses a progress bar dialog box that allows the user to cancel the
process:

DO WHILE !oPayment:EOF .AND. ;
!oProgressDialog:CancelRequested

4. Check to see if the current payment record has already been submitted to the
Accounting department:

IF !oPayment:Submitted

5. If the current record has not been submitted, add a record to the Accounting
department’s database and update its fields:

oAccPay:Append()
oAccPay:Inv_ID := oPayment:Inv_ID
oAccPay:Pay_Date := oPayment:Pay_Date
oAccPay:Tender_ID := oPayment:Tender_ID
oAccPay:Amount := oPayment:Amount
oAccPay:Details := oPayment:Details
oAccPay:Expiry := oPayment:Expiry
oAccPay:CardNo := oPayment:CardNo

6. Force a write to the database:

oAccPay:Commit()

7. Set the payment record as having been submitted:

oPayment:Submitted := TRUE

Exercise

62 CA-Visual Objects South Seas Adventures

8. Advance the progress bar:

oProgressDialog:Advance;
("Reviewing Payment #: "+ ;
oPayment:Inv_ID)

9. Go to the next record in the payment record and return to top of loop:

oPayment:Skip()
ENDDO

10. Close all files:

oAccPay:Close()
oPayment:Close()

Running the Application

Now, let’s see the code in action:

1. You must first build the application by clicking the Build toolbar button.

2. Run the application by clicking on the Execute toolbar button. Click
Continue when the pop-up information screen appears.

3. At the Login dialog box, type User in the Name edit control and Trainee in
the Password edit control, and choose OK.

4. Select the Submit Invoices and Payments command from the Options menu.

All unsubmitted invoices and payments currently in the system will be sent,
via the ODBC connection, to the Accounting Department’s database. At this
point, there are no invoices or payments in the database, so no data will be
sent. The Submission Report dialog box informs you how many records
have been submitted.

5. Close the Submission Report dialog box by clicking OK.

6. Close the South Seas Adventures application by choosing Exit from the File
menu and then selecting Yes when prompted.

Event Notification

Up to this point, you have seen data servers as simple tools for programming.
But, they are capable of much more with minimal coding.

Client Data Forms

Data servers are aptly named. Within an application, each data server object has
clients, in particular—data windows.

Exercise

Chapter 3: Working with Data Servers 63

A data server will notify its client data windows of all operations affecting the
data server. This allows the data windows to keep themselves up to date with
respect to the data server, for example, updating the data display, appending
records, and moving the record pointer.

To attach a data server to a window, all you need to do is perform a Use()
operation on the data server.

1. Open the Employee:Forms module by clicking its branch on the Repository
Explorer.

2. Find the EditEmployeeWindow:Init() method in the Repository Explorer List
view and open it by double-clicking on it. The following code appears in the
Source Code Editor:

METHOD Init(oWindow,iCtlID,oServer);
CLASS EditEmployeeWindow

LOCAL olServer AS OBJECT
SELF:PreInit (oWindow/iCHID, oServer, uExtra)
SUPER:Init(oWindow,ResourceID ;

{"EditEmployeeWindow"},iCtlID)
...
IF (oServer = NIL)

SELF:Use(Employee{})
ELSE

SELF:Use(oServer)
ENDIF
...
SELF:ViewAs(#FormView)
SELF:PostInit (oWindow, iCHID, oServer, uExtra)
RETURN SELF

This method was created when the EditEmployeeWindow window was saved
from within the Window Editor. This method performs a Use() on either a data
server passed to the window, or the Employee data server defined for the
window in the Window Editor.

SELF:Use(Employee{}) registers the window as a client of the Employee data
server. When something happens, such as record pointer movement to the
EditEmployeeWindow object’s attached Employee data server, the window is
notified. The data window then takes the appropriate action—such as updating
its controls.

What if a data server has two client data windows? Both will be notified when
something happens to the data server. If data changes in one data window, the
other is notified and changes are automatically displayed.

Child Servers

A data server can also be related to another data server via a SetRelation or
SetSelectiveRelation link. The server issuing the SetRelation or
SetSelectiveRelation call becomes the parent, while the other becomes the child.

Exercise

64 CA-Visual Objects South Seas Adventures

Any movement in the parent server automatically causes movement in the child.
In addition to movement actions, the SetSelectiveRelation link limits visible
records in the child server to those that match the relation as demonstrated in the
following paragraphs.

Note: SetSelectiveRelation links are used on data windows that contain subform
controls. The subform control has its own attached data server. The data server
of the window is the parent, while the data server of the subform control is the
child.

An example of this can be found in the Init() method of the
EditAdventuresWindow class in the Adventures:Forms module. This code was
generated automatically using the Master Detail option of the Auto Layout
feature in the Window Editor. The EditAdventureWindow deals with two data
servers. It uses them in a master-detail relationship.

In this case, the master server is related to the detail server using a
SetSelectiveRelation(). Using this type of relation filters the child server so that
only those records that match the relation key are visible. In the Edit
AdventureWindow window, you only want to see the detail records of a
particular adventure.

The EditAdventureWindow contains a subform called AdventureDetailSubform
(see the Adventure:Forms module). The subform server, AdvDtl, is specified at
at line 53 of its Init() method. This code was generated by the Window Editor.

The subform is created at line 99 of the Init() method of the
EditAdventureWindow. The next two lines show the subform and set the
selective relationship using the #Adv_ID field. This field relates the parent
server (AdvHdr) to the child server (AdvDtl).

Manual Notification

The data server classes were designed to allow you to create multiple instances
of the same server without having to worry about work areas, unique aliases and
SQL cursors.

When you create individual instances of the server, it is important to remember
that notification will be sent only to its registered clients. If it has no clients, no
notification is sent.

Exercise

Chapter 3: Working with Data Servers 65

Consider the case where you wish to validate a key for uniqueness. You could
use the following code:

LOCAL cCustID
cCustID := "00001"
oCust := CUSTOMER{}
IF !oCust:Seek(cCustID)

? "Customer is unique!"
ELSE

? "Customer exists!"
ENDIF

Using this type of code is perfectly safe and no other considerations must be
made.

However, consider the case where you have a customer window on the screen
and you do not have your window registered with the oCust data server. Your
program executes the following:

oCust := CUSTOMER{}
IF !oCust:Seek(cCustID)

oCust:NAME := "NEW NAME"
ENDIF

Since the customer window is not a registered client of oCust, it will not be
notified of the update made to its database.

If you want your customer window to be updated, you must send the
notification yourself.

Broadcast Message Activation

In the South Seas Adventures application, this type of custom notification was
accomplished using a notification broadcasting system from the SSAWindow
class (the shell window of the application).

Here’s how it works. Essentially, any code that modifies servers directly sends a
notification to the SSAWindow. The message is sent via the BroadcastMessage()
method of the SSAWindow class.

Broadcasting
Messages

The BroadcastMessage() method is called from several different methods,
including the Notify() method for edit windows and others containing custom
code for push buttons (for example, Delete, Invoice, OK, Refund, and Void).
You can find these methods by using the Source Code Editor’s Find dialog box,
and selecting the Advanced >> push button.

Exercise

66 CA-Visual Objects South Seas Adventures

Open the Adventure:Methods module and double-click on the OKButton()
method in the NewAdventureWindow class. Several key lines are shown below:

METHOD OKButton() CLASS NewAdventureWindow
...
IF ValidateControls(SELF, SELF:AControls)

...
SELF:Append()
...
oCust := Dup_Customer{}
oCust:Seek(oDCmCustID:Value)
SELF:Append()
...
// Updates to Adventure servers
...
SELF:Server:Commit()
...
// Broadcast notification
SELF:Owner:BroadcastMessage(SELF,;

#Customer)
SELF:Owner:BroadcastMessage(SELF,;

#Adventure)
...
SELF:EndWindow()

ENDIF
RETURN SELF

The message to be broadcast is simply the symbolic name of the affected server.
The SSAWindow window, in turn, sends the notification to all its child windows
that possess a ReceiveBroadcastMessage() method. The messages to be
broadcast simply contain the symbolic name of the affected server:

METHOD BroadcastMessage(oSender,symMessage) ;
CLASS SSAWindow
LOCAL i AS WORD
LOCAL oCurrentChild AS OBJECT
FOR i := 1 TO LEN(aChildWindows)
 oCurrentChild := aChildWindows[i]
 // Do not process the sender
 IF oSender != oCurrentChild

IF IsMethod(aChildWindows[i],;
#ReceiveBroadcastMessage)

oCurrentChild:;
ReceiveBroadcastMessage;
(symMessage)

ENDIF
 ENDIF
NEXT
RETURN SELF

Receiving
Broadcast Messages

In the South Seas Adventures application, several windows have a
ReceiveBroadcastMessage() method. These include browse windows
(Adventure, Employee, Item, Invoice, Payment), edit windows (Adventure,
Employee, Item, and Invoice), and the NewAdventure and ViewPayment
windows.

The child window that needs to receive these notifications can have its own
ReceiveBroadcastMessage() method to update itself accordingly.

Summary

Chapter 3: Working with Data Servers 67

For example, open the Adventure:Methods module and double-click on the
ReceiveBroadcastMessage() method for the AdventureBrowser window:

METHOD ReceiveBroadcastMessage(symMessage);
CLASS AdventureBrowser
IF symMessage == #Adventure

oSFAdventureSubform:Browser:Refresh()
ENDIF

RETURN NIL

In the previous example, the AdventureBrowser and the
NewAdventureWindow windows each have their own instances of the
Adventure data server. When a new adventure is added, the AdventureBrowser
window must be notified.

Summary
You now know how to use the DB Server and SQL Server Editors to create data
servers. In this lesson, you have:

■ Created the Customer class (a subclass of DBServer), as well as the AccInvc
and AccPay classes (subclasses of SQLTable)

■ Created an ODBC data source and learned how to program using data
servers

■ Been introduced to the notification process that occurs between data servers
and data windows

For more information please refer to the IDE User Guide.

Chapter 4: Defining Field Specifications 69

Chapter

4 Defining Field Specifications

This lesson introduces you to field specification (or field spec) entities. You will
learn how to use the FieldSpec Editor to define field specs. These definitions
save you time when creating data servers with the DB Server Editor and creating
data windows with the Window Editor. Defining reusable field spec entities also
helps you ensure consistency in your database definitions.

Overview
In many cases, the different data servers in your application contain similar, if
not identical, fields. For example, phone numbers—whether they are home,
business, fax, or cellular numbers—are usually the same length. Other common
examples are key fields, like customer, account, and employee codes, that might
be used to relate your data in many files. You can either define the properties of
these common fields each time you create a new data server or you can create a
template, or field spec, that you reuse in each data server that needs it.

A field spec is essentially a set of properties (such as validation and formatting
rules), that are related to a field, but are independent of a particular data server.
Thus, when defining data servers, you can use the same property values for
common fields, and any change made to a field specification is automatically
propagated to all data servers that use that field spec.

Also, as you will see in Chapter 5: Creating and Using Windows, a data form
initially created with the Window Editor’s Auto Layout feature, uses field
definitions and properties specified in field specs in a data server.

Careful design of your field properties can save you time when later defining
data servers and designing data-entry windows.

Exercise

70 CA-Visual Objects South Seas Adventures

Exercise
In this exercise, you will create generic Phone and Customer ID field specs that
you will use to describe fields in a data server. You will further refine the
definitions in order to save time in future data server and window definitions.

Creating and Modifying Field Specifications

Invoking the
FieldSpec Editor

The FieldSpec Editor allows you to create and modify field specifications. To
invoke the FieldSpec Editor:

1. Open the South Seas application by double-clicking its branch on the
Repository Explorer tree View.

2. Create a new module by clicking the New Module toolbar button.

3. In the resulting Create Module dialog box, type App:FieldSpecs and choose
OK.

Select the App:FieldSpecs module.

5. Select the FieldSpec Editor command from the Tools menu (or click the
Open Entity toolbar button and select FieldSpec Editor).

The FieldSpec Editor window displays:

Notice how similar this window is to the FieldSpec Properties window in the
DB Server Editor. One difference is that there are no properties whose
names have the FS prefix (for example, Name, Caption, Description, and
Help Context) like in the DB Server Editor. The FieldSpec Editor also has its
own toolbar and status bar.

Exercise

Chapter 4: Defining Field Specifications 71

Creating a Field Spec To create a field spec entity, you must specify at least four properties:
FieldSpec, Name, Type, and Length, as follows:

1. Select the FieldSpec property and type PHONEFS.

2. Press Enter.

PhoneFS is the name of the field specification. It must be unique among all
field spec definitions.

3. Select the Name property and type PHONE_FS.

4. Press Enter.

Phone_FS is the symbolic name of the field specification. It must be unique
in your application.

5. Select the Type property and choose Character from the drop-down list box.

The Length property is automatically set to 10, which is appropriate.

6. Save your field spec by clicking the Save toolbar button.

The basic minimal Phone field spec definition is complete.

7. Clear the FieldSpec Editor by choosing the New FieldSpec command from
the File menu (or the corresponding toolbar button).

8. Repeat the previous steps for a CUST_IDFS field spec with CUST_ID_FS as
the symbolic name. Set the Type to Character and specify a length of 5.

9. Close the FieldSpec Editor by double-clicking its system menu.

Planning Data Server Field Properties

In Chapter 3: Working with Data Servers, you imported an existing .DBF file
into the DB Server Editor. For each field of the .DBF file, a field spec entity and
its associated properties were automatically defined. However, the auto layout
feature fills in only the most basic properties, such as Name, Type, Size, and
Caption. It creates these properties using field information from the database.

This is a powerful feature and a time saver for most of your fields, but some
things cannot be determined by the DB Server Editor. For example, the Picture
property for phone numbers or the fact that a Customer ID code is always
required (because it is a key field) are not available from the DBF import process.

Also, because some field names are cryptic, the resulting generated properties
may not be intuitive. So, let’s plan ahead and modify several properties,
including captions and messages, to make them more meaningful:

1. Open the PhoneFS field spec entity from by double-clicking in it in the list
view of the Repository Explorer.

The FieldSpec Editor window displays.

Exercise

72 CA-Visual Objects South Seas Adventures

2. Select the Picture property, type @R (999)999-9999 and press Enter.

To offer field-level help to your users, specify the Help Context property as
follows:

3. Select the Help Context property. Type Phone_Numbers and press Enter.

4. Save your new field spec by choosing the Save toolbar button.

5. Close the FieldSpec Editor by double-clicking its system menu.

Typically, key fields like Customer or Employee codes are required in order
to relate one file to another. To do this, perform the following steps:

6. Open the Cust_IDFS field spec entity by double-clicking on it in the list view
of the Repository Explorer.

7. Select the Required property, and select Yes from the drop-down list box.

Whenever the Cust_IDFS field spec is used and does not meet the above
requirement, an error message displays indicating the failure. Make this
message more informative by specifying your own message, as follows:

Select the Required Diagnostic property and type:

The Customer ID code is MANDATORY!

Note: When defining an application-wide field spec, be careful of
descriptions, captions, and messages. Instead of using “Enter the employee’s
phone number,” you should be more generic and type “Enter the phone
number.”

9. Save your new field spec by choosing the Save toolbar button.

10. Close the FieldSpec Editor by double-clicking its system menu.

Attaching a Field Spec to a Data Server Field

Now, let’s redefine the data server field specifications using your newly defined
field specs.

1. Open the Customer:Data module by clicking its branch on the Repository
Explorer.

2. Open the DB Server Editor by double-clicking the Customer server entity on
the Repository Explorer list view.

3. Select CUST_ID from the Fields Include list box.

Exercise

Chapter 4: Defining Field Specifications 73

The FieldSpec Properties window displays the field spec properties for this
field:

Let’s apply your field spec definitions to the Customer data server’s Cust_ID
field, using the following procedure:

1. In the FieldSpec Properties window, select the FieldSpec property. From the
drop-down list box, select CUST_IDFS.

2. Click the Caption property and type Cust ID:.

3. Scroll down through the FieldSpec Properties window to see the Required
and Required Diagnostic properties, have automatically been filled in.

As stated earlier, field spec entities are independent of the data server. You
can use any field spec which is currently defined in your application. In this
case, the PhoneFS field spec entity has most of what we need for both the
Phone and Fax phone number field.

4. From the Include list box in the DB Server Editor, select the Phone field.

5. In the FieldSpec Properties, select the FieldSpec property. From the drop-
down list box, select PHONEFS.

6. Click the Caption property and type Phone:.

7. Scroll down through the FieldSpec Properties window to locate the Picture
property.

The picture clause from the PhoneFS fieldspec displays.

8. Repeat the steps 4 through 7 for the Fax field, applying the PhoneFS
FieldSpec and setting the caption to Fax:.

9. Save your new data server definition by choosing the Save toolbar button.

Exercise

74 CA-Visual Objects South Seas Adventures

Creating Field Specs from the DB Server Editor

It is important to realize that the field properties shown within the DB Server
Editor include five properties that relate to the field itself (Name, Caption,
Description, Help Context, and FieldSpec). The remaining properties belong to
the specified field spec entity.

The seventh to tenth properties have names that begin with “FS” to emphasize
properties of the field spec.

Any modification of the properties from the FieldSpec property line to the
bottom of the list affects the field spec entity directly. You can define both data
server and common field specs using the same tool:

Although this lesson has focused on the importance of the reusability of field
specs, many field specs are unique to a given database. For these, the DB Server
Editor offers the convenience of having access to all of the fields and their
attached field spec in one place.

Summary

Chapter 4: Defining Field Specifications 75

Let’s close the DB Server Editor (by double-clicking its system menu) and review
the benefits of defining reusable field specs as follows:

■ A field spec is required to define each field of every data server. Each field
spec contains more than 20 properties usable by the data server. As you will
see in the “Creating and Using Windows” chapter, data windows make use
of data servers’ field spec properties. Note that three of those properties
(Caption, Description, and Help Context) are hierarchical in nature and may
be redefined for use by the window.

■ Whether you are prototyping or in production, the earlier in the sequence
you define the field specs, the earlier you’ll gain consistency and reusability.

For example, the South Seas Adventures application uses the PhoneFS
FieldSpec for the Phone and Fax fields in the Customer data server. This
server is used in three data windows (new, edit, and subform customer
windows). The choice is clear—you can define a property (like Picture) once,
in a field spec used by both fields, twice for the two DB server fields, or six
times in different windows. Defining it once saves time, and makes it easier
to make changes in the future.

Summary
In this lesson, you have created reusable field spec definitions using the
FieldSpec Editor. You have replaced data server-specific field specs with generic
field specs. Additionally, you have learned about the relationship between field
specs, data server field specifications, and field spec entities.

Chapter 5: Creating and Using Windows 77

Chapter

5 Creating and Using Windows

This lesson covers the various types and styles of windows that are available in
CA-Visual Objects. The first objective is to understand the difference between a
Multiple Document Interface (MDI) application and a Single Document Interface
(SDI) application.

Secondly, we will discuss other window types available within CA-Visual
Objects 2.7. These windows include, Dialog, DataDialog, Data, and Shell Forms.

Overview
CA-Visual Objects allows you to create both Single Document Interface and
Multiple Document Interface applications with several types of windows based
on subclassing the various Window classes.

Single Document Interface Applications

The Single Document Interface (SDI) is a user-interface standard for presenting
and manipulating a single document within a Windows application. A SDI
application has one main window in which the user can open and work with a
single document. SDI allows for a more classical (linear) approach to application
interface.

An SDI application can spawn a child window. However, when the main
window is closed, so is the child. The child window can move outside the main
application window, but it is bound to the document held in the main
application window.

Top Application Windows

A top application window is the main window of an SDI application. It has no
owner windows. As with other application windows, a top application window
can have icons, captions, resizable borders, menus, and system menus.

Overview

78 CA-Visual Objects South Seas Adventures

An application, however, can have more than one top application window. From
a user’s standpoint, multiple top application windows would appear as multiple
applications. To a programmer, multiple top application windows could readily
share information and interaction.

However, SDI applications are not as common as MDI applications because the
Multiple Document Interface handles multiple tasks more robustly, as you will
see next.

Multiple Document Interface Applications

The multiple document interface (MDI) is a user-interface standard for
presenting and manipulating multiple documents within a single Windows
application. An MDI application has one main window, in which the user can
open and work with several documents (for example, text files, databases, or
spreadsheets). Each document appears in its own child window inside the main
application window.

The CA-Visual Objects 2.7 desktop is a good example of an MDI application:

■ Each child window has a frame, system menu, Maximize, Minimize and
Close buttons, and an icon.

■ The user can control the Child window just as if it were a normal,
independent window. Child windows however, cannot move outside the
main application window.

Tip: As a general rule, whenever you see the Tile or Cascade menu
commands under the Window pull-down menu, then you know you are
dealing with an MDI application.

Shell Forms

A shell window is similar to a top application window except that it acts as an
MDI parent window. All children of this window act as MDI child windows.
Most of the applications you write will be MDI applications, simply because they
are adept at managing multiple tasks.

Dialog Forms

Dialog windows (or dialog boxes) are used to present and gather information.
They can return a result that indicates user interaction (for example, if the user
pressed the OK or Cancel push button). There are two types of dialog
windows—modal and modeless.

Overview

Chapter 5: Creating and Using Windows 79

Dialog windows are generally used to present specific questions to users and
accept their responses; hence, they are generally modal. CA-Visual Objects 2.7
allows both modal and modeless dialog windows.

Modal Dialog Forms

Modal dialog windows must be acknowledged before the current thread of
execution can continue. A further distinction must be made between system
modal and application modal dialogs windows:

■ Dialog windows that are system modal must be acknowledged (by a button
click for instance), before any execution by any currently running
applications, including the Windows desktop, can continue.

■ Dialog windows that are application modal stop only the current application
thread. The user is able to use the Alt+Tab keystroke to jump to another
application.

Modeless Dialog Windows

Modeless dialog windows, on the other hand, do not affect the current execution
thread. Although not used very often, a modeless dialog window can be useful
as a progress bar indicator, or a search and replace routine in a text editor.

DataDialog Forms

A DataDialog window is a window that combines features from both data
windows and dialog windows. This combination allows the creation of modal,
data-aware windows.

Child Application Windows

A child application window is an application window that “belongs to” another
window (its owner). Because a child application window is not independent of
the owner window, it is always destroyed, hidden, or iconized when its owner
window is destroyed, hidden, or iconized. Also, child application windows are
never displayed outside of the boundaries of the owner window.

Child application windows do not have a default size and position on their
owner window. They must be assigned an origin and size before they are
displayed.

Overview

80 CA-Visual Objects South Seas Adventures

Data Forms

The DataWindow class inherits from the ChildAppWindow class, acquiring its
behavior. It also adds data-aware behavior that enables it to interact intelligently
with data servers.

When connected to a data server, a data window forms a view of the server that
allows for direct access and manipulation of the server’s data.

Server Use

A data window is connected to a server via the Use() method. When this
connection is established, each edit control on the window is connected to a field
in the data server based on matching names: a field named CustName in the
server is connected to the control named CustName in the data window.
Assigning a value to a control automatically propagates it to the server.

Data Propagation

When a control is connected to a field in a data server, a value entered into the
control, or assigned to the appropriate name from the program, is automatically
propagated to the server. Thus, after executing this statement:

oCustomerWindow:CustName := "Albert Stanley"

The CustName field in the server has the correct value assigned to it. This is
referred to as name-based linkages.

Values are propagated up from the data server to the data window when the
server repositions itself or when another window makes a change. This requires
no special action: after executing a Skip() method or assigning a value to a field,
every window connected to the server is automatically updated to reflect the
change.

Form and Browse View

A data window can take on two different view modes:

■ Form view contains individual controls for the data fields for a single record

■ Browse view contains a spreadsheet-like data browser for displaying
multiple records

The data window can be initially displayed in either mode and can be switched
to the other mode at any time (implemented by using the DataWindow:ViewAs()
method). Any data window supports both appearances, although you can, of
course, choose not to provide a way to select one mode or the other by
deactivating or removing one of the standard menu commands.

Overview

Chapter 5: Creating and Using Windows 81

The two view modes provide the same set of facilities—the same data linkage
facilities, the same display options, and the same data manipulation methods.
From the perspective of the application, a data window has the same behavior
and the same data properties regardless of view mode.

Data Validation

Data entered by the user is automatically validated using any one of the
validation rules for the field specification attached to a control or column. (For
more detail on the validation rules provided, see Chapter 4: Defining Field
Specifications in this guide.) If data fails the validation test, the diagnostic
message of the validation rule displays on the status bar. The data window does
not propagate invalid information down to the server or to other windows, nor
does it take any action that requires writing the invalid value to the server.

Using the Window Editor

In most cases, you will not write code to create your windows. Data windows, in
particular, are extremely complex. It is much more convenient to use the
Window Editor to do this for you.

The standard way to build a window is to design its layout in the Window
Editor. This produces a resource file that specifies what controls the window
has, along with their locations, sizes, captions, and accelerators. It also generates
a window subclass and an Init() method that associates names and further
annotations with each control. With such a redefined layout, the window
displays very quickly and the methods of the window have enough information
to act intelligently.

Disconnected Controls

If controls are not linked by name, they essentially become buffers. The data
window treats these as ordinary controls and takes no action relative to the
attached server. This is often the desired approach when one wishes to perform
actions that should be buffered from the server until a user completes all tasks on
a window (for example, completing the required fields before creating a new
record).

Consider the case where you are using a regular data window with linked
controls to do your edits. All validations are being done automatically. Suppose
the application has to be able to add new records to the table. The simplest
method is to put a button on the edit window that appends a blank record. After
appending the record, the user may decide to cancel the update. Now, you have
the problem of deleting the blank record.

Exercise

82 CA-Visual Objects South Seas Adventures

This is avoided in the South Seas Adventures application by buffering all append
operations. In the application, auto-layout is initially used to populate the data
window. The names are then changed to disconnect the controls from the fields
in the server that they represent. If the user clicks the OK button, then—and only
then—the record append occurs.

Exercise

Viewing a MDI Application

Let’s take a closer look at a MDI application—its shell window and various child
windows.

The Shell Form

The South Seas Adventures application uses a shell window as its MDI parent
window. It was created using the Window Editor and can be inspected by
double-clicking on the SSAWindow binary entity of the SSA Shell:Forms module
in the Repository Explorer list view.

Adding Functionality

What if the windows created by the Window Editor do not do everything that
you want them to do? What if you want to add some more functionality? You
do not want to throw away the Window Editor and code from scratch.
Fortunately, there are two methods that can be used to enhance the code that the
Window Editor generates for you. These are the PreInit and PostInit methods
which are automatically called by the Init method of each class.

In the South Seas Adventures application, there is a need to keep track of all
child windows that have been instantiated. Let’s see what is involved:

1. Open the SSAWindow class by double-clicking on it in the Repository
Explorer list view.

You are presented with a Source Code Editor window:

Exercise

Chapter 5: Creating and Using Windows 83

The window shows that a protected variable called aChildWindows has been
added to the SSAWindow class, which was generated from the Window
Editor. A reference to each child window is stored in the aChildWindows
array as it is opened.

2. Close the Source Code Editor by double-clicking its system menu.

3. Let’s see how child windows are opened and tracked.

Double-click the SSAWindow:FileOpen() method in the Repository Explorer
list view.

In the source code for the FileOpen() method, notice the new window being
added to the array of windows:

Note: Keeping track of all child windows is a useful technique, since the
application can now perform operations against all child windows. For
example, South Seas Adventures is designed to allow closing all child
windows without closing the application.

4. Close the Source Code Editor and double-click the
SSAWindow:CloseAllChildren() method.

Exercise

84 CA-Visual Objects South Seas Adventures

The code for the CloseAllChildren() method displays:

5. When your are finished examining the source code, close the Source Code
Editor window by double-clicking its system menu.

Creating a Modal Dialog Box

In this exercise, you will see how to create a standard “warning” dialog box that
is modal. Typically, a modal dialog box shows the users some information and
then returns a value.

Warning Box Modal Dialog Forms

The WarningBox class creates a simple modal dialog box that asks users for
verification before an action occurs. Let’s see what is involved in creating one:

1. Select the SSA Shell:Forms module on the Repository Explorer tree view, and
double-click the SSAWindow:QueryClose() method in the List view.

Exercise

Chapter 5: Creating and Using Windows 85

The Source Code Editor appears:

Line 9 creates an instance of the WarningBox class and stores it in the oWB
variable. Line 11 then assigns the Icon type and the Button configuration to
the class. Finally, the class is shown and the return value is tested against the
constant to see if the reply was yes.

Modal dialog windows actually stop your code by replacing the App:Exec()
loop with their own Execute() loop.

2. Close the Source Code Editor by double-clicking its system menu.

Retrieving Values from Modal Dialog Forms

It is pretty simple to get one result back from a dialog box, but how about many
results?

In the South Seas Adventures application, selecting the Invoices command from
the Report menu invokes the following dialog box:

Exercise

86 CA-Visual Objects South Seas Adventures

When DialogWindow objects (such as the one shown above) are closed using
EndDialog(), the Window is not destroyed. This means that the control objects
can be queried after the user clicks the OK or Cancel buttons. Unfortunately they
can not be interrogated from outside of the class because there are no ACCESS
methods written for a DialogWindow object.

The method used in the South Seas Adventures application to circumvent this
problem is to:

1. Use the Window Editor to create a dialog form.

2. Create any necessary instance variables:

3. Update the instance variables when the user clicks OK:

Exercise

Chapter 5: Creating and Using Windows 87

Create the ACCESS and ASSIGN methods to allow us access from outside of
the class:

This methodology allows you to write code that would query the results of the
dialog box as follows:

oDialog := InvcRptDialog{SELF}
oDialog:Show()
DO CASE

CASE oDialog:nDestination == PRINT_PRINTER
// Send report to printer

CASE oDialog:nDestination == PRINT_SCREEN
// Send report to screen

CASE oDialog:nDestination == PRINT_FILE
// Send report to file

OTHERWISE
// Do nothing

ENDCASE

Creating a Data Form

In this exercise, you are going to create a data form to support the editing of
customer records. This data form will be attached to the Customer data server.
You will use the Auto Layout feature to propagate the data, and then add an OK
push button.

Exercise

88 CA-Visual Objects South Seas Adventures

Importing a Support Module

The support methods for related push buttons have already been created for you
and are stored in a module export file (.MEF) for you to import:

1. Open the South Seas Adventures application by clicking its branch on the
Repository Explorer tree view.

2. Select the Import command from the File menu.

3. From the Import dialog box, select the Files of Type ComboBox and select
Mod. Import Files (*.mef). After choosing the .MEF files, select the
TUTWIND.MEF file located in the CA-Visual Objects 2.7
SAMPLES\SSATUTOR\FILES subdirectory.

4. Choose OK.

A new module, Tutorial:Windows has been added to the application.

Creating a Data Window Template

To create a data window template:

1. Select the Customer:Forms module by clicking its branch on the Repository
Explorer tree view.

2. Select the Window Editor command from the Tools menu or select the New
Entity toolbar button.

The Window Editor dialog box appears, allowing you to define the type of
window.

3. Select DATAWINDOW:

4. Type EditCustomerWindow in the Name edit control.

Exercise

Chapter 5: Creating and Using Windows 89

5. Choose OK.

The Window Editor displays:

The Window Editor provides you with a window template for you to use in
designing a data window.

6. In the Data Window Properties box, choose the Menu property (found under
the DataWindow tab) and select SSACHILDMENU in the drop-down list
box:

This attaches the SSAChildMenu menu to the data form.

7. Choose the Caption property (found under the Hyperlabel tab) and type Edit
Customer.

This caption is used for the title of the data window title.

Exercise

90 CA-Visual Objects South Seas Adventures

Designing Your Window Layout

Auto Layout provides a convenient way to create and position edit controls on a
template window very quickly. Each control corresponds to a data field of the
selected data server. It is recommended that you use the Auto Layout feature
and then edit and/or move the controls as you require:

1. Click the Auto Layout toolbar button.

The Auto Layout dialog box appears:

2. Select the Single Server option.

3. Select CUSTOMER from the Server drop-down list box.

Choose OK.

Exercise

Chapter 5: Creating and Using Windows 91

4. Choose OK to select all of the fields for auto-layout.

This automatically lays out all of the fields defined to the Customer data
server on the window template, as shown below:

If you want, you can edit, move, or delete any of these fixed text and
single-line edit controls from the predefined data form.

Adding a Push Button

Now let’s add a push button to the data form:

1. Select the Push Button icon from the Window Editor’s tool palette.

2. Drop the push button control on the top right-hand corner of the data form
template:

3. Change the Caption property (found under the Hyperlabel tab of the Push
Button properties) to OK.

Exercise

92 CA-Visual Objects South Seas Adventures

4. Change the Name property to OKButton (found under the Hyperlabel tab of
the Push Button properties):

This conforms to the naming convention used throughout the application.

5. Select the Click Event property (found under the General tab of the Push
Button Properties) and click the Ellipsis button.

This allows you to edit the method to be executed when the button is clicked:

Exercise

Chapter 5: Creating and Using Windows 93

6. The EditCustomerWindow:OKButton() method appears in the Source Code
Editor:

You do not need to make any changes to the OKButton() method source
code.

Compiling and Testing Your Changes

To verify the results of your changes:

1. Close the Source Code Editor window by double-clicking its system menu.

2. Close the Window Editor by double-clicking its system menu.

3. Select Yes when prompted to save the changed entities.

4. Build the application by clicking the Build toolbar button.

5. Run the South Seas Adventures application by clicking the Execute toolbar
button.

6. Log in as usual (Name: User, Password: Trainee).

7. Select the Open command from the File menu.

You are presented with the Open File dialog box.

8. Start a Customer file edit session by clicking the Customer radio button.

9. Choose OK.

This opens the Customer Browser window.

10. Click the name Baker in the Customer Browser window, and then click the
Edit toolbar button to open the newly created Edit Customer window.

11. Choose OK to close the Edit Customer window.

12. When you are finished, exit the South Seas Adventures application by
double-clicking its system menu.

In Chapter 6: Adding Controls to Your Windows of this guide, you will
come back to this window to add a Cancel push button.

Summary

94 CA-Visual Objects South Seas Adventures

Summary
This lesson covered a lot of information regarding windows. You should now
understand the difference between SDI and MDI applications and have a good
understanding of the most commonly used window types.

You should also know how to use the Window Editor Auto Layout feature to
quickly create an application editing window.

In the next lesson, you will discover the various controls that you can use to
customize your windows—including radio buttons, check boxes, and list boxes.

Chapter 6: Adding Controls to Your Windows 95

Chapter

6 Adding Controls to Your Windows

This lesson examines the many controls you can add to your windows.
CA-Visual Objects 2.7 provides several predefined classes that your program can
use to create these controls. When you finish this lesson, you should be familiar
with all of the controls on the Window Editor Tool Palette.

Overview
Controls allow users to communicate with an application. They can be placed on
data, dialog, and data dialog windows. The difference between these windows is
that on Dialog windows, the data associated with a control is buffered by the
control, with data windows or data dialogs, controls can be tied directly to a field
in a data server. Also, some controls are tied specifically to a data window (like a
subdata window control).

You may have wondered how the data window in the previous lesson is capable
of storing and retrieving data between the database and the controls on the
Customer window. Essentially, the data window uses name-based linkages to
the data server.

If a control name has a corresponding field in the data server, the data window
automatically associates the two when retrieving and storing data. If a control
has no corresponding field in a data server, the data held in the control is not
automatically retrieved from or stored to a data file, and consequently, must be
manipulated by your program.

When you created the Customer window using Auto-Layout, single-line edit
controls were created based on the Customer data server. Each data control is
named according to the fields in the data server.

Exercise

96 CA-Visual Objects South Seas Adventures

Exercise
In the previous lesson, you briefly saw single-line edit controls. The following
exercise provides greater detail about the controls listed below:

■ Single-line Edit

■ Multiline Edit

■ Combo Box

■ Check Box

■ Radio Button

■ Radio Button Group

■ List Box

■ Group Box

■ Fixed Icon

All of these controls can be created using the Window Editor Tool Palette.

Single-line Edit (SLE) Controls

Single-line edit controls are the most widely used type of data-entry control.
These controls are ideally suited to fields such as names, descriptions, numeric
amounts, and dates.

Data displays in the control as text. The user can enter and delete characters, as
well as cut, copy, and paste text. The characters in the control are formatted
according to the field specification of its corresponding field in the database, or
according to an attached FieldSpec object.

Single-line edit controls can be used to capture text, numeric, date, and logical
types of data. Any necessary conversions are done automatically by the data
window.

Single-line Edit
Controls as Data
Servers

The following exercise demonstrates the use of single-line edit controls as data
servers:

1. Open the Customer:Forms module by clicking its branch in the Repository
Explorer tree view.

2. Open the EditCustomerWindow window entity by double-clicking it in the
Repository Explorer list view.

Exercise

Chapter 6: Adding Controls to Your Windows 97

3. Select the single-line edit control to the right of the First Name: label by
clicking it:

4. Inspect the Name property in the Single-line Edit Properties window (under
the HyperLabel tab). This represents the name of the field in the Customer
data server (in this case, First_Name):

Exercise

98 CA-Visual Objects South Seas Adventures

Multiline Edit (MLE) Controls

A multiline edit control differs from a single-line edit control in its ability to
accept multiple lines of text. Editing functions (like cut and paste) are also
available within this control. Multiline edit controls are suited to descriptive
information, such as comments, notes, and addresses.

Moving the MLE Control

Now, let’s move the Notes multiline edit control on the EditCustomerWindow.
The Notes field is a memo field, and therefore lends itself well to a multiline edit
control:

Note: CA-Visual Objects 2.7 will automatically generate a multiline edit control
when using auto-layout on a memo field.

1. First we will delete the Notes: label next to the Notes multiline edit control.
To do so, click the Notes: fixed text and press the Delete key.

2. Select the Notes multiline edit control by clicking it. Position it to the right of
the State single-line edit control, about halfway across the window canvas
area. Size it so that it is about 1 inch high and 2 inches wide:

Viewing Your Results

You can ensure that your changes have been made to the windows easily with
CA-Visual Objects 2.7. The CA-Visual Objects 2.7 Window Editor allows fast
prototyping with the use of the Window Editor Test Mode:

1. Select the View Menu.

2. Select Test Mode.

Your window now appears on top of the Window Editor displaying your
changes.

Exercise

Chapter 6: Adding Controls to Your Windows 99

3. To test that your controls are functional, click the Notes multiline edit control
and type some text. Notice that the text that you have typed appears in the
multiline edit control.

4. To return to the window editor, close the Test Mode window by clicking the
close icon in the upper-right corner.

5. Click the Save Icon to save the changes.

Combo Box Controls

Using combo box controls, you can avoid the need for a user to know the exact
data your program expects, as well as having to write validation code. For
example, if the State_ID control were to remain a single-line edit control, it
would require the user to be familiar with the abbreviations for 50 U.S. states.
Additionally, every entry would have to be validated to insure that a valid code
was entered.

We will now create a combo box control for the State_ID field:

1. Delete the State_ID single-line edit control by clicking it and pressing the
Delete key.

2. Click the combo box Tool Palette button.

This selects a combo box control.

3. Drop the control by clicking the window canvas area. Position it next to the
State ID: label. Size it roughly as shown in the next figure:

This control has not been tied to a field in any table yet. In the Properties
window (under the HyperLabel tab), notice it is named ComboBox1.

Exercise

100 CA-Visual Objects South Seas Adventures

4. Change the Name property to STATE_ID. This ensures that the data
window stores and retrieves values to and from the State_ID field of the
Customer data server:

5. You also want it to inherit specific field spec properties. In the Properties
window, select the General tab. Select the FieldSpec property and change it
by selecting CUSTOMER_STATE_ID from the drop-down list box:

This ensures that any special validations applied to the field specification are
tied to your combo box.

6. Now, you need to tell the combo box what to display. Select the Fill Using
property, then click the ellipsis button.

You are prompted by the Fill Using dialog box. The Fill Using property of
the combo box allows you to fill its list with either an array, the contents of a
data server, or a method.

The State table and server have already been created and populated with
valid state codes and names, so let’s use it here.

7. Select the Use Server radio button.

8. From the Server combo box, select STATE.

Exercise

Chapter 6: Adding Controls to Your Windows 101

The Server group box also provides the option to display one server field
and return another to the field attached to the control. This feature allows
you to retain your normalized databases while showing the user more
descriptive information.

In this case, let’s display the state name instead of the state code.

9. Select NAME from the Display field combo box.

10. Select STATE_ID in the Return field combo box, since it is the only field that
appears in both servers:

11. Choose OK to close the Fill Using Dialog box.

Invalid Code Entry
Disabled

To disable a user’s ability to enter invalid codes, you can change the style of the
combo box to Drop-down List. Using this type of combo box forces the user to
select a value in the list:

1. Select the Styles tab from the State_ID Combo Box properties box.

2. Select the ComboBox Type style and select Drop Down List from the drop-
down list box:

Note: As seen previously, you can see your changes by running Test Mode.

Exercise

102 CA-Visual Objects South Seas Adventures

Check Box Controls

A check box is a square box with associated text that usually appears to the right
of the check box. It acts as a toggle switch, allowing a user to turn an option on
or off. Thus, it is usually used to represent logical fields.

When the check box is linked to a logical field in the data server, a value of TRUE
in the server represents the checked (or ON) state of the check box, while a value
of FALSE represents the unchecked (or OFF) state.

One of the properties of a check box provides for a three-state check box. The
third state is dimmed and indicates that the check box status is unknown (or
undefined).

The Customer data server has a logical field named “Single” to represent marital
status. A check box control is automatically created by CA-Visual Objects 2.7
when using the Window Editor Auto Layout to represent a logical value in the
database.

Let’s move the control by clicking the Single check box and position it next to the
Sex: label:

Radio Button and Radio Button Group Controls

In radio button group controls, individual radio buttons provide mutually
exclusive responses to a condition where only one choice is required. When you
click a radio button, it is checked (ON). If you then click another radio button
within the same radio button group, the radio button you first clicked on is
unchecked (OFF).

Exercise

Chapter 6: Adding Controls to Your Windows 103

The radio button is an oddity in the Button class, since it is not tied directly to a
data field. Instead, it is grouped (with other radio buttons) into a radio button
group control. Unless you create distinct radio button groups, all the radio
buttons on a window are members of the same radio button group. A radio
button group control can be tied to an actual field in a data server.

In the Window Editor, each radio button can be assigned a group value. When
retrieving data from the server, the radio button group selects the radio button
whose group value corresponds to the data value in the server. When storing
data to the server, the radio button group uses the group value of the currently
selected radio button.

You will now attach a radio button group, with Male and Female options, to the
Sex field on the Customer window. The Sex field is an ideal candidate for radio
buttons, since there are only two choices, Male and Female:

1. Select and delete both the Sex: label and single-line edit control.

2. Select the radio button group Tool Palette button and then move the mouse
to the desired location on the window canvas area. Click the mouse button
again to place and position the radio button group box.

3. Size the radio button group so that it is similar to the following:

Exercise

104 CA-Visual Objects South Seas Adventures

4. The radio button group is the control that gets linked to the data server. In
the Properties window (under the HyperLabel tab), change the Name
property to Sex:

5. Change the Caption property to &Sex.

Notice that the S is now underlined. This allows the user to press Alt+S to
move directly to the control. Now, let’s place two radio buttons inside the
radio button group box. The radio buttons can be placed in a column—one
above the other.

6. Click the radio button Tool Palette button and place a radio button in the
radio button group box.

This radio button will be used for the Male option. The control is not directly
linked to the data server, therefore its name should differ from the fields of
the database. Although, it is not necessary to rename the field, it is still a
good idea to do so.

7. Now, click the Caption property and type Male. This displays on the
window to the right of the radio button it represents.

8. Type MaleRadioButton in the Name property:

9. Select the General tab on Radio Button Properties.

Exercise

Chapter 6: Adding Controls to Your Windows 105

10. The Group Value property contains the actual value that is used by the radio
button group. Click on this property and type M:

11. Add the Female radio button following steps 6 through 10. Place it below
the Male radio button. You can set the Caption to Female, the name to
FemaleRadioButton, and the Group Value property to F:

Note: As seen previously, you can see your changes by running Test Mode.

List Box Controls

The list box control is a collection of text strings. It displays as a scrollable,
columnar list within a rectangle. A list box can allow either a single selection or
multiple selections.

In a single selection list box, the user can select the item that the cursor is on by
pressing the spacebar or clicking the left mouse button. In a multiple selection
list box, the spacebar or mouse button toggles the selected state.

Navigation is accomplished by use of the vertical scroll bar and the navigation
keys (Up/Down arrow and PageUp/PageDown keys) if there are more elements
than can fit in the display area. Pressing a letter key moves the cursor and the
selection highlight bar to the first item in the list starting with that letter.

You will use a list box to represent the salutation field of the customer data
server. The list box has to represent the Mr., Mrs., and Ms. salutations.

Exercise

106 CA-Visual Objects South Seas Adventures

You could have used a combo box or a radio button group to represent this, just
as easily. Because you have already seen those controls, let’s use the list box
control here:

1. Delete the Salutation single-line edit control and label by clicking on each
and pressing the Delete key.

2. Select the list box Tool Palette button. This selects a list box control.

3. Place the control by clicking the window canvas area. Position it to the right
of the Country field as shown in the following figure. Size it to about 1.5
inches high by 1 inch:

This control has not yet been linked to a field in a table. In the Properties
window, notice it is named ListBox1.

4. Change the Name property (under the HyperLabel tab) to Salutation.

This ensures that the data window stores and retrieves values to and from
the Salutation field of the Customer data server.

5. Select the General tab in the List Box Properties.

6. You also want it to inherit specific field spec properties. In the Properties
window, change the FieldSpec property to CUSTOMER_SALUTATION.

This ensures that any special validations applied to the field specification are
always tied to your list box.

Now, we must create an array for use in filling the list box.

7. Select Repository Explorer from the Window menu to return to the
Repository Explorer.

8. Select the App:Start() module and right-click.

9. Select Edit All Source in Module.

10. Notice the GlobalArraySalutation GLOBAL definition:

GLOBAL GlobalArraySalutation := {"Mr.","Mrs.",;
"Ms."} AS ARRAY

Exercise

Chapter 6: Adding Controls to Your Windows 107

11. Close the Source Code Editor by double-clicking its system menu.

12. Return to the Window Editor by selecting its session from the Window
menu.

13. Now we need to tell the list box what to display. Select the Fill Using
property (under the General tab) and then click the ellipsis button.

14. Select the Use Array Expression radio button is the default. Type
GlobalArraySalutation in the Name edit control. Then choose OK:

Let’s look at the available styles for the list box.

15. Click the Styles tab on the List Box properties.

16. Set the Vertical Scroll Bar property to False. You do not need the scroll bar
because all of the items fit into the display area.

Group Box Controls

The group box control has no relation to data fields or variables. It is used only
to visually group controls; however, it can affect the controls that are within it by
means of its tab and group style settings.

The group box allows you to add a labeled box to a window. These are useful
for enhancing the aesthetic quality of a window, for setting up tab stops, and for
making certain groups of controls unselectable:

Exercise

108 CA-Visual Objects South Seas Adventures

1. Select the group box Tool Palette button and place a group box control on
top of the Salutation list box:

2. Size the group box control so that it surrounds the list box.

3. Change the group box Caption property to Salutation (under the
HyperLabel tab) and the Name property to SalutationGroupBox.

Fixed Icon Controls

The next control we will look at is the fixed icon control. This control allows you
to add icons to your data windows and dialog windows. The purpose of the
fixed icon control is used for aesthetic reasons only.

1. Click the Fixed Icon Tool Palette button to select it, and then move the
mouse to the desired location on the window canvas area (any free spot on
the window is fine).

2. Click the mouse button again.

This places a fixed icon control on the window canvas area:

3. In the Fixed Icon Properties window (under the HyperLabel tab), change the
Caption property to SSAICON.

Exercise

Chapter 6: Adding Controls to Your Windows 109

The Caption property holds the name of an icon that is already a part of, or
associated with, your application.

Push Button Controls

Push button controls are command controls that trigger an action without
retaining any type of on/off indication. There are two types of push buttons.
Standard option push buttons are the most commonly used. Default option push
buttons have a slightly thicker border, and may be activated by the Enter key
whenever a non-push button control has input focus. As this implies, only one
push button on a dialog window should have the default option type.

Generally, a dialog window has an OK button and a Cancel button to accept or
abort whatever the dialog window is trying to do. The OK button was added in
the “Creating and Using Windows” chapter. Let’s add the Cancel push button to
your Customer window:

1. Select the Push Button icon on the Tool Palette and then move the mouse to
the top-right corner on the window canvas area.

This places a push button onto your window canvas area, just below the OK
button:

2. In the Push Button Properties (under the HyperLabel tab), change the
Caption property to Cancel. Also, change the Name property to
CancelButton.

3. Scroll down so you can see the bottom of the window.

Exercise

110 CA-Visual Objects South Seas Adventures

4. Select the window by clicking in an area with no controls, and drag the lower
border up. Adjust the list box and group box size, as well as some of the
other controls so that the window looks similar to the following:

Programming Techniques

The following section deals with some of the more intricate aspects of creating
controls for your windows.

Tab and Group Stops

Now that you have created a data entry window, you need to control the order
in which a user tabs through the controls. Of course, the Tab key moves you
forward through the controls, while Shift+Tab moves back. The default tab
order moves top-to-bottom, left-to-right, according to window placement. This
may not always be acceptable. For example, if you had a window design
consisting of two columns, you may want to move down to the bottom of the left
column before moving to the top of the right.

By selecting the Control Order command from the Edit menu, you can see the
order in which the controls get focus. If you scroll down to the bottom of the list,
you will see the problem.

Exercise

Chapter 6: Adding Controls to Your Windows 111

The MaleRadioButton and the FemaleRadioButton should immediately follow
the Sex radio button group control. These should be promoted to reflect this. To
do this, perform the following steps:

1. Click the MaleRadioButton entry and then use the up arrow button (to the
right of the vertical scroll bar) to move it just below the Sex entry.

2. Click the FemaleRadioButton entry and position it just below the
MaleRadioButton entry in the list.

3. Click the Single check box entry and move it up so it follows
FemaleRadioButton.

Your window should now use the promote and demote buttons on the other
items until it looks as follows:

4. Click the OK button to close the Control Order dialog.

5. Save the changes you’ve made to the EditCustomerWindow.

Exercise

112 CA-Visual Objects South Seas Adventures

The order of tabbing can be forced in any sequence that you wish, based upon
your specifications. But how do you decide what gets focus and what does not?
The operating system provides all the logic to move input focus from one control
to another, with a little help from you and the styles that can be applied to a
control.

Control Order and Multiple Groups

Control order for multiple groups can also require special attention. The
problem is that one group does not end until the next group begins. In short,
imagine you have several radio buttons in a radio button group box. The radio
button group has the group style selected.

Now let’s say that you have a separate set of radio buttons. The default
Windows action is to assume that this set of radio buttons belongs to the first
radio button group. This is wrong, and to fix it, you would create a second radio
button group for the second set of radio buttons. This would cause a new group
to start, ending the first group—since every radio button group has the group
style. If you do not use either a group box or a radio button group, you can set
the group style for any other control so it starts a different group.

Naming Controls

Your data-entry window is complete; but before completing this chapter, let’s
discuss the naming convention that was used in naming the controls.

For data windows you create that need to update fields in a table, you use the
field name as the control name, since a name-based association exists with the
attached data server to apply changes to fields directly for you.

What about controls that are not linked to fields? They can be called anything,
except the name of a field in an attached server. Long names are supported,
giving you the ability to create descriptive names. The convention used named
the button according to its type, followed by a string describing the type of
control in question. For example:

■ A push button labeled Edit is called EditButton

■ A radio button labeled Payment is called PaymentRadioButton

■ A single-line edit that represented a search string is called SearchSLE

■ A list box representing the state is called StateListBox

Summary

Chapter 6: Adding Controls to Your Windows 113

Using this convention, you see that your control name tells you what the entity
represents, as well as the properties you can expect it to have. Alternatively, you
could use the name prefixed with initials to tell you what type of control it is.
For example:

■ A push button labeled Edit is called pbEdit

■ A radio button labeled Payment is called rbPayment

■ A single-line edit that represented a search string is called sleSearch

■ A list box representing the state is called lbState

Using this convention means less typing and is just as descriptive. The only
problem is that ComboBox and CheckBox both try to use cb as its prefix. The
answer to this is to use cb for ComboBox and cx for the CheckBox since you
could put an X in the checkbox. In this way when you look at the code a control
would look similar to oDCsleSearch which is slightly easier to read.

You can now close the Window Editor. When you return to the Repository
Explorer, select the Build toolbar button to compile all of the changes.

Summary
At this point, you have seen most of the window controls in use. With these tools
at your disposal, you can now generate almost any kind of window for your
users.1

Chapter 7: Inheritance and Subclassing 115

Chapter

7 Inheritance and Subclassing

In this lesson, you will learn how and when to use inheritance to customize the
behavior of objects in your application. You will see how CA-Visual Objects 2.7
uses inheritance to deliver a powerful development environment and,
consequently, you will gain an appreciation for the benefits of subclassing and
code reuse.

Overview
Inheritance is one of the fundamental principles of object-oriented programming.
It allows you to specify new classes in terms of existing ones. The new class
inherits all of the attributes (instance variables) and behavior (methods) of the
existing class and allows you to add any distinguishing features that are needed.

Subclass, Superclass,
and Parent

When a class inherits from another class, it is said to be a subclass of that class.
A superclass is any class from which another class derives its behavior. The
parent is the immediate superclass.

Inheritance allows for incremental development by creating new classes on the
stable foundation of existing classes. In this way, a great deal of code can be
reused by inheriting behavior and characteristics, and a significant level of
robustness can be easily maintained.

Class Tree CA-Visual Objects allows for each class to inherit from a single parent class.
This is called single inheritance. On the other hand, each class can have as
many subclasses as required.

Overview

116 CA-Visual Objects South Seas Adventures

This gives rise to a class tree, a hierarchical representation of the relationships
between classes:

It is easy to see that classes defined at higher levels in the class tree are more
likely to be general, and have a higher level of abstraction, while classes defined
at lower levels are more specialized.

In CA-Visual Objects, a subclass is created using the INHERIT keyword in the
CLASS statement. For example, to create a subclass of DataWindow called
EditItemWindow, you would use the following class declaration statement:

CLASS EditItemWindow INHERIT DataWindow

EditItemWindow has all of the properties and behaviors of the DataWindow
class, plus a few of its own which you will code. One way to look at
EditItemWindow is that it is a kind of data window.

When and How to
Create a Subclass

Whenever you require special behavior, first look to see if you already have a
class that provides what you need. If one exists, use it. However, if there is no
class that does exactly what you want, but there is one which provides the same
behavior at a more basic level, then this can be used as a parent to create a
subclass with the desired characteristics. In this way, subclassing is like
specialization.

During the development of an application, you may find that a class is too
specific to be of general use. In this case, you must create a class at a greater level
of abstraction, which is more general. By doing this, you actually remove
specialized behavior and attributes from the class, making it more generic. It
should now be possible to create various subclasses—each with its own area of
specialization—to fill the required roles. As you can see, this provides you with
a very powerful and flexible development environment.

Subclassing with
Generated Code

The visual editors in CA-Visual Objects, such as the Window Editor and the
Menu Editor, generate source code for your application. If you examine the
code created by these editors, you will notice that inheritance is used to define a
new class for your purposes.

Exercise

Chapter 7: Inheritance and Subclassing 117

For example, the Window Editor generates a new window class definition in
terms of an existing window class. This empowers the visual editors with a
greater degree of flexibility and ensures that your application will be consistent
and robust.

Each time you edit a binary entity, by saving the current design in one of the
visual editors, CA-Visual Objects regenerates any required class definitions and
supporting entities. For this reason, you should never modify the generated code
directly, since it will be overwritten by the regenerated code from the editor.

If you wish to customize the behavior of the generated class or the supporting
entities, create a subclass based on the class created by CA-Visual Objects. Any
specialized behavior can be added to this new class. As you review and analyze
source code in the chapters to follow, you will see this technique employed in the
South Seas Adventures application.

Exercise

Customizing Generated Code

To customize generated code:

1. Open the South Seas Adventures by double-clicking its branch on the
Repository Explorer tree view.

2. Open the File:Forms module by clicking its branch in the Repository
Explorer tree view.

Examine the class definition created by the Window Editor by
double-clicking the BaseFileDialog class entity in the Repository Explorer list
view:

CLASS BaseFileDialog INHERIT DIALOGWINDOW

PROTECT oCCOkButton AS PUSHBUTTON
PROTECT oDCtheGroupBox1 AS GROUPBOX
PROTECT oCCAdventureRadioButton AS RADIOBUTTON
PROTECT oCCCustomerRadioButton AS RADIOBUTTON
PROTECT oCCPaymentRadioButton AS RADIOBUTTON
PROTECT oCCEmployeeRadioButton AS RADIOBUTTON
PROTECT oCCItemRadioButton AS RADIOBUTTON
PROTECT oCCInvoiceRadioButton AS RADIOBUTTON
PROTECT oCCCancelButton AS PUSHBUTTON

 //USER CODE STARTS HERE (do NOT remove this line)
PROTECT FileType AS USUAL

Notice that BaseFileDialog inherits from the DialogWindow class. This
predetermines a great deal of the window’s behavior and characteristics.

3. Close the Source Code Editor by double-clicking its system menu.

Summary

118 CA-Visual Objects South Seas Adventures

Both the Open File dialog and the New File dialog inherit from the
BaseFileDialog window. To make it work properly, we have added a FileType
instance variable that can be inspected once the dialog box is closed via the
Access that has been written.

This class is never accessed directly but is used as the basis for the File Open
window:

The functionality that is required is added to the FileOpenDialog class. This is
the class that you would actually be instantiated.

Summary
Subclassing and inheritance is a very important and powerful feature of object-
oriented programming. CA-Visual Objects helps you make the most of this
powerful concept and allows you to quickly and easily develop robust
applications that meet your business needs.

You can now move on to the next chapter, which demonstrates how to create
menus and toolbars, which you can then add to your windows.

Chapter 8: Creating Menus and Toolbars 119

Chapter

8 Creating Menus and Toolbars

This lesson introduces you to the basic concepts of menus and toolbars, and how
they interact with your application. By the end of this lesson you will:

■ Know how to create and customize menus and toolbars

■ Understand how menu events invoke methods within your application

■ Be able to attach menus and toolbars to your windows

■ Know how to customize the behavior of menus

Overview
Menus and toolbars are essential components of a Windows application. Menus
allow the user to navigate through the system and issue commands, while
toolbars provide quick and easy access to frequently used menu commands
within an application.

Each application can have its own menus and toolbars, which are attached to
windows. CA-Visual Objects 2.7 allows you to generate and modify menus and
toolbars using the Menu Editor.

Exercise
In this exercise you will create a menu and a toolbar.

Creating a New Module

Let’s begin this exercise by creating a new module, for which we can then create
a new menu:

1. Open the South Seas Adventures application by double-clicking its branch in
the Repository Explorer tree view.

2. Create a new module by selecting the New Module toolbar button.

Exercise

120 CA-Visual Objects South Seas Adventures

3. Type Customer:Menu in the Enter Module Name edit control.

4. Choose OK to create the new module.

The new Customer:Menu module branch appears in the South Seas
Adventures tree.

Creating the Menu

Let’s create a menu:

1. Select the Customer:Menu module and select the New Entity toolbar
button.

2. Choose Menu Editor from the local pop-up menu.

The Menu Editor window appears with the cursor positioned at the empty
menu item:

The Menu Item Properties window displays the properties associated with
this item.

3. Click the Pencil icon in the Menu Item Properties window.

Exercise

Chapter 8: Creating Menus and Toolbars 121

The properties window now displays the general properties for the menu, as
indicated by the title bar:

4. Type CustomerMenu in the edit control and press Enter.

This assigns a name to the menu. The menu name is used to generate the
menu class for your menu and used to attach your menu to a window.

Using Auto Layout

The easiest way to define a menu is to use the Auto Layout feature of the Menu
Editor. This feature allows you to add predefined menus that are commonly
found in Windows applications. It also fills in many of the Menu Item Properties
for each of the predefined menus.

1. Select the Auto Layout toolbar button.

The Auto Layout dialog box appears:

Auto Layout allows you to choose from the five menus that are most often
seen in Windows applications: File, Edit, View, Window, and Help. The
selected menu items are appended to the menu you are currently defining.

Exercise

122 CA-Visual Objects South Seas Adventures

2. Choose OK to accept all the predefined menus.

The menu hierarchy displays in a tree-like structure. The first level of items
are those displayed on the menu bar. The indented items are the commands
that are associated with the corresponding menu. For example, the File
menu has the New, Open, Save, Save As, Print, Page Setup, Print Setup, and
Exit commands:

Previewing Your Menu

You may have noticed that a second menu bar appears on the Menu Editor
window, once you have created menu entries using Auto Layout. This can be
seen in one of two ways. If you are running this window maximized, it will look
like this:

If you are using normal windows, the menu bar will look like this:

Exercise

Chapter 8: Creating Menus and Toolbars 123

The menu directly above the toolbar is the preview menu bar. The preview menu
bar not only displays the menu you are creating, but it is a working prototype of
the new menu.

Here is an example of how the preview menu bar is useful when developing
your application’s menu:

1. To preview the File menu from the Menu Editor, click on File in the preview
menu bar. The pull-down menu associated with the File menu appears, just
as it would appear in your application.

2. You can also click on some of the other menu entries of the preview menu
bar to see how they appear in the application.

Collapsing/Expanding the Menu Structure

The menu structure you are currently viewing is quite long. Here are some ways
to make the structure easier to view and manipulate:

1. You can control the display of a single branch of the tree by clicking its
Collapse () or Expand () toggle button.

2. Simplify the display at any time by selecting the Collapse All toolbar
button.

This collapses all branches of the tree. The Expand button is now present to
the left of all menus with menu items.

3. To return to the full display, select the Expand All toolbar button.

The Collapse button is now present next to each item.

Adding an Item to the Hierarchy

Let’s add a Report menu, which contains a command for the Customer List
Report, to the predefined entries created using Auto Layout:

1. Scroll down through the Menu Editor and click the View menu.

2. Press Enter to create an empty item after the View menu.

3. Type &Report, and press Enter.

This creates the Report menu and inserts an empty item below it.

4. Type &Customer List...

Note: Do not press Enter. If you do, a new menu item will be inserted into
the menu. You will learn how to remove this item later in the Removing
Menu Items from the Hierarchy section.

Exercise

124 CA-Visual Objects South Seas Adventures

Tip: Each menu and menu item in a Windows application typically features
a single underlined letter that indicates how to select it from the keyboard.
For example, the “R” in the Report menu and the “C” in Customer List menu
entry are underlined, indicating that you can select the Customer List Report
command by pressing the Alt+R, C key combination. To add this type of
functionality to your menus, simply preface the letter that is to be underlined
with an ampersand (&).

5. You can preview the modified menu items and their key combinations, by
clicking the preview menu bar.

Changing the Hierarchy of a Menu Item

You now have two new entries on the same hierarchical level. The Customer
List should be a child of the Report menu. You must now redefine the hierarchy
between the two new items as follows:

1. Click the Customer List menu item to make it the currently selected entry.

2. Select the Demote Item toolbar button.

This makes Customer List a menu item under, or a child of, the Report
menu:

3. Preview the modified hierarchy by selecting the Report menu from the
preview menu bar.

Exercise

Chapter 8: Creating Menus and Toolbars 125

Removing Menu Items from the Hierarchy

Since you do not need all the menu items created by Auto Layout, let’s remove a
few:

1. Choose the Save As menu command from the File menu. (If you have
collapsed your menus, expand them to select the Save As menu item.)

2. Delete the item by selecting the Delete Item command from the Edit menu
(or by pressing Ctrl+Y).

3. Using the two previous steps, delete the following menu items:

– The empty menu item above the File menu that was initially created as
the first item in the Menu Editor

– From the File menu: Save, Print, and Page Setup

– From the Edit menu: the first separator line, Insert, Delete, Go To, and
Find Next

From the View menu: the separator line, All Records, and Select Records

Specifying Menu Actions to Perform

For a menu item to perform an action in your application, you must specify an
Event Name. If you review the menu items you created with the Auto Layout
feature, you notice that each contains an Event Name in its Menu Item Properties
window.

The Event Name property specifies the name of a method to call, which the
menu attempts to locate in several ways. First, the menu attempts to call this
method from within its owner window. If its owner window has the method
defined or is subclassed from a window that has it defined, the method is called.
If no method exists in the owner window, it attempts to call it from this
window’s owner. It continues to call all owners until it reaches the application
level.

If none of the owners within the window ownership hierarchy have this method
defined, the menu searches for a Window class of the same name. If one is
located, the menu opens the window.

If a Window class is not found, it then searches for a ReportQueue class of the
same name. If one is found, it is executed.

If a ReportQueue class is also not found, the MenuCommand() method (a
Windows callback) provides default behavior so that your applications can be
prototyped and compiled successfully during development.

Exercise

126 CA-Visual Objects South Seas Adventures

The fact that nothing happens (which also means there is no runtime error)
makes CA-Visual Objects a great prototyping tool. You can define your menus
first and make them functional incrementally.

SSAWindow Event Name

Now, let’s use a method of the South Seas Adventures SSAWindow as the Event
Name for the Customer List command:

1. Select the Customer List menu item, under the Report menu, in the Menu
Editor.

2. Click the Event Name property of the Menu Item Properties window.

3. Type CustomerReport in the Value edit control and press Enter.

This particular menu is to be attached, later in this lesson, to the
EditCustomerWindow. The EditCustomerWindow does not have a
CustomerReport() method. However, the EditCustomerWindow’s owner,
SSAWindow, does. It is this method that is invoked when the Customer List
menu item is selected.

Providing Menu Shortcuts

You may further simplify your application by providing an accelerator (or
shortcut key). An accelerator is usually attached to frequently used menu
commands. It allows the user to press a specific key combination to directly
access a command—bypassing the menu altogether.

To provide this functionality, you need to specify a key, or a key combination, in
a menu item’s Menu Item Properties window. CA-Visual Objects automatically
appends the name of the accelerator key to the menu command caption.

Let’s define Ctrl+F10 as the accelerator key for the Customer List Report
command:

1. Select the Customer List menu item under the Report menu.

2. In the Menu Item Properties window, click the Accelerator property (not the
value) to put focus on this property.

Note: To activate the edit control in the Value column, click the Accelerator
property column first. Also, for this property to take effect, do not press
Enter after entering the accelerator key. Instead, move the cursor and click a
different property outside of the Value column.

Exercise

Chapter 8: Creating Menus and Toolbars 127

Hold down the Ctrl key and press the F10 key.

The Properties window should now look like this:

To view the accelerator key for the Customer List menu item, select the
Report menu from the preview menu bar, as seen below:

Checking a Menu Item

Your menu can be defined to provide a visual cue for a current selection—by
displaying a check mark next to your menu command. For example, the menu
you are currently defining is to be attached to a window that initially displays
data in form view. You can place a check mark next to the Form menu item to
indicate the current view state for your user by following these steps:

1. Select the Form menu item, under the View menu, in the Menu Editor.

Exercise

128 CA-Visual Objects South Seas Adventures

2. In the Menu Item Properties window, click the Init. Checked property.

Select Yes from the list box in the Value cell, as seen below:

Later in this lesson, when a different view is selected, the check mark from the
Form View command is removed.

Creating a Toolbar

As stated earlier, toolbars are attached to windows, yet you create them using the
Menu Editor. The reason for this is that CA-Visual Objects associates the buttons
of a toolbar with menu commands used in the application. Typically, only a few
menu commands are depicted on the toolbar—those that are most frequently
used.

Create Toolbar
Buttons

When you originally create a menu, an empty toolbar is associated with this
menu. To create toolbar buttons, define the Button property for the menu items
to be accessed from the toolbar:

1. Select the Customer List menu item, under the Report menu, in the Menu
Editor.

2. Click the Button property in the Menu Item Properties window.

Exercise

Chapter 8: Creating Menus and Toolbars 129

The Toolbar Buttons dialog box appears:

3. Select the Print icon from the list and choose OK.

The Print icon is now displayed in the Value column along with the caption
that appears on the status bar when the user moves the cursor over the icon.
In the Menu Item Properties window, the Button Pos value is now 1. This
indicates that this is the first button on the toolbar.

4. Select the Preview Toolbar command from the Menu Editor’s File menu to
preview the toolbar you are creating:

5. Double-click the Menu Editor Toolbar Preview window’s system menu to
return to the Menu Editor.

6. Select the Next menu item under the Edit menu.

7. Click the Button property in the Menu Item Properties window.

8. Scroll down through the list of available options (near the bottom) to select
the Next Record icon from the Toolbar Buttons dialog box and then choose
OK.

The Button Pos value is 2, indicating that the Next Record icon is the second
button on the toolbar.

9. Select the Previous menu item under the Edit menu.

10. Click the Button property in the Menu Item Properties window.

11. Scroll down through the list of options (once again, near the bottom) to select
the Previous Record icon from the Toolbar Buttons dialog box, then choose
OK.

The Button Pos value is 3, indicating that the Previous Record icon is in the
third button on the toolbar.

Exercise

130 CA-Visual Objects South Seas Adventures

12. Select the Form menu item under the View menu.

13. Using steps 10 and 11, assign the View Form icon (at the bottom of the list) to
the Button.

14. Select the Table menu item, under the View menu.

15. Assign the Table icon (near the top of the list) to the Button BMP. Do not
use the View Table bitmap from the bottom of the list.

16. Select the Preview Toolbar command from the Menu Editor’s File menu to
preview the completed toolbar:

17. Double-click the Menu Editor Toolbar Preview window’s system menu to
return to the Menu Editor.

Changing Toolbar Button Positions

You may reorder the position of toolbar buttons, once created, by changing the
Button Pos value in the Menu Item Properties window.

1. Select the Customer List menu item, under the Report menu.

2. Click the Button Pos property in the Menu Item Properties window and
change the value to 3.

This moves the Printer button assigned to this command to the third
position.

3. Select the Previous menu item under the Edit menu.

4. Click the Button Pos property in the Menu Item Properties window and
change the value to 1.

This moves the Previous Record button assigned to this command to the first
position.

Exercise

Chapter 8: Creating Menus and Toolbars 131

5. Select the Preview Toolbar command from the Menu Editor’s File menu to
preview the modified toolbar:

6. Double-click the Menu Editor Toolbar Preview window’s system menu to
return to the Menu Editor.

Spacing Between Toolbar Buttons

You may also modify the gaps, between buttons or a group of buttons, for your
toolbar. This is achieved by skipping a number when assigning button positions
as detailed below:

1. Select the Customer List menu item under the Report menu.

2. Click the Button Pos property in the Menu Item Properties window and
change the value to 4.

This leaves a gap before the Printer button.

3. Select the Form menu item under the View menu.

4. Change the Button Pos to 6, to leave a gap before the ViewForm button.

5. Select the Table menu item under the View menu and change the Button Pos
to 7.

6. Select the Preview Toolbar command from the Menu Editor’s File menu to
preview the modified toolbar:

Notice the new icon positions and the gaps before and after the third icon.

7. Double-click the Menu Editor Toolbar Preview window’s system menu to
return to the Menu Editor.

Exercise

132 CA-Visual Objects South Seas Adventures

Other Modifications to the Toolbar

In addition to changing button positions and modifying the spacing between
buttons, toolbars have several other properties that can also be modified.

Let’s keep the toolbar style as Flat Toolbar, which is the Internet Explorer style,
and introduce the Bands as the separator (consistent with the Internet Explorer
style of toolbar you have created):

1. Click the Menu Properties toolbar button in the Menu Item Properties
window (or select the Menu Properties command from the Edit menu).

The Menu Properties window displays.

2. Click the Use Bands property and change it to Yes:

Note: The Preview Toolbar window will not show any difference but it will
become visible in the application.

For a description of other Menu Properties, see Using the Menu Editor topic, in
online help.

Saving the Menu

When you have completed your menu definition, you must make it available to
the Window Editor. To do this, follow these steps:

1. Click the Save toolbar button.

2. Select the Build toolbar button.

3. Close the Menu Editor by double-clicking its system menu.

Exercise

Chapter 8: Creating Menus and Toolbars 133

Attaching a Menu to a Data Window

Because the EditCustomerWindow has a different menu attached to it, you will
have to make a change to its ViewToggle() method, which is in the
Tutorial:Windows module. This module was imported in the "Creating and
Using Windows" chapter as TUTWIND.MEF.

The View Toggle() method is one of the few developer-coded menu event
methods. It modifies the state of menu items by using the CheckItem() and
UncheckItem() methods. These methods require you to specify the name of a
constant, such as IDM_SSACHILDMENU_VIEW_TABLE_ID, to identify the
menu items. Since the EditCustomerWindow now utilizes the new
CustomerMenu, these constants must be changed. To do this:

1. Open the Tutorial:Windows module by clicking its branch on the Repository
Explorer.

2. Find the EditCustomerWindow:ViewToggle() method and double-click it to
open the Source Code Editor.

3. Select the Edit Replace command.

4. Type SSACHILDMENU in the Find What edit control and type
CUSTOMERMENU in the Replace With edit control.

5. Choose Replace All.

You will see that the new substring appears in several different lines.

6 Save your changes by selecting the Save toolbar button.

7. Rebuild the application by selecting the Build toolbar button.

8. Close the Source Code Editor by double-clicking its system menu.

9. Change to the Customer:Forms module and open the EditCustomerWindow
in the Window Editor.

10. Change to the DataWindow tab in the properties window and click on the
Menu property to drop a list of the available menus that are available.

Exercise

134 CA-Visual Objects South Seas Adventures

11. Select CustomerMenu from the list:

12. Save your changes by selecting the Save toolbar button.

Close the Window Editor by double-clicking its system menu.

Putting It All Together

You are now going to run and test the application with the changes you have
made:

1. Rebuild the application by selecting the Build toolbar button.

2. Run the application by selecting the Execute toolbar button.

3. Choose OK at the opening dialog box.

The Login dialog box appears.

4. Type user in the Name edit control and trainee in the Password edit control.
Choose OK.

5. Select the Open command from the File menu.

6. Click the Customer radio button and choose OK. The Customer Browser
displays.

7. Select a customer by clicking one of the cells in the Customer Browser and
choose Edit. (This functionality was described in Chapter 5: Creating and
Using Windows)

The Edit Customer window displays with the menu and toolbar you created
for it.

Exercise

Chapter 8: Creating Menus and Toolbars 135

View your modified menu, by selecting the Report and/or the Edit menu.
You are now able to see the results of setting the Use Bands property:

8. Close the application by double-clicking its system menu.

Designing a Menu

When designing your application, you face a decision about the number of menu
definitions that are required. One possible approach is to create a menu for each
window of your application.

However, in many applications you find that most actions required in windows
are common to many windows. Therefore, defining a separate menu for each
window is redundant. Another approach is to find common functionality
between your menus and to manage the exceptions.

The SSAChildMenu Before you created the CustomerMenu menu, you may have noticed that the
South Seas application uses only one menu for all the child windows.

Since most windows in the South Seas Adventures application fall into one of
two categories—the Edit or New windows—only one menu (SSAChildMenu)
has been created to be used by most data windows. The actions defined in this
menu are generic enough to be used and unchanged by each Edit window. As
for the New windows, some of the commands such as “movement” commands
have been disabled.

Customizing a Menu

In certain instances, you may want to further customize your menu. For
example, the NewCustomer window does not require that movement in the data
server be allowed while a customer is being added. It also does not allow
switching between Form and Table view. In addition, since most toolbar buttons
are movements, the toolbar is disabled as well.

Disabling Menu Items

The SetUp() and SetUpMenu() methods for the NewCustomer window have
been created to make the desired menu modifications. Whenever a
NewCustomer window is opened, the SetupMenu() method is called by its Init()
method.

Exercise

136 CA-Visual Objects South Seas Adventures

You can find the source code for the SetupMenu() method in the
Customer:Methods module of the South Seas Adventures application, as shown
below:

Note: When a NewCustomer window displays, the disabled items appear
dimmed on its menu.

Editing Toolbar Buttons

You can modify the standard behavior of toolbar buttons using methods of the
menu class. The Toolbar Buttons dialog box displays with the View Form icon
highlighted.

When the Table view is selected from the menu command or with the button, the
button displays with a depressed shape. This is accomplished with the
ViewToggle() method of the EditCustomerWindow class. This method is
contained in the Tutorial:Windows module of the application:

Exercise

Chapter 8: Creating Menus and Toolbars 137

To use this method in your menu, you change the ViewTable event name to
ViewToggle and remove the ViewForm button from the toolbar. To do this, you
need to go back to the menu you created earlier in this lesson:

1. Click the Customer:Menu module branch in the Repository Explorer tree
view.

2. Invoke the Menu Editor by double-clicking the CustomerMenu menu entity
in the Repository Explorer list view.

3. Select the Table menu item, under the View menu.

4. In the Menu Item Properties window, select the Event Name property and
type ViewToggle.

5. Select the Form menu item under the View menu.

6. In the Menu Item Properties window, select the Event Name property and
type ViewToggle.

7. In the Menu Item Properties window, click the Button property.

The Toolbar Buttons dialog box displays with the Table icon highlighted:

8. To remove the ViewForm button from the toolbar, choose Remove.

9. Save your changes by selecting the Save toolbar button.

10. Build the application by selecting the Build toolbar button.

To view the results of your changes, follow the steps described earlier, in
Putting it All Together, to execute the application and access the
EditCustomer window.

Summary

138 CA-Visual Objects South Seas Adventures

Summary
In this chapter you have learned how to use the Menu Editor to create menus
and toolbars, change a menu and its menu item properties, prototype menus and
toolbars, and define accelerator keys. You have also learned how to modify the
behavior of menus by programming new behavior.

In the following lesson you will learn how to access data from controls, data
servers, and data windows and gain an understanding of how data is processed
in CA-Visual Objects 2.7.

Chapter 9: Accessing and Updating Data 139

Chapter

9 Accessing and Updating Data

This lesson demonstrates how to access data from controls, data servers, and
data windows.

Overview
So far, you have seen that data windows with attached data servers provide
mechanisms for updating the database and controls automatically. In this case,
the programmer has nothing to code.

In many instances (for example, when creating event handlers), you will want to
access data from your source code. There are many ways to access data—
through methods, functions, data servers, data windows, and controls.

In this lesson, you will see how to retrieve and set data in databases and controls.
You will also see that there are different ways to get at the same data.

The information in this lesson is essential to understanding of how data is
processed in CA-Visual Objects 2.7.

Narrative

Xbase Compatibility

A subset of the CA-Visual Objects language is derived from Xbase. All of the
usual commands work to access and assign your data. For example:

// Access the Amount field
nAmount := Invoice->Amount

// Assign 5 to the Amount field
Invoice ->Amount := 5

Narrative

140 CA-Visual Objects South Seas Adventures

Access and Assign Methods

Access and assign methods are special methods of classes. They are executed
automatically each time you access data from or assign data to a named instance
variable. The South Seas application contains about 500 access and assign
methods. They are generated automatically by the IDE editors (Window, DB
Server, and SQL).

You can define several types of instance variables in a CLASS declaration,
including EXPORT, INSTANCE, HIDDEN, and PROTECT. All of these, except
EXPORT, are not directly accessible externally (that is, outside of the class). The
EXPORT instance variable is accessible outside of the class definition.

To access or assign to a non-exported instance variable from outside of the class,
you must use a method. Indeed, this is the purpose of not exporting the variable.

The syntax for referencing a method is obviously different from that of
referencing a variable. This violates encapsulation since users of the class must
be aware of how a property of the class is implemented in order to know
whether to use function style or variable style reference.

Using Protected
Variables

In the following example, the Size instance variable is a PROTECT type
variable. It therefore cannot be accessed or assigned from outside of the class:

CLASS Square
PROTECT Size

METHOD Init(oSize) CLASS Square

// Assign an instance variable (of any type)
Size := Dimension{oSize}

RETURN SELF

Using a Method You can also create a method to set the size, as in:

METHOD SetSize(oSize) CLASS Square
IF oSize != NIL

Size := oSize
RETURN Size

ELSE
RETURN Size

ENDIF

To access or assign the size of the square from outside of the class, you would
then code:

oSquare := Square{100}

// Print the size of the square
? oSquare:SetSize()

// Change the size of the square
oSquare:SetSize(200)

Narrative

Chapter 9: Accessing and Updating Data 141

Using Access and
Assign Methods

A better way to do this would be through the use of access and assign methods.
Access and assign methods allow you to reference your non-exported variable
while maintaining the syntax established for instance variables. The Size access
and assign methods are shown below:

ACCESS Size CLASS Square
RETURN Size

ASSIGN Size(uValue) CLASS Square
Size := uValue

RETURN Size

From outside of the class, you can now code:

oSquare := Square{100}

// Print the size of the square
? oSquare:Size

// Change the size of the square
oSquare:Size := 200

EXPORT instance variables are accessible outside of the class definition. Why
then, should you ever bother with access and assign methods?

Access and assign methods provide a layer above the implementation of the
variables in question. Thus, if the implementation changes at the lower level, the
program interface can remain intact. When using the variables directly, you take
a risk in assuming the implementation will never change. If a change does occur,
you may have to change each and every instance of the variable within your
program.

Generated Data Server Classes

When you save a data server, the DB Server Editor (or the SQL Editor) creates
access and assign methods for each field in the table, as in:

ACCESS Amount CLASS Invoice
RETURN SELF:FieldGet(#Amount)

ASSIGN Amount(uValue) CLASS Invoice
RETURN SELF:FieldPut(#Amount, uValue)

You can, therefore, access and assign data from the table by coding:

// Access Amount field
nAmount := oServer:Amount

// Assign 5 to the Amount field
oServer:Amount := 5.00

Narrative

142 CA-Visual Objects South Seas Adventures

You can also access and assign fields of the data server by using the data server
methods FieldGet() and FieldPut() directly, as the access and assign methods did
above:

// Access Amount field
nAmount := oServer:FieldGet(#Amount)

// Assign 5 to the Amount field
oServer:FieldPut(#Amount,5)

Both coding styles yield identical results; however, using the access and assign
methods make your code more readable.

Base DBServer and SQL Classes

When using the SQLSelect or DBServer classes directly, no access and assign
methods exist for the fields in the database. You might, therefore, expect an error
to be generated with the following code:

// Create a data server
oConn := SQLConnection{"Accounting","UserID",;

"Password"}
oServer := SQLSelect{"SELECT * FROM Invoice",oConn

Or:

// Create a data server
oServer := DBServer{"Invoice"}

Then,

// Access Amount field
nAmount := oServer:Amount

// Assign 5 to the Amount field
oServer:Amount := 5.00

No error results because of an error interception mechanism provided by CA-
Visual Objects. This mechanism is designed specifically to handle references to
nonexistent instance variables. When you make a reference to an instance
variable (in any class) that does not exist, a method call, either NoIVarGet() or
NoIVarPut(), is made to the class in question.

The NoIVarGet() method is invoked when you attempt to retrieve a value from a
nonexistent variable. The method is passed a parameter indicating the name of
the variable to be retrieved.

The following code:

? oAnyClass:NonExistantVariable

Produces:

? oAnyClass:NoIVarGet(#NonExistantVariable)

Narrative

Chapter 9: Accessing and Updating Data 143

The base data server classes use this feature to allow you to access the fields of
the table to which they are associated. The NoIVarGet() method tests to see if a
field in the table corresponds to the passed symbol name, and if so it performs a
SELF:FieldGet(<symName>). Similarly, the NoIVarPut() method tests to see if a
field in the table corresponds to the passed symbol name, and if so it performs a
SELF:FieldPut(<symName>, <Value>).

Data Forms

This section applies to both DataWindow objects and subform controls. The
subform control object is actually a data window and, therefore, can be used in
the same way as other data windows.

When you save a data form in the Window Editor, access and assign methods are
created for each data control on the window that could be linked to a data server
field:

ACCESS Amount() CLASS PaymentSubForm
RETURN SELF:FieldGet(#Amount)

ASSIGN Amount(uValue) CLASS PaymentSubForm
SELF:FieldPut(#Amount,uValue)

RETURN Amount := uValue

A data control is one that can be linked to a field in an attached data server, such
as an edit control or check box. The data window uses name-based linkages
when deciding whether to use data from a control or from the data server. That
is, it attempts to establish a linkage between the name of the control and the
name of a field in the data server. Consider the following:

// Access Amount field
nAmount := oDW:Amount

// Assign 5 to the Amount field
oDW:Amount := 5.00

If the Amount field exists in the data server, the FieldGet() and FieldPut()
methods retrieve and set the data server field, respectively. Otherwise, they
retrieve and set the window’s control value.

You can also use the FieldGet() and FieldPut() methods directly, as follows:

// Access Amount field
nAmount := oDW:FieldGet(#Amount)

// Assign 5 to the Amount field
oDW:FieldPut(#Amount, 5)

Both coding styles yield identical results; however, using the access and assign
methods make your code more readable.

Narrative

144 CA-Visual Objects South Seas Adventures

Data Servers Attached to Data Forms

Data servers attached to data windows are accessible by using the
DataWindow:Server instance variable. They can be used as described in the Data
Server Classes section above. For example:

// Access Amount field
nAmount := oDW:Server:Amount

// Assign 5 to the Amount field
oDW:Server:Amount := 5

Or:

// Access Amount field
nAmount := oDW:Server:FieldGet(#Amount)

// Assign 5 to the Amount field
oDW:Server:FieldPut(#Amount, 5)

Controls

Controls can be placed on data windows, dialog windows and data dialog
windows. Controls hold data that the user inputs in a buffer. In many cases, you
want to manipulate these values directly.

As you have seen, data windows automate the process of transferring data
between an attached server and its controls, provided the names of the controls
have corresponding fields in the data server.

If a control has no corresponding field in a data server, the control simply acts as
a buffer and holds the value that the user inputs. The data window essentially
leaves it alone. In this case, you have to write code to access the control’s value if
you want to use it.

Consider appending records to a database. In database applications, it is
standard practice to buffer the user input prior to appending records. If the user
chooses to save (for example, by clicking the OK button), then and only then, do
you append the record. You would then update the new record manually.

For dialog windows, you may want to assign initial values to controls. For
example, in a Print Report dialog, you may want the default destination to be the
printer. In this case, the Printer radio button should be selected.

Whatever the reason, you will undoubtedly be required to directly access
controls somewhere along the development trail. Earlier, it was stated that the
Window Editor creates access and assign methods for each of its controls that
could be linked to the connected data server (such as edit controls and check
boxes). That includes those controls that are not linked to a data server field as
well.

Narrative

Chapter 9: Accessing and Updating Data 145

For example, to examine the access and assign methods for the nAmount data
control of the NewPaymentWindow window, open the Payment:Forms module.
The only difference from the code shown earlier for the linked control (Amount)
is that the buffered control name (mAmount) is used.

If a control on a data window does not have a corresponding field in the attached
data server or if the data window does not have a data server attached, the data
window can still help you access and assign the values in the control.

The CA-Visual Objects 2.7 control classes allow you to manipulate window
controls. When you save a window, the Window Editor generates a class for
your new window. The class entity includes instance variables for each data
control on the window. The instance variables for data controls are prefixed
with oDC (for Data Controls), such as:

PROTECT oDCFirst_Name

After instantiation, the instance variables are set to an object of the class that
represents the control. For example, oDCFirst_Name is a SingleLineEdit object.

Each control class has a Value and TextValue access and assign method.

Value Access and
Assign Methods

The Value instance variable represents the value held in the control, in
whatever data type the control holds. The data type is determined by the field
specification attached to a control. The field specification can be specified or
assumed if it is attached to a data server field:

// Prints "N" for numeric
? ValType(oDCAmountControl:Value)

// Access the control
nAmount := oDCAmountControl:Value

// Assigns 5 to the control

oDCAmountControl:Value := 5

TextValue Access
and Assign Methods

For edit controls and scroll bars, the TextValue instance variable represents the
value held in the control as a string. The value is formatted according to the
field specification attached to the control. The field specification can be
specified or assumed if it is attached to a data server field:

// Prints "C" for character
? ValType(oDCAmountControl:TextValue)

// Access the control
cAmount := oDCAmountControl:TextValue

// Assigns "5" to the control
oDCAmountControl:TextValue := "5"

For other data controls—like check boxes, combo boxes, list boxes, and radio
button groups—TextValue may contain different information than Value.

Summary

146 CA-Visual Objects South Seas Adventures

Summary
In this lesson, you learned about the various ways of accessing and updating
data from within your program. You have also learned how to manipulate data
using methods, functions, data servers, data windows, and controls.

Proceed to the next lesson to learn about using window event handlers—giving
your application the ability to respond to an event initiated by the user, such as a
push button click or an edit control modification.

Chapter 10: Customizing Window Event Handlers 147

Chapter

10
Customizing Window Event
Handlers

This lesson discusses window objects and window event processing. In this
lesson, you will:

■ Examine several events that are often customized in CA-Visual Objects
applications

■ Customize your own window event handlers

■ Define how windows respond to different types of event messages

Overview
Events and
Event-Driven
Programs

In Windows, actions—such as pressing a key and clicking a mouse—are
referred to as events. Applications written for the Windows environment
respond to these events, thus Windows applications are considered to be event-
driven.

A program performs a single task for each event it receives. Routines must be
supplied for each event. Because the order in which events occur is
unpredictable, these routines must be self-sustaining. That is, the routine must
be able to respond to the event with little or no knowledge of what events may
already have occurred or which events may be pending. This may seem like an
impossible task, but since the events are very well detailed, the job can be
managed. This provides a flexible and powerful programming interface.

In Windows, many events are generated as a result of user interaction with your
program. Key presses, mouse clicks, resizing a window, and selecting a control
are all events generated by the user.

Windows and Events Windows monitors all events in the environment and is responsible for placing
relevant event messages in a message queue for your application. The GUI
classes retrieve messages from the queue and dispatch them to the appropriate
routine in your application—an event handler—for handling a particular event.

Overview

148 CA-Visual Objects South Seas Adventures

There is an inherent compatibility between event-driven programming and
object orientation. In an object-oriented program, messages are sent to objects to
communicate with them. In event-driven programs, event messages are
dispatched to application objects to notify them of an event. In each case, how
the message is handled is up to the object. This natural similarity makes
object-orientation an excellent framework for developing event-driven systems.

CA-Visual Objects 2.7
and Events

CA-Visual Objects takes full advantage of this framework. When the CA-
Visual Objects dispatcher receives an event message from Windows, it creates
an event object. The dispatcher then sends a message to (invokes a method of)
the appropriate window object.

The CA-Visual Objects Window classes inherit from the EventContext class. It is
through Window classes that events are propagated. They are equipped with
the necessary event-handler methods, all of which provide default behavior.

Events and Your
Application

Although CA-Visual Objects provides default behavior, it is through
customizing these event-handler methods that your application can really stand
out in a crowd.

The event handlers provided by CA-Visual Objects are encapsulated as methods
of the Window class hierarchy. By subclassing the appropriate window method,
you can override or enhance the default behavior.

In this lesson, you will examine the following list of events:

Event Name Occurs When

ButtonClick There is a mouse click on a push button, radio
button, or check box.

EditChange An edit control (such as a single or multi-line edit
control) is modified.

Expose Part of the window needs repainting.

ListBoxSelect An item in a list box control (list box or combo box)
is selected.

Notify When a data window’s attached data server sends a
notification.

QueryClose A window is about to be closed.

Exercise

Chapter 10: Customizing Window Event Handlers 149

Exercise
Let’s now take a look at the event methods that are handled within the
NewPaymentWindow window in the South Seas Adventures application:

1. Open the South Seas Adventures by double-clicking its branch in the
Repository Explorer tree view.

2. Open the Payment:Forms module by clicking its branch in the Repository
Explorer tree view.

3. Open the NewPaymentWindow window by double-clicking on this entity in
the Repository Explorer list view.

The Window Editor displays.

4. In the Data Window Properties window, you can see that the Close event has
been defined on the Window Events tab and the ListBoxSelect event has
been defined on the Control Events tab:

If you want to customize the behavior of a window, just redefine the event
methods that you wish to change—it’s that simple. Several events that you may
want to customize are described below:

■ A ButtonClick event occurs when any button control (radio button, push
button, or check box) is clicked.

■ An EditChange event occurs when any edit control (single or multiple line) is
modified.

■ A ListBoxSelect event occurs when an item in any list box control (list box or
combo box) is selected.

These events are all similar in nature, taking place when controls are modified.
Each of these events also share the appropriate event handler method for all
controls of the same type.

Exercise

150 CA-Visual Objects South Seas Adventures

Using the EditChange() Method

The method we are about to write will print the amount, in word format, across
the payment receipt as the amount is entered in the amount single-line edit
control.

1. Click the EditChange property in the Data Window Properties
window(Control Events tab), then click the ellipsis button.

This automatically launches the Source Code Editor. It also supplies you
with the base source code for your method:

METHOD EditChange(oControlEvent) CLASS;
NewPaymentWindow

LOCAL oControl AS Control
LOCAL uValue AS USUAL
oControl := IIf(oControlEvent = = NULL_OBJECT, ;

 NULL_OBJECT, oControlEvent:Control)
SUPER:EditChange(oControlEvent)
//Put your changes here
RETURN NIL

2. Now, modify the EditChange() method as follows:

METHOD EditChange(oControlEvent) CLASS;
NewPaymentWindow

LOCAL oControl AS Control
LOCAL uValue AS USUAL
oControl := IIf(oControlEvent = = NULL_OBJECT, ;

 NULL_OBJECT, oControlEvent:Control)
SUPER:EditChange(oControlEvent)
IF oControl:NameSym == #MAmount
 oDCDollarsText:Value := ;

 CWhole(Val(oDCmAmount:TextValue))
 oDCCentsText:Value := ;

 CDecimal(Val(oDCmAmount:TextValue), ;
 2) + "/100"

 ENDIF
 RETURN NIL

Note: The CWhole() and CDecimal() functions are located in the App:Misc
module.

A single parameter, oControlEvent, is passed automatically by CA-Visual
Objects to the method. This is a ControlEvent object, which contains
information about the event that just occurred.

The control event contains the control object for which the event was
generated as an access method. The supplied code places the control object
into a local variable in the declaration statement, as follows:

LOCAL oControl:= oControlEvent:Control

You want to check for EditChange events which occur in the Amount field.
The Amount edit control on the NewPaymentWindow window is named
mAmount.

You can access a control’s name using its NameSym variable, as follows:

oControl:NameSym

Exercise

Chapter 10: Customizing Window Event Handlers 151

Note: In this case, you only want to do something when the event is for the
mAmount control, therefore, enclose your code inside an IF statement. For
example:

IF oControl:NameSym == #MAmount
...

ENDIF

If you have more than one control to handle, you can use a DO CASE
statement in its place.

If the mAmount control is modified, the following code sets the values of the
oDCDollarText and oDCCentsText fixed text controls. See the “Adding
Controls to Your Windows” lesson in this guide for more information on
controls:

oDCDollarsText:Value := ;
CWhole(Val(oDCmAmount:TextValue))

oDCCentsText:Value := ;
CDecimal(Val(oDCmAmount:TextValue), ;
2) + "/100"

The CWhole() function returns the word format version of the dollars
portion (or whole part) of a numeric. The CDecimal() function returns the
string representation (or decimal part) of the cents portion of a numeric.

Setting the oDCDollarsText and oDCCentsText fixed text controls to new
values automatically repaints them on the window.

Notice the call:

SUPER:EditChange(oControlEvent)

This is done because your customization is an enhancement to the current
behavior of the control. You are not replacing it. However, many other
things could be happening in the default behavior that, if unattended, could
cause unpredictable results.

3. Save the source code by selecting the Save command from the File menu.

4. Close the Source Code Editor by double-clicking its system menu.

5. Close the Window Editor by double-clicking its system menu.

6. Build the application by selecting the Build toolbar button.

7. Run the application by selecting the Execute toolbar button.

Exercise

152 CA-Visual Objects South Seas Adventures

Viewing Your Results

Verify the results using the following steps:

1. Select the New command from the File menu.

The New Record dialog box appears:

2. Select the Payment radio button and then choose OK.

The New Payment window appears.

3. Type a dollar value into the single-line edit control designated for the
amount paid.

As you type the amount, it is printed across the payment receipt in word
format:

4. Close the South Seas Adventures application by double-clicking its system
menu.

As described earlier, the EditChange() method is called when any of the edit
controls on the window are modified. Similarly, the ListBoxSelect() method
is shared by list boxes and combo boxes while the ButtonClick() method is
shared by radio buttons, check boxes and push buttons.

Exercise

Chapter 10: Customizing Window Event Handlers 153

Using the Notify() Event Handler

The NotifyEvent event only occurs for data-aware windows and is created by an
attached server. This event is crucial for a data window, since the data aware
windows use this handler to keep itself in sync with its attached server.

For example, if the oServer:Skip() method is invoked, the server first notifies the
data window of its intention to change records. This gives the data-aware
window the opportunity to save any of the edit controls on its window to the
current record before the record pointer is moved. Once control is returned to
the server, it then moves the pointer. The server then notifies the data-aware
window that it has repositioned the record pointer. The data-aware window
then updates its controls from the server.

Your program can make use of this mechanism.

Creating the Method

The example you are about to see uses the Notify() method to update the
window caption. Each time the record pointer moves, the window caption
reflects the new record:

1. Open the Item:Methods module by clicking its branch in the Repository
Explorer tree view.

2. Find the EditItemWindow: Notify() method and double-click its entity to
display the following code:

METHOD Notify(kNotifyName, uDescription) CLASS ;
EditItemWindow

LOCAL xRetNotify := SUPER:Notify (;
kNotifyName, uDescription)

STATIC LOCAL lRecordUpdated := FALSE AS LOGIC

// set new window caption
IF kNotifyName >= NOTIFYFIELDCHANGE

SELF:Caption := Trim(GetToken (;
SELF:Caption, 1, "-")) + " - " + ;
Trim(SELF:Server:ITEM_ID)

ENDIF

// If something has changed...
IF kNotifyName = = NOTIFYFIELDCHANGE

lRecordUpdated := TRUE
ENDIF

IF kNotifyName = = NOTIFYRECORDCHANGE .AND. ;
lRecordUpdated = = TRUE

SELF:Owner:BroadcastMessage(SELF, #ITEM)
lRecordUpdated := FALSE

ENDIF

RETURN xRetNotify

Exercise

154 CA-Visual Objects South Seas Adventures

The Notify() method receives a constant rather than an Event object. This
constant identifies the event that occurred in the attached server. The
possible values are prioritized and guaranteed to be in a specific order, thus
you can use the following code to identify any event that involves a field
change:

IF kNotifyName >= NOTIFYFIELDCHANGE

Notify() also receives a second parameter, <uDescription>, which is not
always used.

When the Notify() method is invoked, the window captions are modified to
reflect the current Item_ID.

SELF:Caption := Trim(GetToken(SELF:Caption, 1, "-")) + ;
 " - " + Trim(SELF:Server:Item_ID)

3. Run the application by selecting the Execute toolbar button.

Viewing Your Results

Verify the results, using the following steps:

1. Select the Open command from the File menu.

The Open File dialog appears:

2. Select the Item radio button and click OK.

3. When the Item browser appears, select an item from the browser and click
the Edit push button.

Exercise

Chapter 10: Customizing Window Event Handlers 155

The Edit Item window appears:

4. To verify that the Notify() method is working, click the record movement
buttons on the toolbar.

5. Close the South Seas Adventures application by double-clicking its system
menu.

6. Close the Source Code Editor by double-clicking its system menu.

Using the QueryClose() Event Handler

The QueryClose event occurs when a request has been made to close a window.
This request can be brought about by double-clicking on a window’s system
menu or invoking a window’s EndWindow() method, among other actions.

These two actions post a WM_ message in the application’s event queue. The
CA-Visual Objects dispatcher then invokes the window’s QueryClose() method.

The return value of your QueryClose() method determines if the window gets
closed. If your QueryClose() method returns TRUE, the window is closed;
otherwise, it remains open.

This can be very useful. The example you will examine uses the QueryClose()
method to prompt the user prior to exiting the application, as in the following
figure:

1. Open the SSA Shell:Forms module by clicking its module branch in the
Repository Explorer tree view.

2. Right-click on the module and select EditAllSource from the local pop-up
menu.

Summary

156 CA-Visual Objects South Seas Adventures

3. Find the SSAWindow:FileExit() method:

METHOD FileExit() CLASS SSAWindow
SELF:EndWindow()

RETURN NIL

SSAWindow is the South Seas Adventures shell window. In an MDI
application, double-clicking the shell window’s system menu is equivalent to
requesting to exit the application. You also want this behavior when the user
selects the Exit command from the File menu. To provide this functionality,
invoke the window’s EndWindow() method.

4. Find the SSAWindow:QueryClose() method.

METHOD QueryClose(oEvent) CLASS SSAWindow
LOCAL oWB AS WarningBox
LOCAL lLeave := FALSE AS LOGIC
SUPER:QueryClose(oEvent)
// Prompt the user before exit
oWB := WarningBox{SELF,;

"South Seas Adventures",;
"Are you sure you want to leave?" }

oWB:Type := BOXICONQUESTIONMARK + BUTTONYESNO
IF oWB:Show() == BOXREPLYYES

lLeave := TRUE
ENDIF

RETURN lLeave

When the user chooses to exit the application, a warning box provides an
opportunity to keep the application open.

// Prompt the user before exit
oWB := WarningBox{SELF,;

"South Seas Adventures",;
"Are you sure you want to leave?"}

oWB:Type := BOXICONQUESTIONMARK + BUTTONYESNO

IF oWB:Show() == BOXREPLYYES

If the user chooses Yes, the return parameter, lLeave, is changed to TRUE
and the window is allowed to close.

When a window’s QueryClose() method returns TRUE, the window’s Close()
method is then invoked and the window is destroyed.

Summary
In this lesson, you have learned about events and event-driven applications. You
now know how CA-Visual Objects receives and dispatches events. Additionally,
you have seen how to customize your own windows using a wide variety of
event handlers.

The next lesson shows you how to use icons and cursors to enhance the “look” of
your applications.

Chapter 11: Working with Icons and Cursors 157

Chapter

11 Working with Icons and Cursors

This lesson introduces you to icons and cursors, and their uses in CA-Visual
Objects 2.7. By the end of this lesson, you will know how to:

■ Create icons and cursors

■ Attach icons to your application windows

■ Use icons as controls

■ Customize your Repository Explorer with an icon

■ Use cursors

Overview
Icons As a user of Windows, you have seen icons used in the following situations:

■ Icons used to represent programs and groups on your desktop. Typically,
these icons are defined in the program’s .EXE file, a .DLL file, or an .ICO file.
The icons are identified to the desktop via the Program Properties.

■ Icons within a program’s Help About dialog box. In this case, the icon
displays on a window as a Fixed Icon control.

■ Icons used to represent a minimized window or application on the desktop.

Creating an Icon

Let’s start by creating a new icon to associate with the minimized Edit Customer
window in the South Seas Adventures application:

1. Select the App:Resources module of the South Seas Adventures application
in the Repository Explorer tree view.

Overview

158 CA-Visual Objects South Seas Adventures

2. Select the Image Editor command from the Tools menu.

The Image Editor window displays. The various parts of the Image Editor
workspace, including the edit area, the color palette, the color indicators, and
the tool palette, are shown below:

3. Maximize the Image Editor.

The Image Editor features many of the tools you may have seen in popular
graphic editors and paint programs. These tools allow you to:

– Draw freehand

– Draw lines

– Draw rectangles (solid and outlined)

– Draw ellipses (solid and outlined)

– Fill areas

– Flip areas

– Rotate areas

Overview

Chapter 11: Working with Icons and Cursors 159

When the Image Editor is first displayed, solid colors are selected by default,
as indicated by the highlighted box in the color indicator:

The two left, or primary, colors in the indicator represent the colors used
when you draw pressing the left mouse button. The two right, or secondary,
colors in the indicator represent the colors used when you draw pressing the
right mouse button.

The upper color indicators show solid colors. Solid colors appear on the icon
exactly as they are displayed in your Image Editor.

NOTE: When being dragged, solid colors are only displayed in black and
white.

The lower color indicators show transparent colors. These primary and
secondary colors work differently from the solid colors:

– A primary transparent color will not appear on your icon when
displayed, allowing what is behind the icon to show through. When
selected, it fills the icon background completely—allowing you to view
your icon in different color backgrounds.

– Areas that you draw using a secondary transparent color will be
displayed as the complimentary color to what is behind it.

You can select Solid or Transparent colors from the Options menu.

Now, it’s time to discover your hidden talents by drawing a simple icon, using
solid colors. Since the icon will be used to represent customers for South Seas
Adventures, let’s draw a happy face:

1. Select the color yellow from the color palette by clicking the left mouse
button.

The left color in the indicator shows yellow as the primary color.

2. Select the Filled Ellipse tool from the Tools Palette, then move the mouse to
the editing area.

Overview

160 CA-Visual Objects South Seas Adventures

3. Click the left mouse button and drag it to create a circle.

Yellow circles appear in both the Edit Area and the Edit Buffer. The Edit
Buffer displays the icon in the same size in which it will appear on the
screen:

4. Select black as the secondary color by clicking with the right mouse button
on the black color in the color palette.

5. Use the right mouse button to draw eyes and a mouth for the happy face.
Use the Filled Ellipse tool for the eyes and draw the mouth using the Pencil
tool:

Note: The green background that you see behind the happy face, which is a
primary transparent color, will not show up when the icon displays.

Saving the Icon

Let’s save your creation. Saving the icon will require a file name and an entity
name. When referring to this icon in the application, you must use its entity
name:

1. Select the Save Image File command from the File menu.

The Save Icon Entity and File dialog box displays.

Overview

Chapter 11: Working with Icons and Cursors 161

2. Type MYICON.ICO as the file name.

For the directory path, select the SAMPLES\SSATUTOR\FILES subdirectory
which is located below the CA-Visual Objects 2.7 installed directory (for
example, C:\CAVO27\SAMPLES\SSATUTOR\FILES).

3. Type MY_FIRST_ICON in the Entity Name edit control.

An entity name may be long and descriptive. All characters are capitalized
and spaces are replaced by underscores.

4. Choose OK to save the icon.

The Save operation creates an icon entity, an icon class and Init() method, a
resource entity, and an .ICO file.

5. Close the Image Editor by double-clicking its system menu.

To view the four new entities, scroll down through the App:Resources entity
list. There is an Icon, an RCIcon, a Class, and an Init() method for the class—
all named MY_FIRST_ICON:

7. Your new Icon entity must be made visible to the rest of the application, so
rebuild the application using the Build toolbar button.

Attaching Icons to Data Forms

In Windows applications, windows can be minimized. When a window is
minimized, an icon displays in its place. In CA-Visual Objects 2.7, you can
specify an icon for each window.

You are now going to attach your happy face icon to the Edit Customer window:

1. From the Repository Explorer, open the Customer:Forms module by clicking
its branch.

2. Open the Window Editor by double-clicking the EditCustomerWindow
window entity.

3. In the Data Window Properties window (under the DataWindow tab), select
the Large Icon property.

6. Type MY_FIRST_ICON or click the down arrow button and select
MY_FIRST_ICON from the drop-down list.

7. Select the Small Icon property.

8. Type MY_FIRST_ICON or click the down arrow button and select
MY_FIRST_ICON from the drop-down list.

9. Save your changes by clicking the Save toolbar button.

10. Close the Window Editor by double-clicking its system menu.

11. Rebuild the application using the Build toolbar button.

Overview

162 CA-Visual Objects South Seas Adventures

To view the icon you specified, run the program as follows:

1. Click the Execute toolbar button.

2. Log in to the application (Name: User, Password: Trainee).

3. Open the Customer Browser by choosing the Open command from the File
menu.

The Open File dialog box appears.

4. Click the Customer radio button, then choose OK.

5. Select any customer from the browser by clicking on a cell.

6. Click the Edit button to open the Edit Customer window.

7. Minimize the Edit Customer window to view its icon—the happy face.

8. Close the application by double-clicking its system menu and then
answering Yes when prompted.

Labeling Your Application with an Icon

You can use an icon to uniquely identify the South Seas Adventures application
on the Repository Explorer by following these steps:

1. Select the Application Properties toolbar button.

The Properties of South Seas dialog box displays.

2. Click the Explorer Icon button.

All of the icons defined in the application, as well as any in its path, will
appear in the Icons of South Seas dialog box.

3. Click the happy face icon, then choose OK.

4. Choose OK to close the Properties of South Seas dialog box.

5. Return to the Repository Explorer. You will notice that the icon you just
selected now displays on the South Seas Adventures application button.

6. Before proceeding, however, change the application icon back to the palm
tree. Simply follow steps 1 through 4 above, and select the palm tree icon in
step 3.

Icons in the Program Group

The icon that appears in the Repository Explorer is not always the program’s
icon in the program folder where the resulting .EXE file appears:

1. View the icon in the program group and create the executable file by
choosing the Make EXE toolbar button.

Overview

Chapter 11: Working with Icons and Cursors 163

CA-Visual Objects adds the generated executable to the program folder
specified in your application’s properties where you see its icon. This is not
the same icon as used in the repository. You will see this if you go into the
Window’s Explorer and locate SOUTHSEAS.EXE in your CAVO27\BIN
directory.

2. Return to CA-Visual Objects.

Change the Icon To make the icon the same in both the Repository Explorer and program folder:

1. Select the App:Resources module, then open the SSAICON in the Icon
Editor.

2. Select the Save Image File option from the File menu.

3. Enter an “A“ at the beginning of both the File Name and the Entity Name so
that it looks like this:

4. Close the Icon Editor so that you can see the entries in the Repository
Explorer:

5. Rebuild the application using the Build toolbar button.

6. Create the executable file by choosing the Make EXE toolbar button.

Overview

164 CA-Visual Objects South Seas Adventures

7. You can now go back to the Windows Explorer to see the changed icon for
the file.

The reason for this that Windows Explorer looks inside the .Exe file and takes the
first Icon resource that it finds as its representation. Since the resources are
added in alphabetical order, the “A” at the beginning of the name makes our
new icon the first to be added.

Attaching Icons to Shell Forms

Just as you can minimize a window within an application, you can minimize the
entire application. This capability is implemented by attaching a specific icon to
the application’s main shell window.

Now, let’s attach an icon to the main shell window of the application:

1. From the Repository Explorer for the South Seas Adventures application,
open the entity list for the SSA Shell:Forms module by clicking its branch.

2. Open the Window Editor by double-clicking the SSAWindow window
entity.

3. In the Shell Window Properties window (under the ShellWindow tab), select
the Small Icon property.

4. Click the down arrow button and select MY_FIRST_ICON from the drop-
down list.

5. Notice that the Large Icon property is already set to SSAIcon.

6. Save your changes by choosing the Save toolbar button.

7. Close the Window Editor by double-clicking its system menu.

To view the icon you have specified, run the program as follows:

1. Rebuild the application using the Build toolbar button.

2. Click the Execute toolbar button to run the application.

3. After you log in to the South Seas Adventures application (Name: User,
Password: Trainee), minimize the application.

The happy face icon is now used for the minimized shell window on the
Windows taskbar. Recall that this is the Small Icon defines for the
SSAWindow. Clicking the program item on the Windows taskbar will
restore the application.

Overview

Chapter 11: Working with Icons and Cursors 165

4. Now hold down the Alt key and press Tab once (keep the Alt key pressed).
You will notice the palm tree icon (SSAIcon) in the Task window. Recall that
this is the Large Icon defined for the SSAWindow. While still holding down
the Alt key, press Tab until the palm tree is selected again. Then release both
the Alt and Tab keys.

5. Close the South Seas Adventures application by double-clicking its system
menu and answering Yes when prompted.

Displaying an Icon on a Window

You can display any icon in a window as a control. An Icon entity name must be
provided as the Caption property for a Fixed Icon control. For additional
information on controls, see Chapter 5: Creating and Using Windows in this
guide.

Let’s replace the icon on the About Help dialog form:

1. From the Repository Explorer open the About:Forms module by clicking its
branch.

2. Select the AboutDialog window from the entity list by double-clicking it.

The Window Editor appears:

3. Click the fixed icon control on the dialog form.

4. Select the Caption property from the Properties window (under the
HyperLabel tab).

It is currently set to SSAICON, which is the name for the palm tree icon you
have seen used throughout the South Seas Adventures application.

5. Enter MY_FIRST_ICON to change the icon to the happy face you created
earlier in this exercise.

Overview

166 CA-Visual Objects South Seas Adventures

6. Close the Window Editor by double-clicking its system menu and answering
Yes when prompted to save the changes.

To view the icon you specified, run the program as follows:

1. Rebuild the application by clicking the Build toolbar button.

2. Run the application by clicking the Execute toolbar button.

3. Log in to the application (Name: User, Password: Trainee).

4. Select the About command from the Help menu.

Notice the happy face icon displays in the dialog window.

5. Close the application by double-clicking its system menu and answering Yes
when prompted.

Using Predefined Cursors

Typically, when an application is processing, the hourglass pointer or cursor
appears. CA-Visual Objects provides this and other predefined pointers. To use
them, simply assign your window’s Pointer property with the appropriate
Pointer object, as in:

SELF:Pointer := Pointer{POINTERHOURGLASS}

Where SELF refers to the current window object.

Creating and Modifying Cursors

You can designate a mouse cursor, or pointer, for a shell window or dialog by
using its Mouse Pointer property in the Window Editor. You may also modify a
mouse cursor by directly modifying the source code, as demonstrated here.

To define a mouse cursor of your own for a window, let’s revisit the Image
Editor:

1. Select the App:Resources module of the South Seas Adventures application
by clicking its branch on the Repository Explorer tree view.

2. To create a new cursor, select the Image Editor command from the Tools
menu or click the New Entity toolbar button.

When you first enter the Image Editor, it is in Icon Mode so you must switch
to Cursor Mode.

3. To switch to Cursor Mode, click the Cursor Mode button from the tool
palette.

Overview

Chapter 11: Working with Icons and Cursors 167

Notice that the top-left pixel in the edit area is marked with a dotted line
around it. This indicates the hot spot of the cursor. When using a cursor, the
hot spot is the actual location of the cursor on the screen. For example, the
hot spot for the standard arrow pointer is the tip of the arrow.

Let’s import a cursor that was installed with the tutorial:

1. Select the Open Image File command from the File menu.

The Open Cursor File dialog box appears.

2. Select the WATCH.CUR file in the SAMPLES\SSATUTOR\FILES
subdirectory below the CA-Visual Objects 2.7 installed directory (for
example, C:\CAVO27\SAMPLES\SSATUTOR\FILES\
WATCH.CUR) and choose OK.

You are going to use this new watch cursor in place of the one that is
currently being used in your code. The hot spot for this cursor was
mistakenly left in the top-left corner:

To correct the hot spot:

1. Move the mouse pointer to the intersection point of the hour and minute
hands.

2. While pressing the Ctrl key, click the left mouse button.

This places the hot spot at the pointer location:

The hot spot is now in the center of the watch.

3. To save the new cursor definition, select the Save Image File command from
the File menu.

Overview

168 CA-Visual Objects South Seas Adventures

The Save Cursor Entity and File dialog box appears. As with saving icons,
you must specify a file name and an entity name.

4. Type NEWWATCH.CUR in the File Name edit control and
WATCH_CURSOR in the Entity Name edit control.

The entity name is used when referring to the cursor within your code.

5. Choose OK.

6. Close the Image Editor by double-clicking its system menu.

The SSAWindow:OptionsReindex() method currently uses the standard
hourglass cursor to indicate that processing is taking place. You are going to
change this source code to use your watch cursor instead:

1. Open the SSA Shell:Forms module by clicking its branch on the Repository
Explorer tree view.

2. Open the Source Code Editor by double-clicking the
SSAWindow:OptionsReindex() method.

3. At or about line 16 of the method (just after the declarations), replace the
following line:

SELF:Pointer := Pointer{POINTERHOURGLASS}

With:

SELF:Pointer := Watch_Cursor{}

Your method now looks like this:

4. Save your changes by choosing the Save command from the File menu.

5. Close the Source Code Editor by double-clicking its system menu.

6. Rebuild the application using the Build toolbar button.

7. To run the program, click the Execute toolbar button.

Summary

Chapter 11: Working with Icons and Cursors 169

8. Log in to the application (Name: User, Password: Trainee).

9. Select the Re-index Database command from the Options menu.

Your watch cursor is now visible for the duration of the process.

10. Exit the application by double-clicking its system menu and answering Yes
when prompted.

Summary
In this lesson, you learned how to create icons and cursors. You:

■ Used icons to depict minimized windows

■ Placed an icon in a fixed control

■ Customized the Repository Explorer branch using a specialized icon

■ Defined the icon to use for the generated .EXE file in the Windows folder

■ Modified a cursor by redefining its hot spot and used this cursor as an
indicator for a particular process in the application

In the following lesson, using the DrawObject classes, you will learn how to
create, resize, and modify bitmap and text objects.

Chapter 12: Working with Draw Objects 171

Chapter

12 Working with Draw Objects

In this lesson, you will learn how to display and manipulate bitmap and text
objects using the DrawObject classes. You will also see when it is appropriate to
display these objects.

Overview
The opening dialog box of the South Seas Adventures application contains a
bitmap and text, which were implemented using objects from the DrawObject
hierarchy. This dialog box, shown below, is used as an example in the exercise
that follows:

The opening dialog box will be given the capability to resize its contents based
on its own size. This means, that as the dialog box grows or shrinks, any text and
pictures within it grow or shrink proportionately.

Exercise

172 CA-Visual Objects South Seas Adventures

These are the assumptions that were made prior to creating the dialog box:

Entity Assumption

Window The window is divided into two equal parts. The left
side is used to display the bitmap. The right side is
used to display the text and an OK push button.

Text The text is to be centered on the right side of the
window.

Text width and height The right side of the window can hold a maximum
number of lines (height) and a maximum number of
characters (width) defined by the constants,
LINES_DOWN and CHARS_ACROSS, respectively.

OK button The OK push button is to be centered at the bottom of
the right side of the window. Its size remains constant
and is used to determine the minimum height and
width of the window, since this button should always
remain visible.

Exercise
In the following exercise, you have the opportunity to examine the source code
in the South Seas Adventures application responsible for creating and displaying
the opening dialog box. During this exercise, you will:

■ Modify the OpeningDialog window entity to allow the opening dialog box to
be resized

■ Examine the source code necessary for resizing

■ Examine the source code for displaying and dynamically resizing a bitmap

■ Examine the source code for displaying and dynamically resizing text

■ Examine the source code for dynamically positioning the
OK push button

■ Run the application to see the results of the generated source code

Exercise

Chapter 12: Working with Draw Objects 173

Making the Dialog Box Resizable

Initially, the opening dialog box was set up to be a fixed size; therefore, the first
thing you will do in this lesson is make it resizable. The ability to resize a dialog
box is controlled by one of its style properties. To change it, open the dialog box
in the Window Editor as follows:

1. From the South Seas Adventures Application branch click the
Opening:Forms module branch.

2. Double-click the OpeningDialog window entity in the Repository Explorer
list view.

The Window Editor, which was used to create the window and the OK
button, is displayed:

3. Select the Dialog Window Properties, Styles tab.

4. Click the Resizable property and choose True from the drop-down list box:

This enables you to resize the South Seas Adventures application opening
dialog box.

Exercise

174 CA-Visual Objects South Seas Adventures

5. Select the Save toolbar button.

Exit the Window Editor by double-clicking its system menu.

The Resize Event

When you make a window resizable, as described in the previous steps, certain
aspects of the physical resizing event are handled automatically. When the user
attempts to resize the window, the system generates a Resize event that is, by
default, handled by the Window:Resize() event handler method. However, if
you have any special processing unique to your window, you must code a
Resize() method of your own to handle it. (This has already been done for the
OpeningDialog class.)

To see how the Resize event is handled for the opening dialog box, find the
OpeningDialog:Resize() method in the entity list and double-clicking it.

The following code is loaded in the Source Code Editor:

METHOD Resize(oRSE) CLASS OpeningDialog

LOCAL iMinHeight, iMinWidth AS INT

SUPER:Resize(oRSE)

// Put your changes here

// Screen size is based on size of the button
iMinHeight := SELF:oCCOkButton:Size:Height * 5
iMinWidth := SELF:oCCOkButton:Size:Width * 3

IF SELF:Size:Height < iMinHeight .OR. ;
 SELF:Size:Width < iMinWidth
 // Don't let screen get too small
 SELF:Size := Dimension{MAX(iMinWidth, ;
 SELF:Size:Width), Max(iMinHeight, ;
 SELF:Size:Height)}

ENDIF
// Repaint on every size since entire
// screen is proportional

SELF:Repaint()

RETURN NIL

The code checks the height and width of the window and, if necessary, resets it.
To make sure that the OK push button is always visible in the dialog box, the size
of the button was taken into consideration in the calculation:

iMinHeight := SELF:oCCOkButton:Size:Height * 5
iMinWidth := SELF:oCCOkButton:Size:Width * 3

From this calculation, you can see that the minimum height of the window is five
times the height of the button. Similarly, the width of the window is set to three
times the width of the button.

Exercise

Chapter 12: Working with Draw Objects 175

The following line forces the window to repaint each time the window is resized:

SELF:Repaint()

This forces an Expose event to occur. The Expose() event handler can then
repaint our objects in the window, which is discussed in more detail later in this
lesson.

Now that you have explored the Resize() method, it is time to move on to the
code in which the bitmap is displayed in this dialog box. Before moving on,
close the Source Code Editor by double-clicking its system menu.

Using Bitmaps

The opening dialog box for the South Seas Adventures application displays a
bitmap image from a .BMP file.

To display a bitmap from a .BMP file, you must:

■ Declare the file as a resource

■ Create a BitmapObject (a subclass of DrawObject)

■ Create an Init() method for the BitmapObject

Declaring a .BMP File as a Resource

A resource declaration statement is needed for accelerators, bitmaps, cursors,
dialogs, icons, and menus. The code for these is usually generated by the
associated visual editor. However, on occasion you must directly enter the code
for the resource declaration via a RESOURCE statement in the Source Code
Editor. Such is the case with bitmap images.

Note: When the application is built, all RESOURCE statements are sent directly
to the Windows resource compiler.

To view the source code responsible for declaring the bitmap used in the opening
dialog box:

1. Select the App:Resources module by clicking its module branch.

2. Right-click the App:Resources branch and choose Edit All Source from the
local pop-up menu.

3. Find the RESOURCE SSABitmap entity, which reads as follows (assuming
you have installed CA-Visual Objects 2.7 to C:\CAVO27):

RESOURCE SSABitmap Bitmap;
c:\cavo27\samples\ssatutor\files\ssa.bm p

4. Exit from the Source Code Editor by double-clickin g its system menu.

Exercise

176 CA-Visual Objects South Seas Adventures

Tip: Use either the Find toolbar button or the Go to Entity toolbar button in
the Source Code Editor to locate an entity quickly.

Creating a Bitmap Object

The next step is to create an object of the Bitmap class that refers directly to the
resource declared in the previous steps. This has already been done in the South
Seas Adventures application, but it is helpful to look at the source code to
understand the connections.

Declaring a Bitmap
Subclass: SSABitmap

At this point, the App:Resources Entity Browser should still be open:

1. Locate the SSABitmap class entity, and double-clicking it to load it into the
Source Code Editor.

You see the following line of code:

CLASS SSABitmap INHERIT Bitmap

2. Return to the Repository Explorer by clicking the Window menu and select
Repository Explorer.

3. Locate the SSABitmap:Init() method and double-clicking it.

4. Scroll through the Source Code Editor window to view the source code for
both entities, which should look as follows:

CLASS SSABitmap INHERIT Bitmap

METHOD Init() CLASS SSABitmap
 SUPER:Init(ResourceID{"SSABitmap", _GetInst()})

 RETURN SELF

This code is fairly straightforward. First, we have created a subclass of the
Bitmap class. Then, we have defined an Init() method to be executed when
objects of this subclass are instantiated.

Within the Init() method, note the use of the ResourceID class, which
provides a unique identifier for a resource based on its name. You could
declare your resources using unique identifiers rather than names, but
working with resource names and converting them using the ResourceID
class is much easier.

5. When you are finished looking at this source code, close the Source Code
Editor by double-clicking its system menu.

Instantiating an
SSABitmap Object

After defining the class and instantiation code for the new bitmap, it is
necessary to give the opening dialog box access to the bitmap. The most logical
place to do this is from within the OpeningDialog:Init() method:

1. Close the App:Resources entity, and open the Opening:Forms module by
clicking its module branch.

Exercise

Chapter 12: Working with Draw Objects 177

2. Find the OpeningDialog class entity and double-click it to view it in the
Source Code Editor.

You see the following code:

CLASS OpeningDialog INHERIT DIALOGWINDOW
PROTECT oCCOkButton AS PUSHBUTTON

 //{{%UC%}}
 //USER CODE STARTS HERE (do NOT remove this line)

PROTECT LogoBitmap AS SSABitmap

3. Return to the Repository Explorer by clicking the Window menu and select
Repository Explorer.

4. Find the OpeningDialog:PostInit() method and double-clicking it.

5. Scroll through the Source Code Editor window to view the source code for
both entities. The code should look as follows:

METHOD PostInit(oParent, uExtra) CLASS;
OpeningDialog
SELF:LogoBitmap := SSABitmap{ }

RETURN NIL

In the OpeningDialog:PostInit() method, the LogoBitmap instance variable
(declared in CLASS OpeningDialog) is set to an SSABitmap object. Creating
the bitmap in this manner allows you to create the object once, as part of the
window instantiation, and then reuse it each time the window is redrawn.

6. When you are finished looking at this source code, close the Source Code
Editor by double-clicking its system menu.

Drawing a Bitmap on a Window

Now, let’s look at the code in which the bitmap is actually drawn on the dialog
box. Earlier, when we discussed resizing a window via the Resize event, we
mentioned the Expose event that was triggered as a result of calling the
Window:Repaint() method. The Expose event can now be viewed in greater
detail.

The Expose Event An Expose event occurs whenever the windows need repainting. This can occur
under any of the following circumstances:

■ The window is first shown

■ The window is partially uncovered by another window

■ The window changes in size

■ The window is being restored after being minimized

■ A call is made to the window’s Repaint() or RepaintBoundingBox() method

At this point, the Opening:Forms Entity Browser should still be open. Find the
OpeningDialog:Expose() method and double-click it to load it into the Source
Code Editor.

Exercise

178 CA-Visual Objects South Seas Adventures

The following lines of code define the available size (adjusted to remove four
pixels for each border) where the available width for the bitmap is the integer
iMidWidth:

// Get screen height and width minus borders
iHeight:= SELF:Size:Height-8
iWidth:=SELF:Size:Width-8
iMidWidth:=INT(iWidth/2)

Now let’s examine the SELF:Draw() line of code (located around line 16) which is
responsible for drawing the SSABitmap:

// Draw bitmap sized and positioned
// relative to window
SELF:Draw(BitmapObject{Point{2, 2},;

Dimension{iMidWidth - 4, iHeight - 4}, ;
LogoBitmap})

This is a fairly complicated line of code. Let’s examine its individual components
to get a better understanding of what is going on:

Component Definition

BitmapObject{...} Creates a bitmap draw object.

Point{2, 2} Defines the point, in pixels, at which to
start drawing the bitmap object.

Dimension{iMidWidth-4, iHeight-4} Defines the pixel width and height of the
object to be drawn. In this case, the width
is half the window width less four pixels,
and the height is the window height less
four pixels. This ensures that the size of
the bitmap is always relative to the size of
the window.

LogoBitmap The bitmap object that was assigned when
the opening dialog box was created.

SELF:Draw(...) Draws the logo on the dialog box.

Important! You should always use the Expose() method when displaying DrawObject
class entities. Also, use the Window:Draw() method to display your individual
DrawObject. Never use the DrawObject:Draw() method directly, as it is called by the
Window:Draw() method.

Using Text Objects

The Expose() event handler method also has code for displaying the text on the
dialog box. This is accomplished using the TextObject class, which is like
BitmapObject in that it is a subclass of DrawObject.

Exercise

Chapter 12: Working with Draw Objects 179

You should still have the source code on your window at this point. Just below
the line of code discussed previously for drawing the bitmap, you should see the
following lines of code:

iFontWidth := INT(iMidWidth / CHARS_ACROSS)
iFontHeight := INT(iHeight / LINES_DOWN)

These lines calculate the width and height of the font, in canvas coordinates,
used to display the text. The width is calculated as the window width divided
by the number of characters allowed (CHARS_ACROSS). The height is
calculated as the window height divided by the number of lines allowable
(LINES_DOWN). In this way, the font is scaled based on the size of the window.

Note: Both CHARS_ACROSS (set to 30) and LINES_DOWN (set to 7) are
defined as constants in this same module. Alternatively, you can view them in
the Source Code Editor by double-clicking the corresponding entity.

Next, the font is instantiated using the height and width calculated previously:

oTextFont := Font{FONTROMAN, ;
 Dimension{iFontWidth, iFontHeight}}

Finally, the TextObject object is created and drawn on the dialog box. The code
for doing this is similar to the code for drawing the bitmap that you saw earlier.
The TextObject object is instantiated within the call to SELF:Draw(), and the
starting point is determined dynamically, based on the font and window size:

sLine1 := "South Seas Adventures"
SELF:Draw(TextObject{Point{iMidWidth + ;
Int((CHARS_ACROSS-Len(sLine1))/2) * iFontWidth, ;
 Int(Float(iHeight) * .5)}, sLine1, oTextFont, oBlack})

Dynamic Positioning of Controls

The OK push button is the only entity on the window that is not scaled—
although it could be. Since this is the only push button control on the window, it
is best to fix its size as you could not afford to lose it to resizing.

This button, however, is dynamically positioned so that it is always visible. The
positioning of the OK button is also handled within the Expose() event handler.
This should still be on your window. Look immediately below the line of code
discussed previously for drawing the text. You see the following lines of code:

// Position push button
oCCOkButton:Origin := Point{ ;
 Int((Float(iWidth) * .75) - ;
 (oCCOkButton:Size:Width / 2)), 10}

In this code, oCCOkButton is the name of the push button object. By calculating
its Origin property based on the current width of the dialog box, the position of
the OK push button is computed at runtime each time the dialog box is
redisplayed.

Summary

180 CA-Visual Objects South Seas Adventures

Viewing the Results in the Application

This concludes the overview of the source code used to control the opening
dialog box. If you like, you can verify and examine the results in the South Seas
Adventures application:

1. Close the Source Code Editor by double-clicking its system menu.

2. Even though you have not made any source code changes, you need to
rebuild the application, using the Build toolbar button, because of the
minor change you made earlier in the Window Editor.

3. Run the South Seas Adventures application by clicking the Execute toolbar
button.

4. Resize the dialog box by dragging the right border to the left. Note that
everything except the push button is scaled down.

5. Continue to resize the dialog box to see the results of the source code you
have been reviewing. When you are done verifying the results, choose OK.

6. At the Login dialog box, choose the Cancel button.

Summary
In this lesson, you learned how to use the BitmapObject and TextObject classes,
and how to scale objects created by these classes according to the window in
which they reside. You also learned about the Expose and Resize events.

In the following lesson, you will learn how to use the CA-Visual Objects Report
Editor to define, customize, preview, and print a report.

Chapter 13: Reporting with the Report Editor 181

Chapter

13 Reporting with the Report Editor

In this lesson, you will learn how to create and manipulate reports using the
Report Editor.

The Report Editor is a powerful reporting facility that offers ease of use through
its intuitive user interface. Using the Report Editor, you will learn how to define,
customize, preview, and print a report.

Exercise

During this exercise, you are going to define the Customer List report. As you
develop this report, you will:

■ Gain a working knowledge of the Report Editor’s menus and toolbars

■ Learn how to create report headers and footers

■ Provide your own titles and pictures

■ Insert, delete, and sort report data fields

■ Use the Report Editor help facility

■ Learn how to pass parameters to your Report Editor report

Using the Report Editor

In this exercise, you will create a report that works on any user’s machine,
independent of the installation drive and directory. This is accomplished by
using data servers that do not contain any path information for data and index
files. For more information, refer to Appendix A: Creating a Path-Independent
Application.

1. Open the South Seas Adventures Application by double-clicking its branch
on the Repository Explorer.

2. Select the Customer:Reports module by clicking its branch in the Repository
Explorer tree view.

3. Choose the Open Entity toolbar button, and select Report Editor from the
local pop-up menu that appears.

Exercise

182 CA-Visual Objects South Seas Adventures

The CA-Visual Objects Data Source Selection dialog box appears:

4. Select the Connect to New Data Source radio button and click the OK button.

5. Change to the Machine Data Source tab:

Exercise

Chapter 13: Reporting with the Report Editor 183

6. Click the New button to create a new data source.

The Create New Data Source dialog appears:

Select the User Data Source radio button and click Next.

A list of installed drivers appears:

7. Scroll through the Installed ODBC Drivers list box and select CA DbaseFile
3.10 32-BIT DBaseFile (*.dbf).

Exercise

184 CA-Visual Objects South Seas Adventures

8. Select the Next button to use this data source.

At this point we have selected the driver to be used with our report and a
new window will display the options that you have chosen:

Press the Finish button to accept these options.

The ODBC dBASE Driver Setup dialog box appears:

9. In the Data Source Name edit control, type CA-Visual Objects 2.7 Xbase.

10. In the Description edit control, type CA-Visual Objects 2.7 Report Editor.

11. In the Database Directory edit control, type in the path to the
SAMPLES\SSATUTOR subdirectory, which is located in the
CA-Visual Objects 2.7 installed directory. For example,
C:\CAVO27\SAMPLES\SSATUTOR.

Exercise

Chapter 13: Reporting with the Report Editor 185

12. From the Create Type drop-down list box, select Clipper.

13. Select the Advanced tab:

Choose RECORD locking from the Locking drop-down list box.

14. Each Xbase product uses its own style of locking, therefore, choose Clipper
from the Lock Compatibility drop-down list box.

You are now finished defining the data source.

Choose OK.

Exercise

186 CA-Visual Objects South Seas Adventures

15. You are returned to the Select Data Sources dialog box. Select CA-Visual
Objects 2.7 Xbase (which we just created) and click the OK button:

The Report Editor dialog box is displayed:

16. Type CustList in the Report Definition File Name edit control.

The name you enter here is used by the Report Editor to generate the
CustList class that is used to run the report from your application.

17. The CustList report will use data from the CUSTOMER.DBF file, for which
we have already defined a data server (see Chapter 3: Working with Data
Servers). Therefore, select Customer from the Available DBF Entities list
box.

Exercise

Chapter 13: Reporting with the Report Editor 187

18. Because the Available DBF Entities list box allows multiple selections, you
must also deselect Advdtl.

19. Click the Form radio button in the Report Style group box.

When you create a new report, the Report Editor allows you to choose from
various default report styles. Based on the style that you select, the Report
Editor generates a default report.

20. Choose OK.

The Report Editor will now be launched. With just a few selections, you
have a predefined report—with titles, labels, and data:

21. Preview the report by selecting Print Preview from the File menu.

22. When you are finished previewing the report, select Close from the File
menu.

A Quick Tour

At first, the Report Editor may remind you of your favorite word processor.
That’s because it uses much of the same functionality you have seen in word
processors. If you want text on the report, just type it in. To format your report,
you will use the Report Editor’s font toolbar and also rely heavily on tables, both
of which are available in most word processors.

The main report editing area is known as the Report Definition. Two rulers, one
along each axis of the report page, allow you to see where you are in your report
at all times.

Exercise

188 CA-Visual Objects South Seas Adventures

The Section Name window, along the left side of the report definition area,
displays letters identifying each section of your report: PH (Page Header), B
(Body), and PF (Page Footer).

Adding Your Personal Touch

The Report Editor has created a page header with the default text “Title,”
“Subtitle,” and “Report Name.” Let’s customize this report header to better meet
our needs:

1. Change the title by highlighting Title and typing
Customer List.

2. Change the subtitle by highlighting Subtitle and typing
by Customer #.

3. Highlight Report Name, and type as of with a space character after it.

You will next add a field to this line so that it displays the current date.

Adding Fields The Report Editor allows you to add fields to your report. Fields can be the
following types: database, computed, parameter, system-defined, or user-
defined.

Next, add the system date as part of the header:

1. If your cursor is not already positioned after the “as of” text that you just
entered, position it there.

2. Choose Field from the Insert menu.

The Insert Field dialog box appears:

Exercise

Chapter 13: Reporting with the Report Editor 189

3. From the Fields list box, select _date and choose Insert.

The _date field is a system-defined computed field that returns the current
date. It now appears as a place holder in your report name (as of _date).

Click at any point on the body section of the report (anything below the
header section), and then select the Section command from the Format menu.

The Format Body Section dialog box appears:

5. Select the Keep Section on Page check box in order to prevent the section
from being split across two pages, and then choose OK.

Exercise

190 CA-Visual Objects South Seas Adventures

Now, let's format the page header and footer:

1. Click the last line of the page header section, and then select the Paragraph
command from the Format menu.

2. To underline each page header, select the Bottom check box in the Border
group box, and then choose OK:

Note: Each line in the page header section has a distinct paragraph setting.
The change that you just made will apply only to the last line in the header,
since that line was selected when you chose the Format Paragraph
command. To apply the same paragraph setting to all lines in the header,
highlight all the lines before choosing the Format Paragraph command.

The next few steps place the company information in the page footer.

3. Place your cursor on the first line of the Page Footer section and type the
following, pressing Enter after each line:

South Seas Inc.
1234 Seashore Drive
Montego Bay, Jamaica

4. Double-click the first line of the Page Footer.

The Format Paragraph dialog box appears again.

5. To draw a line above each page footer, check the Top check box in the Border
group box, and then choose OK.

6. By now, you probably want to see what your report looks like, so select Print
Preview from the File menu.

7. Once you are done previewing and/or printing your report, choose Close
from the file menu to return to the Report Editor.

Exercise

Chapter 13: Reporting with the Report Editor 191

Saving Your Work

Save your report by:

1. Choosing save from the File menu. If you do not save the report before
exiting, Report Editor will remind you to save your changes.

2. Close the Report Editor by selecting the Close command from the File menu.

The Report Editor prompts you to store the changed entities, as follows:

3. Choose Yes to save the changed entities.

4. At this point the repository questions weather to save the entities:

5. Choose Yes to save the changed entities.

6. The Report Editor then generates the CustList class in the Customer:Reports
module.

Running Your Report Within Your Application

To run the report from within your application, CA-Visual Objects generates the
following code to display your report in Preview mode:

Exercise

192 CA-Visual Objects South Seas Adventures

Note: You can also use CustList as a menu item’s event name or as the name of
a push button. When the menu item or push button is selected, the report will
run.

For the purposes of this report, however, you will be passing a parameter later in
this exercise. To accommodate the use of some special report preview dialog
boxes, you need to comment out the following line:

SELF:Preview()

Use the following these steps:

1. Double-click the CustList:Init() method from the Customer:Reports entity list
to bring up the Source Code Editor:

2. Move the cursor to the line of code reading SELF:Preview(), and insert the
characters // at the beginning of the line.

3. Close the Source Code Editor by double-clicking its system menu, and
answering Yes when prompted to save your changes.

Report Parameters

In the previous section, you were briefed on running your report within your
application. Often, it is necessary to filter the report based on information at
runtime, for example, printing a Payment Report for the month of June or
printing Invoice number “04729.”

In the South Seas Adventures application, the Customer List report should be
able to print either all customers or a single customer. To do this, you can define
parameters for the report. These parameters can then be inserted into the query
for the report.

First, let’s define a parameter for the report:

1. To reopen your report, double-click the CustList report entity.

This will bring you back into the Report Editor.

Exercise

Chapter 13: Reporting with the Report Editor 193

2. Select the Report Parameters command from the Edit menu.

The Report Parameters dialog box appears:

3. Choose the Define New button.

The Define Parameter dialog box appears:

When you invoke a report that expects parameters, the application may
either have the parameters hard coded in the program or allow the user to
enter them at runtime. The Prompt edit control determines what the end
user will see if the application does not pass the required parameters.

4. For this report, type Enter a customer #: in the Prompt edit control.

Note: The Default Value edit control determines the default to use if the end
user does not type anything.

5. In the Description edit control, type Enter a 5 digit number identifying a
customer.

6. Choose OK, which will display the Map Parameters dialog box.

7. Click OK.

Exercise

194 CA-Visual Objects South Seas Adventures

Now that you have defined the parameter, you must include it in the report
query before you can use it. You can also display it on your report, since it
appears in the Insert Field dialog box.

When the report was initially created, CA-Visual Objects 2.7 constructed an SQL
statement based on the servers that you selected in the Report Editor dialog box.
The generated statement is as follows:

SELECT Customer.* FROM ;
customer.dbf (cust1.ntx/USE, cust2.ntx)

In English, this statement reads “include all fields from the customer table and
order the records using CUST1.NTX.”

In the steps that follow, you will alter this SQL statement to use the parameter
that you defined in the previous steps:

1. Choose Edit Query from the Query menu.

The Edit Query dialog box appears:

2. Move the cursor to the end of the last line.

3. Insert a blank space, and add the following WHERE clause to the existing
SQL statement:
WHERE ((Cust_ID = '[_parameter1]') OR ('[_parameter1]' IS NULL))

Important! Make sure there are no extra spaces between the
“[_” and “ 1]” characters.

The WHERE clause serves a dual purpose, allowing the report to be printed
either for all customers or a single customer. When a valid customer number
is passed (Cust_ID = '[_parameter1]'), the report will include only that
customer. If an empty string is passed ('[_parameter1]' IS NULL), the report
will include all customers. Although this is a fairly simple query, the Report
Editor is also capable of handling very complex queries.

4. Select Close from the File menu to accept the new statement.

The Report Editor will now prompt you for each parameter used in the
query.

5. At the prompt, type 00001 and press OK.

Exercise

Chapter 13: Reporting with the Report Editor 195

6. Select the Print Preview from the File menu. Press OK at the parameter
prompt.

The query table will display only the records for customer 00001.

Note: The Report Editor comes with a powerful Query Builder tool. This
can help you create queries without knowing SQL.

7. Choose Close to cancel the report.

8. Choose Save from the File menu to save your changes.

9. To close the Report Editor and return to CA-Visual Objects 2.7, double-click
the system menu.

Passing Parameters to the Report Editor from CA-Visual Objects

The ReportQueue class, from which the CustList class was derived, allows you to
pass parameters to your Report Editor report. To see an example of this, you can
add some code designed to work with the Customer List report.

In order for the South Seas Adventure to print the Customer Reports, we will
now build it into the printing dialog box:

1. Select the South Seas Adventure Application from the Repository Explorer
tree view.

2. Select the New Module toolbar button and enter Tutorial:Reports in the
Enter Module Name single line edit.

3. Select the new Tutorial:Reports module.

4. Select the New Entity toolbar button and select Source Code Editor from the
local pop-up menu.

The Source Code Editor appears.

Exercise

196 CA-Visual Objects South Seas Adventures

5. Add the following Method and Access to the Source Code Editor:

METHOD CustomerReport CLASS SSAWindow

LOCAL oDialog AS CustRptDialog
LOCAL oReport AS CustList
LOCAL aParams AS ARRAY

(oDialog := CustRptDialog{ SELF }):Show()

IF oDialog:lPrintOk

oReport := CustList{ SELF }

aParams := { oDialog:cCust_Id }
// Print only this customer
DO CASE
CASE oDialog:nDestination = = PRINT_PRINTER

oReport:Print(aParams)
CASE oDialog:nDestination = = PRINT_SCREEN

oReport:Preview(aParams)
CASE oDialog:nDestination = = PRINT_FILE

oReport:SaveToFile(oDialog:ToFileFS:FullPath, ;
Right(oDialog:ToFileFS:Extension, ;
3), aParams)

ENDCASE

ENDIF

RETURN SELF

ACCESS CUSTLIST_FILE CLASS CUSTLIST
RETURN "CUSTLIST.RET"

This allows the user to include all customers or only a single customer on a
report, and also allows the report to print to various destinations.

Note: The dialog box is defined in the Customer:Reports module as
CustRptDialog. The subclass, CustRptDialog, contains additional methods
defined to work with this dialog box. You may want to refer to the source
code for these methods to completely understand the source code you have
just added.

Once the Print Customer Report dialog box closes, an array is created as
follows:

aParams := {oDialog:cCust_ID}

The ReportQueue Print(), Preview(), or SaveToFile() method is then called
using this array as a parameter:

CASE oDialog:nDestination == PRINT_PRINTER
 oReport:Print(aParams)
CASE oDialog:nDestination == PRINT_SCREEN
 oReport:Preview(aParams)
CASE oDialog:nDestination == PRINT_FILE
 oReport:SaveToFile(..., aParams)

The elements of the array will be passed to the Report Editor report—one for
each parameter required.

6. When you are finished examining this source code, close the Source Code
Editor by double-clicking its system menu and clicking Yes when prompted
to save the additions.

Exercise

Chapter 13: Reporting with the Report Editor 197

Verifying the Results

Verify the results using the following steps:

1. Build the application by clicking the Build toolbar button.

2. Run the South Seas Adventures application by clicking the
Execute toolbar button.

3. Log in to the application as usual (Name: User, Password: Trainee).

4. Select the Customers command from the Reports menu.

The Print Customer Report dialog box appears.

5. Click the Selection radio button, and choose Cartwright from the Customer #
combo box.

6. Click the Screen radio button to print the report to the screen:

Summary

198 CA-Visual Objects South Seas Adventures

7. Choose OK to run the report.

The runtime of the Report Editor is launched, with your report in full view:

8. When you are done, choose the Close command from the File menu to close
the Report Editor.

Exit the South Seas Adventures application by double-clicking its system
menu, and choosing Yes when prompted.

Summary
In this lesson, you have learned how to use the Report Editor to create and
customize a basic report, and how to add parameters to that report. You have
also learned how to modify the SQL query (which defines which records will be
included in your report), and how to pass parameters to your Report Editor
report from your CA-Visual Objects 2.7 application.

In the following lesson, you will learn how to quickly and easily debug your
application. You will use the Error Browser to fix compiler errors, and the
CA-Visual Objects Debugger to locate and fix logic or runtime errors.

Chapter 14: Debugging Your Application 199

Chapter

14 Debugging Your Application

This lesson shows you how to use the Error Browser and Debugger to debug
your CA-Visual Objects applications. During this lesson, you will use the Error
Browser to quickly fix compiler errors and the CA-Visual Objects Debugger to
track down, then fix, logic and runtime errors.

Error Browser Exercise
The Error Browser is the primary tool for locating compiler errors and is
automatically displayed after any build if an error occurs during compilation.
The Error Browser displays the error information, such as the type and location
of the error, and provides easy access to the line in question through the Source
Code Editor. By using the Error Browser, you will find that locating and fixing
your errors could not be easier.

Important! The errors that occur in this exercise involve reserved words and undeclared
variables. Before beginning this exercise, choose the Properties command from the
Application menu and make sure the Undeclared Variables check box is not selected on
the Compiler tab. (If it is checked, uncheck it.) To close this dialog box, choose OK.

Error Browser Exercise

200 CA-Visual Objects South Seas Adventures

Importing a Module with Errors

To explore the Error Browser, let’s import and compile a module with several
intentional errors:

1. Open the South Seas Adventures application by double-clicking its branch in
the Repository Explorer tree view.

2. Select the Import command from the File menu.

Select (*.mef) from the Files of Type drop-down list box:

4. Select the file _BUGGY.MEF, which is in your CA-Visual Objects 2.7
SAMPLES\SSATUTOR\FILES subdirectory, then choose Open.

The ?Buggy module button appears as the first module in the SSA
application tree.

Error Browser Exercise

Chapter 14: Debugging Your Application 201

5. Choose the Build toolbar button to build the application.

Since there are errors in the code, you are presented with the Error Browser.
The compiler errors are displayed in a tree-like structure that can be
expanded or collapsed:

It is similar to the application’s tree view in the Repository Explorer. In this
structure, the first level indicates the module, the second level indicates the
entity, and the third (and final) level indicates the line number and error
message.

Note: The question mark in the module name was replaced with an underscore
when it was exported as an .MEF file, to conform to the file name convention
rules.

Resolving the Errors

Now, use the Error Browser to resolve the errors in this code.

1. Double-click the first error, which appears as follows:

This brings you to the Source Code Editor with the cursor located on the line
where the error occurred:

LOCAL Date := Today() AS DATE

The error occurs because DATE is a reserved word and, therefore, cannot be
used as a variable.

2. Fix this code by changing the variable Date to dDate in the last two lines of
code, as follows:

LOCAL dDate := Today() AS DATE
RETURN (dDate)

Error Browser Exercise

202 CA-Visual Objects South Seas Adventures

3. Close the Source Code Editor by double-clicking its system menu and
answering Yes when prompted to save your changes.

You are returned to the Error Browser and, even though you have resolved
the first error, it still appears in the error browser.

Double-click the next error:

Again, you are brought directly into the Source Code Editor with the cursor
located on the line where the error occurs:

nValue := nValue +

The error message indicates that this line contains bad expression syntax and
it indeed has an incomplete statement.

Correct the statement by adding 10 to the end of the line, as follows:

nValue := nValue +10

6. Close the Source Code Editor by double-clicking its system menu and
answering Yes when prompted to save your changes.

Once again, you are returned to the Error Browser.

The next two errors are referring to the same problem:

This error message indicates that the variable X is unknown to the compiler,
which means that it is not declared.

Double-click the first of these two errors.

8. Remove the comment indicators (//) from the LOCAL statement, just above
the line you are currently on, to correct the problem:

LOCAL X AS INT

9. Close the Source Code Editor by double-clicking its system menu and
answering Yes when prompted to save your changes.

10. Choose the Build toolbar button to rebuild the application.

The Error Browser now appears with another error:

The previous correction causes the compiler to discover a new error. This
error involves a type conversion that is not possible.

Debugger Exercise

Chapter 14: Debugging Your Application 203

11. Double-click the error to see the line in question.

By examining this line you can see that the function, FUNCTION
BugCode3(), returns an INT, although it was declared to return type
STRING. This is a good example of why strong typing is beneficial at the
development stage—an error of this nature, although very obvious at
compile time, might easily elude you at runtime.

12. Fix the error by converting the return value of the function to a string, as
follows:

RETURN Str(X)

13. Close the Source Code Editor by double-clicking its system menu and
answering Yes when prompted to save your changes.

14. Choose the Build toolbar button to rebuild the application, which should
now compile without errors.

Note: It is possible that you may still receive warnings, such as, “Line 1,
Variable UVALUE is declared but never used: 51455.” These particular
warnings can be ignored, as they will not adversely affect the application.

15. Close the Error Browser by double-clicking its system menu and return to
the Repository Explorer.

Debugger Exercise
The CA-Visual Objects Debugger is the primary work space in the IDE for
tracking and correcting errors that occur at runtime. To access the Debugger
from the various browsers and editors, use either the Debug Run menu
command or the Trace Expression toolbar button.

By using the Debugger you can:

■ Control the execution of your application while viewing the source code in
the Debug Source Code window

■ Execute any part of your application using one of several execution modes,
including a mode in which you step through the code one line at a time

■ Conditionally stop program execution using breakpoints

■ Monitor watch expressions in a separate window

■ Evaluate expressions on-the-fly

■ View and modify variables of all storage classes

■ View database, index, and other work area information in a separate
window

■ View and modify system settings

Debugger Exercise

204 CA-Visual Objects South Seas Adventures

The most common type of errors that you will correct using the Debugger are
known as logic errors. Logic errors occur when the application does not perform
as intended, but does not crash or give any other immediate indication of flaw
(such as a runtime error message). These types of errors are often the hardest to
locate and an area in which the Debugger excels.

Viewing the Error

In this exercise, use the Debugger to track down an error that will be added to
the South Seas Adventures application:

1. Provided the application was successfully built at the end of the previous
exercise, you can run it now by choosing the Execute toolbar button.

2. Log in to the application as usual (Name: User, Password: Trainee).

3. Choose the New command from the File menu.

4. Select the Payment radio button from the New Record dialog box, as follows:

5. Choose OK to display the New Payment window:

As you can see, the window starts as expected. We will now proceed to
break this so that we can debug the problem.

Debugger Exercise

Chapter 14: Debugging Your Application 205

6. Close South Seas Adventures by double-clicking its system menu and
choosing Yes when prompted.

Introducing an Error

To introduce the error:

1. Open the Payment:Forms module by clicking on it in the Repository
Explorer tree view.

2. Open the NewPaymentWindow:Init method by double-clicking on its icon.

3. Place two comment indicators (//) at the beginning of line 6 so that the
SUPER:Init method becomes a comment line:

4. Close the Source Code Editor by double-clicking its system menu and
answering Yes when prompted to save your changes.

5. Choose the Build toolbar button to rebuild the application.

Now it is time to see the results of our actions:

1. Provided the application was successfully built at the end of the previous
exercise, you can run it now by choosing the Execute toolbar button.

2. Log in to the application as usual (Name: User, Password: Trainee).

3. Choose the New command from the File menu.

4. Select the Payment radio button from the New Record dialog box.

Debugger Exercise

206 CA-Visual Objects South Seas Adventures

5. Choose OK to try to display the New Payment window and you should have
an error that looks like this:

Although this does not look very helpful it is giving us more information
than you would think:

– There is an invalid argument—one of the parameters being passed to
something else.

– It is invalid when it is passed to the CONTROL.INIT method. Therefore,
it is in a control.

– The error has happened by the time it gets to line 8 of the
NewPaymentWindow:Init method—this is a good place to start.

Press the Abort button to clear this window and press the OK button on the
next window to acknowledge the end of execution.

Set Debugging On

The CA-Visual Objects Debugger can be set at three levels:

Application level—provides debugging information for the entire application.

Module level—provides debugging information for every entity in the current
module.

Entity level—provides debugging information only for the current entity.

Set Debugging at the Module Level

The South Seas Adventures application currently does not have debugging
activated; therefore, you need to attach debugging information to the entities or
modules that you feel are affected. To save you some time searching through
code we will follow the clues from the error message that we received.

Debugger Exercise

Chapter 14: Debugging Your Application 207

We know that it happens in the NewPaymentWindow:Init method so the easiest
way to deal with this is to attach debugging to the module as follows:

1. From the Repository Explorer, select the Payment:Forms module and click
the right mouse button.

2. Select the Properties command from the local pop-up menu and select the
On Debug radio button on the Properties dialog box:

3. Press the OK button.

Notice that the Debug column of the Repository Explorer Details List View
shows D<On>, telling you that debugging is turned on for this module, and
that all of the methods in the module are now marked as uncompiled.

4. Choose the Build toolbar button to rebuild the application.

Running the Application Using the Debugger

Now you are ready to debug the application. First, clear some space on your
Windows desktop so that you can see the Debugger while the application is
running:

1. Size and position the CA-Visual Objects window so that it takes up only the
top half of your screen.

Debugger Exercise

208 CA-Visual Objects South Seas Adventures

2. Select the Debug toolbar button.

CA-Visual Objects will now start the debug window:

The South Seas Adventures splash screen is displayed:

No code will be displayed in the debug window until it reaches the first line
of code with debug turned on.

3. Log in to the application as usual (Name: User, Password: Trainee).

4. Size the South Seas Adventures application window, so that it takes up the
bottom half of your screen and CA-Visual Objects is visible in the top half of
your screen.

Locating the Bug

You are now ready to debug the application.

1. From the South Seas Adventures main window, select the New command
from the File menu.

Debugger Exercise

Chapter 14: Debugging Your Application 209

2. Select the Payment radio button from the New Record dialog box:

3. Press the OK button to open the Payment window.

Before the window can open you should see the CA-Visual Objects window
change and the debugger start to operate. The application is now at a
standstill waiting for some instruction from the debugger.

Some points to note about the debugger:

1. The solid black line with white text is the line that will be executed next,
which, in this case, is the first line of the Init method.

2. When the debugger is expecting to be in control, the toolbar buttons are in
color. If any action is taken in the application at this time, the debugger will
lose its place and the results of any tests will not be correct.

Evaluating Expressions

Now you can inspect the variable values:

1. Choose the Evaluate toolbar button.

The Evaluate Expression dialog box appears.

2. Type SELF in the Expression edit control. This represents the class
NewPaymentWindow.

3. Choose Evaluate.

4. The Result edit control displays something similar to:

{(0x020C)0x032B4C90} CLASS NEWPAYMENTWINDOW

This shows that the class has already been created.

5. Choose Cancel to close the window and return to the CA-Visual Objects
window.

Debugger Exercise

210 CA-Visual Objects South Seas Adventures

Let’s look at all the local variables now:

1. Select the View Locals command from the Debug menu.

The Local/Private Variables window displays. Expand the SELF variable by
clicking on the file icon. Scroll down through the list of variables and you
will see that they are all <No Object> or NIL, which means that they have
not been initialized yet. The initialization would normally take place during
the SUPER:Init which we have commented out.

2. Close the Local/Private Variables window.

3. Choose the Step In toolbar button to enter into the entity on the line that is
currently executing.

This will move you to the PreInit line.

4. Click the Execute Next Line toolbar button (or select the Step command
from the Debug menu).

This will execute the PreInit line and move us to the next line of code to
execute, having bypassed the SUPER:Init line that we commented out.

We are now on line 8, which we know is the line where the error will occur;
and we know that it is a problem with one of the parameters.

Let’s look at all the local variables now:

1. Select the View Locals command from the Debug menu.

The Local/Private Variables window displays. Expand the SELF variable by
clicking on the file icon. Scroll down through the list of variables and you
will see that they are still set to <No Object> or NIL, which is not surprising.

Close the Local/Private Variables window.

2. Click the Execute Next Line toolbar button (or select the Step command
from the Debug menu).

This will display the error as before and we can now understand that passing
SELF as the first parameter is not going to work. The init of the control will
fail because its owner, NewPaymentWindow, has not been initialized.

3. Press the Abort button to clear this window and press the OK button on the
next window to acknowledge the end of execution. This will end the debug
session and return you to the Repository Explorer.

From what we have just looked at it should be evident that the Init method for
the super class has not been called.

Correcting the Error

Now that you have found the problem, you can return to the Source Code Editor
for the NewPaymentWindow:Init method. Remove the comment lines that you
inserted earlier save the code and close the editor.

Summary

Chapter 14: Debugging Your Application 211

Rebuild the application using the Build toolbar button.

Summary
This lesson provided you with an understanding of some of the key features of
the error detection and debugging facilities provided in CA-Visual Objects. You
used the Error Browser to diagnose and fix compiler errors, and the Debugger to
resolve a runtime error.

Chapter 15: Adding Help to Your Applications 213

Chapter

15 Adding Help to Your Applications

This lesson shows you how to implement an online help system for your CA-
Visual Objects 2.7 applications.

Overview
An online help system can mean the difference between the success and failure
of your application. Applications are often judged on the existence and quality
of their online help.

The creation of an online help system is non-trivial. Its design should be
included at the start of your application’s development.

When designing an online help system, you must decide upon the level of detail
you want to provide and how best to organize the hierarchy of the help topics.
Once the system is designed, you must provide the written text and build the
help system.

Using the Windows help system, installed with every copy of Windows, offers
several advantages to you. First of all, it automatically loads the help system
within your application when context-sensitive help is requested. Additionally,
users can be expected to have some familiarity with its operation because most
Windows applications provide an online help system.

Context-Sensitive Help

CA-Visual Objects 2.7 not only provides the capability for attaching help to your
application, but also provides the mechanism to invoke context-sensitive help.
Context-sensitive help is based on the current state of the application, or context,
in which the user requests help.

F1 Pressing the F1 key invokes help based on the menu command or control that
currently has focus. For example, to obtain help on a menu command or control,
the user need only highlight it and press F1.

Exercise

214 CA-Visual Objects South Seas Adventures

If no control or menu command has focus when F1 is pressed, the default
behavior is to display the Contents topic defined in the associated help file.

Shift+F1 Pressing Shift+F1 allows the user to select an item using a special help cursor
that consists of an arrow and a question mark. To get help on a control or menu
command, the user presses Shift+F1, then locates and clicks the control or menu
command with the help cursor.

If no help is available for the item selected, the default behavior is to display the
Contents topic defined in the associated help file.

Exercise
During this exercise, you will discover how the South Seas Adventures help
system is implemented. You will also learn where in your application to specify
the associated help file, and how to set context-sensitive help—for a window, a
control in a window, and a menu command.

Implementing Context-Sensitive Help

Typically, an application has only one help file for the entire application. When
you assign a help file to a shell window, each of its child windows, unless
another help file is specified, uses the same help file as its parent. However, the
architecture used by CA-Visual Objects 2.7 makes it very easy to define a
separate help file for each window.

Attaching Your Help File

Let’s see how attaching a help file is accomplished in the South Seas Adventures
application:

1. Double-click the South Seas Adventures application branch on the
Repository Explorer.

2. Open the SSA Shell:Forms module by clicking its branch in the Repository
Explorer tree view.

3. Find the SSAWindow window entity and double-click it to open the
Window Editor.

Exercise

Chapter 15: Adding Help to Your Applications 215

4. Find the Help File Name property in the Shell Window Properties window
(under the ShellWindow tab):

5. The Help File Name property already has SSA.HLP assigned to it. This
generated the following line of code in the Init() method of the SSAWindow:

SELF:HelpDisplay := HelpDisplay{"SSA.HLP"}

The HelpDisplay class in this code establishes a link between the South Seas
Adventures shell window (SSAWindow) and the SSA.HLP help file.

6. Close the Window Editor by double-clicking its system menu.

HelpRequest Event
System

When help is requested by the user, a HelpRequest event is generated. The
CA-Visual Objects dispatcher then invokes the window’s HelpRequest()
method, passing it a HelpRequestEvent object. The HelpRequestEvent class is
used to describe the context, and item combinations, for which help is
requested.

The default HelpRequest() method (from the Window class) invokes the help file,
based on the information in the HelpRequestEvent object:

METHOD HelpRequest(oHRE) CLASS Window
...
SELF:HelpDisplay:Show(oHRE:HelpContext)
...

RETURN NIL

The HelpDisplay:Show() method invokes WinHelp, with the oHRE:HelpContext
parameter representing the keyword that WinHelp searches for in the help file.

Exercise

216 CA-Visual Objects South Seas Adventures

Help Context
Property

You can specify Help Context strings for windows, menu commands, controls,
and field specs. The Help Context property is the means by which CA-Visual
Objects enables your application to supply context-sensitive help. CA-Visual
Objects extracts the Help Context property of the item (such as control or menu
command) for which the user requests help. This Help Context is then used in
the call to WinHelp.

WinHelp performs a keyword search for a topic that matches the Help Context
string. If a match is found, the topic displays. If you do not specify a Help
Context property for the specified item, or if the Help Context specified is not
found, WinHelp displays the Contents topic of your help file.

Assigning Help to a Window

The South Seas Adventures help file has a topic, called Employees, which
describes how to edit employee data. If the user requests help when an Edit
Employee window is open, you want WinHelp to display the Employees topic.
The following steps show how this is accomplished:

1. Open the Employee:Forms module by clicking its branch on the Repository
Explorer.

2. Locate and double-click the EditEmployeeWindow entity to open the
Window Editor.

3. Scroll through the Data Window Properties window until you see the Help
Context property (under the HyperLabel tab):

4. Set the Help Context property to Employees.

When help for this window is requested, WinHelp now displays the
Employees topic.

Exercise

Chapter 15: Adding Help to Your Applications 217

Assigning Help to a Control

The South Seas Adventures help file has another topic, called Employee
Controls, which describes all of the controls in the EditEmployee window. When
help is requested for any of these controls, the following steps enable WinHelp to
display this topic:

1. Select the GIVEN edit control in the upper-left corner of the EditEmployee
window:

2. Select the Help Context property from the Single-Line Edit Properties
window (under the HyperLabel tab). Replace the underscore in the current
string (Employee_Controls) with a space to make it resemble other single-
line edit controls.

3. The Help Contexts for the other fields have already been supplied with the
same value, so choose the Save toolbar button to save your changes.

4. Close the Window Editor by double-clicking its system menu.

Assigning Help to a Menu Command

The South Seas Adventures help file has another topic, called Password, which
describes how to change the current user’s password. The following steps show
how this help topic is associated with the Change Password command in the
Options menu:

1. Open the SSA Child:Menu module by double-clicking its branch on the
Repository Explorer.

2. Find the SSAChildMenu menu entity and double-click it to open the Menu
Editor.

Exercise

218 CA-Visual Objects South Seas Adventures

3. Scroll through the Menu Editor and click the Change Password menu item
under the Options menu.

The Help Context property for this item is already set to Password, as shown
in the Menu Item Properties window:

4. Close the Menu Editor by double-clicking its system menu.

Invoking Context-Sensitive Help

Now, let’s test the context-sensitive help for your application. First, open the
Employee Browser:

1. Choose the Build toolbar button.

2. Choose the Execute toolbar button.

3. Log into the application as usual (Name: User, Password: Trainee).

4. Select the Open command from the File menu.

5. Click the Employee radio button, and choose OK.

6. From the Employee Browser, choose Edit.

The Edit Employee window displays:

Exercise

Chapter 15: Adding Help to Your Applications 219

Viewing Help for a Control

This section shows you how to obtain help for any edit control in the employee
window:

1. Press Shift+F1 to display the help cursor.

2. Click in any of the edit controls.

The South Seas Adventures Help window appears, displaying the Edit
Employee Controls topic:

3. When you are finished reviewing the help text, close the Help window by
double-clicking its system menu.

Viewing Help for a Window

This section shows you how to obtain help for the entire Edit Employee window:

1. Press Shift+F1 to display the help cursor.

2. Click the Edit Employee window’s title bar.

Exercise

220 CA-Visual Objects South Seas Adventures

The South Seas Adventures Help window appears, displaying the
Employees topic:

3. When you are finished reviewing the help text, close the Help window by
double-clicking its system menu.

4. Choose Cancel to close the Edit Employee window.

5. Choose Close to close the Employee Browser.

Viewing Help for a Menu Command

To view help for a menu command:

1. Select the Options menu and position the mouse pointer over the Change
Password option.

2. Press F1 to call the help system.

The South Seas Adventures Help window appears, displaying the Change
Password topic.

3. When you are finished reviewing the help text, close the Help window by
double-clicking its system menu.

4. Close the application by double-clicking its system menu and answering Yes
when prompted.

Exercise

Chapter 15: Adding Help to Your Applications 221

Implementing Direct Calls to Help

Many Windows applications provide their users with help from other sources.
Some of these sources are menu commands, button controls, and event
processes.

Menu Commands

Help can be invoked in response to a menu command selection. To implement
help from a menu command, you can:

■ Trap menu selection events using the MenuSelect() event handler method

■ Create a separate menu event method for the menu command

This section shows how the South Seas Adventures application creates a separate
menu event method for a menu command:

1. Choose the SSA Shell:Forms module from the Repository Explorer.

2. Find the SSAWindow:HelpContents() method in the list view and
double-click it to open the Source Code Editor. The following code displays:

METHOD HelpContents() CLASS SSAWindow

SELF:HelpDisplay:Show("HelpIndex")

RETURN SELF

This method illustrates how to call the help system directly using the
HelpDisplay:Show() method. You can pass a help context keyword as the
parameter for HelpDisplay:Show() function or, as shown in this example,
one of the following reserved keywords to access a standard help feature:

Help Context Help

HelpIndex Displays the Contents topic as defined in
the application help file

HelpOnHelp Displays the Contents topic as defined in
your Windows help file (normally
WINHELP.HLP, in which the Contents
topic is How to Use Help)

3. Close the Source Code Editor by double-clicking its system menu.

Exercise

222 CA-Visual Objects South Seas Adventures

Creating Help Files

Creating Windows help support for your application is a three-step process:

1. Create the required help system source files, such as topic and project files.

2. Compile the source files using a help compiler. This creates a help file that is
ready to be used by the Windows Help.

3. Create the links in your application that use the help system.

Topic Files

A topic file contains the text of your help file for one or more topics. The topic
file also contains the codes needed to link topics together.

The help compiler requires topic files coded in Rich Text Format (RTF). To create
a file in this format, you can use a simple ASCII text editor, or you can use a
word processor that can export files in this format.

Using a simple text editor requires you to explicitly code your help topics using
the rich text coding syntax. On the other hand, using a word processor that can
export in RTF format can reduce your task dramatically. Using simple
formatting commands and footnotes to create the document, you then export it
in RTF format. The document is translated into the appropriate commands and
codes that can then be compiled by the Help compiler.

The South Seas Adventures topic file, SSA.DOC, was created using Microsoft
Word for Windows. The file was then exported to rich text format as SSA.RTF.
You can retrieve the SSA.RTF file with your program editor to view the RTF
codes. These files can be found in your CA-Visual Objects 2.7
SAMPLES\SSATutor\Help subdirectory.

Project File

The project file contains a list of source files required to create the help file. It
also contains window definitions and compiler directives.

The South Seas Adventures help project is stored in the SSA.HPJ file. (Also in
our CA-Visual Objects 2.7 SAMPLES\SSATutor\Help subdirectory.

Summary

Chapter 15: Adding Help to Your Applications 223

Summary
In this lesson, you have implemented online help for a CA-Visual Objects
application and, through the Help Context property, you now know how to
implement context-sensitive help. You have also seen how to make calls directly
to the Windows Help system.

Chapter 16: Using Win32 API Functions 225

Chapter

16 Using Win32 API Functions

In this lesson, you will learn how to call Win32 API functions directly from
CA-Visual Objects 2.7. This will demonstrate how to expand the functionality of
your applications, as well as illustrate how Windows programs work on a low
level.

Overview
What Is the
Win32 API?

Windows provides more than just the graphical shell in which our applications
run. It also consists of over 600 built-in functions available to any Windows
program at runtime. These functions range from creating and manipulating
windows and menus, to simple network functions. The Win32 API also
provides predefined data structures and message definitions that your
programs can use.

CA-Visual Objects provides the capability to use as little or as much of the Win32
API as we wish. Indeed, we can write entire CA-Visual Objects programs using
only Win32 API calls. However, we would lose the ability to use many of the
object classes provided. If a function is provided by both CA-Visual Objects and
the Win32 API, it is preferable to use the CA-Visual Objects function.

Calling Win32 API
Functions

Calling Win32 API functions is as simple as calling any other function. The
only stipulation is that the function’s prototype must be provided. The Win32
API library does precisely this, as well as defining Windows data structures and
messages. For example, this is the prototype for the MessageBox() function,
which provides a simple modal dialog box:

_DLL FUNC MessageBox(;
dwHandle As DWORD, ;
cMsg AS STRING, ;
cTitle AS STRING, ;
dwFlag AS DWORD) ;
AS INT PASCAL:USER32.MessageBoxA

Exercise

226 CA-Visual Objects South Seas Adventures

The _DLL FUNC statement indicates that the MessageBox() function resides in
an external DLL. The parameters for MessageBox() are the parent window’s
handle (a unique identifier within Windows), the message text and caption as
strings, and the flags indicating the type of message box desired. The function
returns a value which is defined as a long integer, in this case a number
corresponding to the user’s selection from the message box. The function follows
the Pascal calling convention and resides in the USER32 library.

Calling this function is as simple as:

MessageBox(SELF:Handle(), ;
 "This is a test message.", ;
 "Test", _OR(MB_ICONINFORMATION, MB_OK))

Fortunately for us, CA-Visual Objects has its own classes built around Message
Box() so that we can call different types of boxes. See ErrorBox, WarningBox,
InfoBox and TextBox in the help file.

Exercise
Let’s begin this lesson by examining one of the Win32 API functions:

Function Name Purpose

GetSystemMetrics() Retrieves various system
settings

Windows Metric Information

The GetSystemMetrics() function retrieves information about various system
metrics (for example, the heights and widths of various elements displayed by
Windows). You will now examine the use of this function to set the size of a
window to the full size of the screen without maximizing the window:

1. Open the SSA Application by double-clicking its branch in the Repository
Explorer.

2. Open the SSA Shell:Forms module clicking its branch.

3. Open the SSAWindow:PostInit() method by double-clicking its entity in the
list view. Note the function call assigning the return value from the function
FullWinSize() to the window’s size attribute. This code makes the window
occupy the entire screen without having to be maximized:

SELF:Size := FullWinSize()

Summary

Chapter 16: Using Win32 API Functions 227

FullWinSize(), defined in the App:Misc module, determines the actual
maximum size of the window by calling the Windows function
GetSystemMetrics():

FUNCTION FullWinSize() AS Dimension

LOCAL oDim AS Dimension, ;
nHeight AS SHORTINT, ;
nWidth AS SHORTINT

nHeight := GetSystemMetrics(SM_CYSCREEN)
nWidth := GetSystemMetrics(SM_CXSCREEN)

oDim := Dimension{nWidth, nHeight}

RETURN oDim

The parameter passed to GetSystemMetrics() indicates which system value is
to be returned. In this case SM_CXSCREEN instructs GetSystemMetrics() to
return the width of the screen, and SM_CYSCREEN returns the height of the
screen. In FullWinsize(), these two values are combined as a Dimension
object, which is used to set the size of a window.

4. Close all open Source Code Editors by double-clicking the appropriate
system menus.

Summary
In this chapter, you have learned about the Win32 API functions and how to use
direct calls to the Win32 API in your CA-Visual Objects applications.

In the next lesson, you will be able to create a library and a DLL in order to share
code among your applications.

Chapter 17: Using Libraries and Dynamic Link Libraries 229

Chapter

17
Using Libraries and Dynamic Link
Libraries

In this lesson, you will be introduced to the benefits of sharing code among your
applications using libraries and dynamic link libraries (DLLs). Not only will you
learn how to create a library and a DLL, as well as the circumstances in which to
use each, but you will be able to produce a .DLL file that can be distributed easily
to other programmers or to your end users.

Overview
Both libraries and DLLs provide a means of sharing code among your
applications. We explore each type of library in the following sections.

Libraries

You can use a library (or shared library) in the same way a .LIB file is used in
developing character mode applications. Many of your CA-Visual Objects
applications may include the same library and share copies of its code. This
library is then linked into the executable (.EXE) file when your application is
generated.

Although a library is created much like an application, you cannot run a library
as a stand-alone application or create an executable (.EXE) file from one.

The source code of libraries created in CA-Visual Objects may be distributed by
exporting the source code to an Application Export Format (.AEF) file; however,
this is not usually desirable. Another option is to create a DLL, which provides
more flexibility and several advantages.

Dynamic Link Libraries

A DLL is maintained in an external file distinct from any other application. It
contains compiled and linked code that can be called from and shared by many
.EXE files. DLLs also allow your applications to make better use of available
memory, because they are loaded only once, even when shared by many
applications.

Exercise

230 CA-Visual Objects South Seas Adventures

Memory Efficiency Using DLLs, you give your applications more memory for data. An .EXE file
owns, and can access, a data area called DGROUP (also referred to as near data or
static data) that typically holds your STATIC variables and character constants.
This area is unlimited in size.

Library Distribution DLLs are an ideal means for distributing your work to other developers without
giving away your source code. When you create a .DLL file from the source code
in your repository, a corresponding .AEF file is also generated, defining the
public protocol for the DLL. The only source code you distribute is the .AEF file,
which contains only _DLL declaration statements that point to entities in the
.DLL file by name.

Once imported, this .AEF file is created as a library (rather than a DLL) that can
be included in the search path of any application needing access to the .DLL file.

Ease of Application
Maintenance

DLLs make it easier to maintain your code. Since DLLs are linked only at
runtime, you can replace a .DLL file without suffering the consequences of
having to relink your .EXE file (provided that the public protocol of the DLL
has not changed). You will also save development time, since you do not have
to rebuild the entities contained in a DLL whenever you rebuild an application.

Exercise
This exercise demonstrates how to create a library and a DLL from existing code
in the South Seas Adventures application. In working through the steps, you
will also learn how to generate a .DLL file and use the corresponding .AEF file
defining its public protocol as a library.

Creating and Using a Library

A library is created in much the same way as an application. It does not,
however, contain a Start() entity since the code of a library is not intended to be
run as a stand-alone application.

In this exercise, you are going to create a library called MyLib. You will transfer
the IniFile module of the South Seas Adventures application into the library,
which can then be used in other applications.

Exercise

Chapter 17: Using Libraries and Dynamic Link Libraries 231

Creating a New Library Application

To create a new library application:

1. From the Repository Explorer, select the Default Project.

2. From the Repository Explorer, choose the New Application toolbar button.

The Application Gallery dialog box appears:

3. Click on the Basic tab and select the Empty Library icon.

4. Type MyLib in the Application Name edit control.

5. Check the boxes to include the RDD Library and the System Library.

Exercise

232 CA-Visual Objects South Seas Adventures

6. Since some of the functions in the new library will make Win32 API calls,
include the Win32 API library in the search path by pressing the LIBs push
button, scrolling through the Available list box and double-clicking on
Win32 API Library:

7. Choose OK to close this dialog window.

Note that there is no path specified for a library application.

8. Choose OK.

The empty library displays in the tree view.

Moving Modules Between Applications

You now need to return to the South Seas Adventures application to move the
IniFile module to MyLib in the tree:

1. Open the South Seas Adventures application by double-clicking its branch
on the Repository Explorer tree view.

2. Scroll through the modules and select the IniFile module by clicking its
branch.

3. Click and hold down the left mouse button on the IniFile module and drag
the module to the MyLib library, then release the mouse button.

The IniFile module is moved to the MyLib library.

4. Depending on your default system settings, an empty default module,
Module1, may exist in the MyLib library. If so, select the Module1 module
from MyLib and press the delete key. When prompted select Yes to
continue.

Notice that all of the modules in the South Seas Adventures application that were
using any of the functions in the IniFile module need to be rebuilt. This is
because they have lost their link to the functions you moved to the library. You
can fix this by including MyLib in the application’s search path and rebuilding
the library, as shown next.

Exercise

Chapter 17: Using Libraries and Dynamic Link Libraries 233

Building the Library

In order to use the library, you must first build it:

1. Select the MyLib Library by clicking it.

2. Choose the Build toolbar button.

Using the Library

To use a library in an application, you must include it in the application’s search
path. Let’s try this using your library for the South Seas Adventures application:

1. Select the South Seas Adventures module by clicking its branch.

2. Choose the Application Properties toolbar button.

The Properties dialog box appears:

3. Select the Libraries tab.

4. Go through the Available list box and select MyLib by double-clicking it.
MyLib will move from the Available list box to the Included list box.

5. Choose OK.

6. Rebuild the South Seas Adventures application by clicking the Build
toolbar button again.

The South Seas Adventures application is now ready to be executed and will run
just as before. Where it used to access code from its own IniFile module, it now
accesses code from the library, MyLib.

Exercise

234 CA-Visual Objects South Seas Adventures

Creating and Using a DLL

If many of your applications use common code, it would be wise to provide this
code as one or more DLLs. At runtime, a .DLL file is shared by the applications
that use its code.

This exercise will take you through the steps to create a DLL from a library and
use it from the repository. It will also show you how to create a stand-alone .DLL
file which can be easily distributed and maintained. Lastly, you will learn how
to create a foreign-hosted DLL to be used with non-CA-Visual Objects
applications.

Creating a New DLL Application

You are now going to create a DLL from the MyLib library, as follows:

1. From the Repository Explorer, select the Default Project by clicking its
branch.

2. From the Repository Explorer, choose the New Application toolbar button.

3. Click on the Basic tab and select the Empty DLL icon.

4. Type MyDLL in the Application Name edit control.

5. Check the boxes to include the RDD Library and the System Library.

6. Since some of the functions in the new library will make Win32 API calls,
include the Win32 API library in the search path by pressing the LIBs push
button, scrolling through the Available list box and double-clicking on the
Win32 API library. Then, click OK.

7. Type in the path and the file name for the DLL (for example,
%CavoSamplesRootDir%\SSATutor\MyDLL.DLL).

Choose OK.

Copying Modules Between Applications

You now need to return to the MyLib library to copy the IniFile module to
MyDLL in the tree:

1. Open the MyLib library by double-clicking its branch in the Repository
Explorer Tree View.

2. Select the IniFile module by clicking its branch.

3. Right click and select Edit All Source In Module.

4. Choose Select All from the Edit menu.

5. Choose Copy from the Edit menu.

Exercise

Chapter 17: Using Libraries and Dynamic Link Libraries 235

6. Close the Source Code Editor.

7. Select the Module1 module in the MyDLL library.

Note: If there is no Module1 in MyDLL, select New Module from the File
menu, then click OK to create Module1.

8. Open the Source Code Editor and select Paste from the Edit menu.

9. Close the Source Code Editor by double-clicking on the System icon and
answering Yes when prompted to save.

10. Select the Module1 module from MyLib and rename it to IniFile.

11. Choose the Build toolbar button.

You have now created a DLL; and it is now ready to be used in the South Seas
Adventure application.

Using a DLL

At this point, you have created a DLL—although no .DLL file has been generated
(a step which comes later in this lesson). You can still, however, use the DLL
stored in the repository in the same way that you used the MyLib shared library:

1. From the Repository Explorer, select the South Seas Adventures application
by double-clicking its branch.

2. Choose the Application Properties toolbar button.

The Properties dialog box displays.

3. Select the Libraries tab.

4. Scroll through the Included list box and remove MyLib by double-clicking it.

5. Go through the Available list box and select MyDLL by double-clicking it.

6. Choose OK.

7. Choose the Build toolbar button to recompile the entire application.

The South Seas Adventures application is now ready to be executed and will run
just as before. However, where it used to access code from the library, MyLib, it
now accesses code from the DLL library, MyDLL. A few more steps will be
necessary to create and use an external .DLL file.

Exercise

236 CA-Visual Objects South Seas Adventures

Creating a .DLL File

To use a CA-Visual Objects .DLL file, you must do the following:

■ Create the physical .DLL file

■ Create a library defining the public protocol for the DLL

■ Include the public protocol library in the search path of the application

Let’s first create the .DLL file:

1. From the Repository Explorer, select MyDLL by clicking its branch.

2. Choose the Application Properties toolbar button.

The Application Properties dialog box appears.

3. Make sure you have the full path for the .DLL file as
%CavoSamplesRootDir%\SSATutor, then choose OK.

4. Select the Make DLL command from the Application menu.

This creates two files: MYDLL.DLL and MYDLL - DLL.AEF. The .DLL file
contains the executable code and the .AEF file contains the prototypes that
you will use to access the DLL.

Both files are written to the path for the .DLL file, as specified in the
Application Properties dialog box.

Tip: At this point, the .DLL and .AEF files can be distributed to other
CA-Visual Objects programmers.

Using a CA-Visual Objects .DLL

To have your application access the code stored in a .DLL file, you must define
the prototypes to the entities you want to access, similar to the way Win32 API
library contains the prototypes to the functions available in Windows.

For .DLLs that are created in CA-Visual Objects, this prototype library is created
for you when you generate the .DLL file. All you have to do is import the
generated .AEF file and include it in the application’s search path.

Importing Your
.AEF file

Let’s import the sample MYDLL - DLL.AEF file:

1. Select the Default Project in the Repository Explorer.

1. Select the Import command from the File menu.

2. Select MYDLL - DLL.AEF from the SAMPLES\SSATUTOR subdirectory of
your CA-Visual Objects 2.7 directory and click Open.

Exercise

Chapter 17: Using Libraries and Dynamic Link Libraries 237

A new application is added—MyDLL.DLL.

The new application is a shared library. It contains only the prototypes of
the entities in MYDLL.DLL.

Tip: If there are entities in the DLL that are not intended for direct use by the
programmer, their prototypes can be removed from the library. You would
then re-export the library as an .AEF file for distribution.

Including Your .DLL
in an Application

Finally, to use this new .DLL file, you must include the library which contains
its prototypes in your application search path.

Let’s include your new library in the South Seas Adventures application:

1. From the Repository Explorer, select the South Seas Adventures application
by clicking its branch.

2. Choose the Application Properties toolbar button.

The Properties dialog box appears.

3. Select the Libraries tab.

4. Go through the Included list box and remove MyDLL by double-clicking it.

5. Go through the Available list box and select MyDLL DLL by double-clicking
it.

6. Choose OK.

7. Select the Build toolbar button to rebuild the revised South Seas
Adventures application, which includes the new library.

From now on, South Seas Adventures will use the external .DLL file and not the
DLL entry in your repository. Therefore, any change to the repository source
code must be followed by generating the .DLL/.AEF pair and importing the
.AEF library once again. Otherwise, the dependent application will not
recognize the change.

Summary

238 CA-Visual Objects South Seas Adventures

Summary
In this lesson, you have learned how to use libraries and dynamic link libraries to
make your applications more efficient. First, you learned to share code between
applications by using libraries. You accomplished this by moving a module’s
code into a shared library and making use of it in an application. The next step
was to link this library into your application.

Finally, you learned how to create DLLs so that your code is shared at runtime.
You also learned how to create and use an external .DLL file so that your code
can be developed for the most flexibility and portability.

In the next lesson you will create installation disks and learn how to use the
Install Maker and CA-Installer for the proper distribution of your CA-Visual
Objects 2.7 applications.

Chapter 18: Distributing Your Application 239

Chapter

18 Distributing Your Application

When you complete this lesson, you will be able to create a set of installation
disks for your CA-Visual Objects 2.7 application for final distribution.

Overview
The final stage of the development cycle involves distributing your application.
CA-Visual Objects provides two utilities, Install Maker and CA-Installer, that
allow you to distribute your applications in a timely and professional manner.

Install Maker Your CA-Visual Objects applications are made up of many files (for example,
.EXE, .DLL, and data files). Install Maker helps you determine what files are
necessary to run the application and allows you to quickly create disk images for
the application.

Install Maker automates part of the file gathering process. By using information
which is stored in the repository, it can deduce which files should be included on
the installation disks (system DLLs, RDDs, and so on). You only need to specify
the files you create—such as data files, report files, and help files.

Install Maker also allows you to specify information for use at installation time,
such as:

■ The default installation (or target) directory

■ The name of the Start Menu folder that will contain your application

This information is then used by the CA-Installer program.

CA-Installer As part of the disk generation process, Install Maker includes the CA-Installer
program (SETUP.EXE) on your disk set or CD-ROM. This is the program your
users run to install the application. It allows your program to be installed in
much the same way as CA-Visual Objects 2.7.

Exercise

240 CA-Visual Objects South Seas Adventures

Exercise
In the following exercise, you have the opportunity to create the distribution
disks for the South Seas Adventures application using Install Maker. You can
then install the application from these disks using CA-Installer.

Generating the Executable

Before you begin this process, you must create the application’s executable file:

1. Select the South Seas Adventures application from the Repository Explorer.

2. Choose the Make EXE toolbar button.

3. After the .EXE file is generated, close CA-Visual Objects 2.7 by
double-clicking its system menu.

Note: Install Maker cannot run if CA-Visual Objects 2.7 is open.

Using the Install Maker

Once the executable file is generated, you can prepare the distribution disks for
the South Seas Adventures application:

1. Start the Install Maker by selecting it from the CA-Visual Objects 2.7 Start
menu folder.

The CA-Visual Objects Install Maker dialog box appears:

The Application List list box displays all applications and DLLs that are
contained in your CA-Visual Objects 2.7 repository.

Exercise

Chapter 18: Distributing Your Application 241

2. Select South Seas from the Application List. This will place a check mark in
the box on the tree.

Using information from the repository, Install Maker populates the Layout
Files list box with the system file names associated with this application, as
well as the application’s executable (in this case SSA.EXE):

If your application is made of many executable and/or user defined DLLs,
you can specify more than one application. The South Seas Adventures
application is now using the DLL you created in a previous lesson.

3. Select MyDLL in the Application List and a check mark will also be placed
on the tree next to MyDLL. This includes the DLL file you created with the
other layout files.

Disk Images Instead of creating disks directly, Install Maker creates disk images on your hard
drive. Each disk image resides in a subdirectory (DISK1, DISK2, and so on)
under the specified directory, which Install Maker populates with the files
required for installation:

1. To change the location of these disk images, select the Image Directory edit
control.

2. Type in a path name on your hard drive (for example,
C:\CAVO27\SAMPLES\SSATUTOR\LAYOUT).

Disk Size You must also specify the disk size you are planning to use for installation disks.
To change the disk size, select the Disk Size drop-down list box. In this lesson,
we use the 1.44 MB disk size.

Note: The Make Disks process, as described later, can be run for each disk
format you require.

Exercise

242 CA-Visual Objects South Seas Adventures

Program Manager
Group

When your program is installed, you can specify a default Start Menu folder to
be created for your application by following these steps:

1. Select the existing text in the Start Menu edit control.

2. Type South Seas Adventures.

Default Installation
Directory

When your program is being installed, CA-Installer will prompt the user for a
default drive and directory for installation and suggest your specification. To
specify the target installation directory:

1. Select the existing text in the Default Install Directory edit control.

2. Type C:\SSA.

The C: drive is the most common location. As for the directory you specify,
if it does not exist, it is created on your user’s drive by the CA-Installer
program. Your user also has the option of specifying a different directory.

Specifying Other Files for Installation

When you select the South Seas Adventures application and MyDLL to be
included in the installation, most of the related files are automatically included in
the Layout Files list box. For example, the executable (.EXE) file for South Seas
Adventures, the .DLL file for MyDLL, and several other .DLL files are included
for installation.

Other files needed to run the application, such as data files (.DBF), must be
manually added to the list box.

Note: For this application, index files do not have to be included since they will
be generated the first time the installed application is run.

Let’s add the additional files needed for the South Seas Adventures application
from the CA-Visual Objects 2.7 SAMPLES\SSATUTOR subdirectory, as follows:

1. Choose the Add command from the Actions menu.

You are prompted with a standard Open dialog box.

Exercise

Chapter 18: Distributing Your Application 243

2. Select the following files from the SAMPLES\SSATUTOR subdirectory while
pressing the CTRL key, then choose Open:

ACCINVC.DBF
ACCPAY.DBF
ADVDTL.DBF
ADVHDR.DBF
CADVRPT.RET
CUSTLIST.RET
CUSTOMER.DBF
CUSTOMER.DBT
EMPLOYEE.DBF
INVCRPT.RET
INVDTL.DBF

INVHDR.DBF
INVNTRPT.RET
ITEM.DBF
OUTSTPAY.RET
PAYMENT.DBF
PAYRPT.RET
SSA.HLP
STATE.DBF
SYSKEY.DBF
TENDER.DBF

Specifying File Properties

There are a number of properties that you can specify for each file in the Layout
list. Let’s take a look at these:

1. Scroll through the list of files until you find South Seas Adventures,
SouthSeas.EXE.

2. Right-click on it and choose the Properties command.

The Properties dialog box appears:

Destination Directory From this dialog box, you can specify whether the selected file is to reside in the
Install directory, the Windows directory, or Windows System directory. By
default, your application executable file (SSA.EXE) is set to reside in the install
directory.

Exercise

244 CA-Visual Objects South Seas Adventures

Program Item and
Program Item Name

The Program Item group box allows you to specify whether the file appears as a
Program Item in the South Seas Adventures Start Menu folder. By default,
your application is set to appear as a Program Item.

You can also change the name of the Program Item to what you want it to appear
as in the Program Folder, since Install Maker defaults to the file name minus the
extension. You can set the Program Item name as follows:

1. Select the Program Item Name edit control and replace SouthSeas with
South Seas Adventures.

2. Choose OK to accept the changes.

Although Windows applications require many files, typically only a few
appear on their Start Menu folder. For example, the South Seas Adventures
application, as far as your user is concerned, is made up of the executable
and the help files.

3. To change the file properties for the South Seas Adventures help file, select
SSA.HLP from the Layout Files list box and right-click, then choose
Properties from the local pop-up menu.

4. Enable the Program Item check box.

5. In the Program Item Name edit control, type South Seas Help.

6. Choose OK to accept the changes.

7. Select MyDLL.DLL from the Layout Files list box, right-click it, then choose
Properties.

8. Disable the Program Item check box.

9. Choose OK to accept the changes.

Creating a Project File

It is advisable to create a project file that stores, among other things, the list of
files in the Layout Files list box. Let’s create the project (.PRJ) file as follows:

1. Select the Save As command from the File menu.

2. Change the drive and directory to that of your CA-Visual Objects 2.7 system
directory (for example, C:\CAVO27).

3. In the File Name edit control, type SSA01.PRJ and choose OK to save the
file.

If you need to create another set of disks, use the Open command from the File
menu to load all the information from this project file (SSA01.PRJ). If you make
any modifications, you can then you can use Save As to create additional project
files (such as SSA02.PRJ, SSA03.PRJ, etc.).

Exercise

Chapter 18: Distributing Your Application 245

Now that you have saved the project information, you can create the disk
images.

Creating Disk Images

Once you have defined all of the files required to run your application, you are
ready to create the disk images:

1. Choose the Make Disks command from the Actions menu.

While CA-Visual Objects 2.7 is preparing your files, the Make Disks dialog
box displays.

2. Once the process in completed, Choose Exit from the File menu to shut
down Install Maker.

Creating and Testing the Distribution Disks

The final steps are creating distribution disks from your disk images and testing
the installation process to ensure you have not forgotten any files:

1. Create your disks by copying the contents of each DISK subdirectory to a
separate diskette and labeling the diskette accordingly. The Windows
Explorer can be used to accomplish this task.

2. After copying all disk images, insert DISK1 into drive A:
(or B:).

3. From the Start menu, choose the Run command.

4. Type A:\SETUP.EXE (or B:\SETUP.EXE) in the Command Line edit control
and choose OK.

5. Once the program is installed, you can test the application by double-clicking
its program item in the South Seas Adventures Start Menu folder.

Important! To ensure proper testing of the installed executable version of your
application, you should test it on a computer that does not have CA-Visual Objects 2.7
installed. Your testing at this phase should be at least as rigorous as the testing you
performed on the application under dynamic execution.

Summary

246 CA-Visual Objects South Seas Adventures

Summary
In this lesson, you learned how to use CA-Visual Objects 2.7 Install Maker utility
to prepare your application for distribution.

Congratulations! You have now successfully completed all of the lessons for the
South Seas Adventures tutorial. The information that you have learned will help
you to create, manipulate, and distribute your own CA-Visual Objects 2.7
applications.

Appendix A: Creating a Path-Independent Application 247

Appendix

A
Creating a Path-Independent
Application

This appendix describes what you must do to make sure that an application can
run successfully when it is installed on any drive or directory. Creating such
path-independent applications is an important design objective.

The following diagram of the primary South Seas Adventures application
building blocks indicates that there are three types of external files—help files,
data/index files, and Computer Associates Report Editor report definition files:

Note: Rectangles with thick borders are the primary building blocks, while
those with thin borders are external files. Design linkages are shown as thick
lines, while external linkages are shown with thin lines.

An application must be able to locate these files at runtime, so there are several
key steps that must be taken to remove possible path dependencies while you are
creating the building blocks of your application. Report files themselves contain
information that directs the report runtime engine to the location of the related
data files, so additional steps to remove path information from each report’s
query statement are required.

Establishing Drive and Directory Independence

248 CA-Visual Objects South Seas Adventures

Establishing Drive and Directory Independence
With regards to carefully planning the directory structure for the developer’s
development environment, it is important to think ahead to the drive and
directory possibilities when the application is installed by an end user.

There are two possible approaches when planning your directory structure,
depending on where you want your data to reside.

Fixed Paths If you are sure that the data files will always reside on a given drive and
directory, then you may want to use fixed paths for the data file and index files
specified in the DB Server Editor. This may be a good choice if the data files are
maintained on a single LAN drive and directory. During the development
process, you can keep your test data files in these designated locations.

User-Defined Paths If the location of the data files depends upon the user’s choice of installed
directory, you should plan to keep your application help files, data files, and
report files in the application directory (that is, where the .EXE file resides). In
this case, you must not use any path information when you define each DATA
server and report. During the development process, these files should be kept
in the application’s .EXE file directory (for example,
D:\CAVO27\SAMPLES\SSATUTOR) specified in the Application Properties
dialog box.

This appendix addresses the second approach—since this is the more likely
scenario—which places some restrictions on what you can do. The fact that the
application starts up from the directory that holds the .EXE file allows you to
specify path-independent linkages for your external files.

There are several runtime considerations relating to finding these external files:

■ When running an executable file, the current directory is the directory that
holds the .EXE file. External files that have no explicit path specified in the
related application building blocks will be successfully located if they are
placed in this directory.

■ When you use Save or Save As to store a report definition, the path is stored
in the report’s class entity. This path is required during the development
process. However, you can create a special access entity to change this path
to NULL_STRING at runtime, allowing report files stored in the application
directory to be successfully opened.

■ Each report file executes a query at runtime to locate the data files and index
files. One or more data servers must be specified when you define a new
report and any path information stored in the data server at that time
becomes part of the query statement.

Establishing Drive and Directory Independence

Appendix A: Creating a Path-Independent Application 249

■ Achieving drive and directory independence for your reports requires that
you not use any path information in defining data servers. Otherwise, the
runtime query executed for each report will fail if the data files are not in the
fully specified location. The South Seas Adventures application was
designed to achieve drive and directory independence. Therefore, there is no
path information associated with any data server.

Help Files

You can specify a help file name for a shell window or a data window by using
the Help File Name property that is specified in the Window Editor. The
Window Editor generates source code that creates the linkage. For example, if
the help file is SSA.HLP, the code is:

SELF:HelpDisplay := HelpDisplay{"ssa.hlp"}

Where SELF is a shell window or data window. Here, a help display object is
created using the SSA.HLP file, and then using the HelpDisplay assign of the
Window class. This help linkage is path-independent.

If we had included path information in the Help File Name property, then it
would be included in the source code. This would require that the help file
always be in the designated location, or that the path is modified at runtime.
Generally, you can simply remove all path information from the Help File Name
property and locate the help file in the directory in which the application is
installed.

DB Server Data Files

If you create a data server by importing a .DBF file, path information will
automatically be placed in the File Name edit control. If you do not remove the
path information from the server before you save it, the path will be stored in the
CLASS definition, as follows:

CLASS Customer INHERIT DBServer

INSTANCE CDBFPath := ;
"c:\cavo27 \samples\ssatutor\" AS STRING

Therefore, you must remove any path information for the data file or any index
file, leaving only the name of the file. If you do this, NULL_STRING is stored in
the instance variable, as shown below:

INSTANCE CDBFPath := "" AS STRING

If, for some reason, you do want path information in the CLASS definition, you
can still change it at runtime by creating a special access method for the instance
variable. This access entity removes path dependence at runtime:

ACCESS CDBFPath CLASS Customer
RETURN ""

Establishing Drive and Directory Independence

250 CA-Visual Objects South Seas Adventures

This next code allows you to specify the DBFS subdirectory of the current
directory:

ACCESS CDBFPath CLASS Customer
RETURN ".\dbfs\"

However, neither of these access methods address the problem of path
independence for reports, nor does use of the SetDefault() function, which allows
you to specify a path that will be searched when performing direct database
actions.

Important! To achieve path independence in reports, you must not have any path
information stored in any data server building blocks.

Report Files

Report Editor File Path When you create a report you will use either the Save or Save As command in
the Report Editor. If you are creating a new report, the default location is your
application .EXE file directory; therefore, you must use Save As to locate it
elsewhere. The actual path location of the file is stored in the CLASS entity as
follows:

CLASS CAdvRpt INHERIT ReportQueue

INSTANCE CAdvRpt_File := ;

"%Cavo27 SamplesRootDir%\ssatutor\cadvrpt.ret" AS STRING

This path is required so that the file can be opened when you want to edit the
report. Thus, you must use a special access method to achieve path
independence in the end-user runtime environment. The South Seas Adventures
application includes an access that removes the path dependency for each report.
For example:

ACCESS CAdvRpt_File CLASS CAdvRpt

RETURN "cadvrpt.ret"

While this access method achieves path independence at runtime, you must also
address the location of the report file during the development process. The
Report Editor file path in the CLASS statement must be changed, if you have
imported the South Seas Adventures .AEF file from a directory other than the
SSATutor subdirectory and you wish to edit the report definition.

You can change the CLASS statement by entering the Report Editor and using
Save As to save it to the desired location. When you double-click on the report
entity for the first time, a dialog box asks you to type in the full path of the .RET
file. When you do this and close the dialog box, the Report Editor opens. The
path in the CLASS definition is updated to the new path.

Establishing Drive and Directory Independence

Appendix A: Creating a Path-Independent Application 251

Query Path When you create a new report, the Report Editor dialog box requires that you
choose one or more servers to define what fields are on the report. If any of these
servers contain path information for a data or index file, it will be included in the
query statement.

In order to achieve path independence, you must manually remove the paths by
using the Database Edit Query command. After doing this, save the Report
Editor file to the proper location. If you do not manually remove path
information from the query, you will get a Report Editor runtime error if the data
files cannot be found by using the designated path.

Important! The best approach is to remove the path information from the data servers
so that it is not passed to the Report Editor.

Icon, Cursor, and Bitmap Files

Icons, cursors, and bitmaps can be treated differently than help files, data files,
and report files, since they are directly incorporated in any .AEF export file or a
generated .EXE file. When the South Seas Adventures application was initially
created, the RESOURCE definitions of the icons, cursors, and bitmaps contained
the path for the .ICO file on the developer’s disk drive. For example:

RESOURCE ITEM_ICON Icon ;
%Cavo27 SamplesRootDir %\ssatutor\files

If you have installed CA-Visual Objects 2.7 to the CAVO27 directory, the fil e is
stored in this directory during the .AEF file import process. This is not a
problem because CA-Visual Objects 2.7 automatically modifies the path during
the import process. The file is placed into the directory from which the import is
taking place and the RESOURCE statements will be automatically changed. For
example, if you installed to drive D:, the icon, cursor, and bitmap files will be
placed in the D:\CAVO27\SAMPLES\SS ATUTOR\
FILES subdirectory.

Because this is auto matically handled during the import process, no further steps
are necessary unless you wish to edit an icon or cursor itself. If you try to edit
such an icon entity and it is not in the same location as the original .AEF file, a
dialog box is displayed, indicating that the file cannot be found. You must close
this dialog box in order to invoke the Icon Editor.

When in the Image Editor, use the File Open command to open the file from its
new location. Then, use the Save command, type in the same entity name, and
choose OK to save the icon file and the icon entity. Select Yes when asked about
overwriting the existing file. If you are working with a cursor entity, you must
first change to the Cursor Mode (from the Options menu) when you invoke the
Image Editor.

Summary

252 CA-Visual Objects South Seas Adventures

Summary
As you have just seen, there are essentially no runtime issues associated with the
paths for icons, cursors, and bitmaps, since they are bundled into the .EXE file.
The only issue is one of moving an .AEF file between two developer’s machines
with different directory structures.

In addition, you have learned what you can do to make your help, data, index,
and report files path-independent.

Index 253

Index

A

Accessing and Updating Data
access and assign methods, 140
controls, 144
data forms, 143
data servers attached to data forms, 144
DBServer class, 142
generated data server classes, 141
overview, 139
SQL class, 142
using a method, 140
using access and assign methods, 141
using protected variables, 140
Xbase compatibility, 139

Adding Controls to Your Windows
check box controls, 102
combo box controls, 99
fixed icon controls, 108
list box controls, 105
multiline edit (MLE) controls, 98
overview, 95
push button controls, 109
radio button and radio button group controls,
102
single-line (SLE) controls, 96
single-line edit controls as data servers, 96

Adding Help to Your Applications
assigning help to a menu command, 219
assigning help to a window, 218
assigning help to controls, 219
attaching your help file, 216
creating help files, 224
F1, 215
help context property, 218
HelpRequest event system, 217
HelpRequest(), 217
implementing context-sensitive, 216
implementing direct calls to help

menu commands, 223

overview, 223
invoking context-sensitive, 215
invoking context-sensitve help, 220
invoking WinHelp, 217
overview, 215
shift+F1, 216
viewing help for a control, 221
viewing help for a menu command, 222
viewing help for a window, 221

App:Exec() method, 18

App:Quit() method, 18

Application Building Blocks, 15

Application design
building blocks, 19
cursors, 23
data fields, 20
data servers, 20
data tables, 19
data window

brower window, 20
overview, 20

data-aware controls, 21
detail subform, 20
developer-coded entities, 25
draw objects, 23
edit window, 20
entity types, 25
event handlers, 22
event-oriented methods, 27
help systems, 23
icons, 23
linking other building blocks, 26
linking primary building blocks, 24
master-detail edit window, 20
menus, 21
new window, 20
overview, 19
reports, 22
shell and dialog windows, 21
subform window, 20
system-generatied entities, 26
view window, 20

254 CA-Visual Objects South Seas Adventures

window controls, 21

Application details
code files, 31
compiler options, 31
components, 31
dependency information, 31
directory inormation, 31

Application environment
application options, 38
compiler options, 39
configuring, 38

Application modules, viewing, 40

Auto Layout
menus and toolbars, 121
windows, 90

Automated Make and Entity-Level Compiling, 32

B

Bitmaps
creating, 176
declaring as a resource, 175
declaring as a subclass, 176
instantiating an SSABitmap object, 176
overview, 175
SSABitmap, 176

Brower window, 20

Browse view mode, 80

C

CDecimal() function, 151

Check box controls
overview, 102

Child application windows, 79

Child servers, 63

Client data forms, 62

Combo box controls
creating, 99
invalid code entry disabled, 101
overview, 99

Compiling and testing changes, 93

Component entity level, 32

Component heirarchy
application level, 32

Component module level, 32

Context-sensitive help
definition, 215
implementation, 216

Control order and multiple groups, 112

Controls, dynamic positioning, 179

Creating a customer data server
importing a .DBF File, 49
importing an index, 51
invoking the DB Server Editor, 47
overview, 47
saving the data server, 53

Creating a data form
adding a push button, 91
Auto Layout, 90
compiling and testing your changes, 93
creating a data window template, 88
designing window layout, 90
importing a support module, 88
overview, 87

Creating a modal dialog box
overview, 84
retrieving values, 85
warning box modal dialog forms, 84

Creating and using windows, overview, 77

Creating Menus and Toolbars
attaching a menu to a data window, 133
changing toolbar position, 130
checking a menu item, 127
collapsing/expanding the menu structure, 123
creating a new menu, 120
creating a new module, 119
creting a toolbar, 128
designing a menu, 135
hierarchy

adding items, 123
changing menu items, 124
removing menu items, 125

menu shortcuts, 126
other modifications, 132
overview, 119
previewing menus, 122
putting it all together, 134
saving menus, 132
specifying menu actions, 125
SSAWindow event name, 126

Index 255

toolbar spacing, 131
using Auto Layout, 121

Cursor
creating and modifying, 166
importing, 167
predefined, 166

Customizing generated code, 117

Customizing Window Event Handlers
EditChange() method, 150
event methods, 149
NewPaymentWindow, 149
Notify(), 153
overview, 147
Queryclose event handler, 155
viewing your results, 152

CWhole() function, 151

D

Data forms
data propagation, 80
form and browse view modes, 80
overview, 80
server use, 80

Data propagation, 80

Data servers
attaching a field spec, 72
creating a customer data server, 47
methods compatible with the Xbase DML, 46
overview, 45
planning data server field properties, 71
saving, 53

Data tables, 19

Data validation, 81

Data Validation
disconnected controls, 81
overview, 81
using the Window Editor, 81

Data window, 20

Data-aware controls, 21

DataDialog forms, 79

DB Server Editor
description, 46
invoking, 47

Debugger, 205

Debugging Your Application
correcting the error, 212
Debugger, 205

introducing an error, 207
viewing the error, 206

Error Browser, 201
imported modules with errors, 202
resolving errors, 203

evaluating the expression, 211
locating the bug, 210
overview, 201
running the application with the Debugger, 209
setting debug on

at the module level, 208
overview, 208

Defining Field Specifications
attaching a field spec to a data server field, 72
creating and modifying, 70
creating field specs from the DB Server Editor, 74
overview, 69
planning data server field properties, 71

Detail subform, 20

Dialog forms, 78

Dialog windows, 21

Directory structure
overview, 29
SSATUTOR, 30, 31

Distributing Your Application
CA-Installer, 241
creating a project file, 246
creating and testing distribution disks, 247
creating disk images, 247
default installation directory, 244
default Start Menu folder, 244
destination directory, 245
generating an executable, 242
Install Maker

disk images, 243
disk size, 243
overview, 241

Intall Maker
using, 242

overview, 241
Program Item, 246
Program Item name, 246
specifying file properties, 245
specifying other files for installation, 244

DLL
copying modules between application, 236

256 CA-Visual Objects South Seas Adventures

creating a .DLL file, 238
creating a new DLL application, 236
including in an application, 239
overview, 236
using, 237
using a CA-Visual Objects .DLL, 238

E

Edit window, 20

EditChange(), 150

Entity Modules
Adventure:Data, 33
Adventure:Forms, 34
Adventure:Methods, 34
App:Misc, 34
App:Reources, 34
App:Start, 34
design considerations, 32
naming conventions, 33
Password:Forms, 34
SSAChild:Menu, 34
SSAShell:Forms, 34
SSAShell:Menu, 34

Error Browser, 201

Event handler methods, 27

Event handlers, 22

Event notification
broadcast message activation, 65
child servers, 63
client data forms, 62
manual, 64
overview, 62

Event-oriented methods, 27

Executable, 242

F

FieldSpec
attaching to a data server field, 72
creating, 71
creating from the DB Server, 74
invoking the editor, 70
properties, 71

Fixed icon controls, 108

Form view mode, 80

H

Help
creating, 224
project files, 224
topic files, 224

Help systems, 23

I

Icon
attaching to shell forms, 164
creating, 157
displaying on a window, 165
in the Program Group, 162
labeling your application, 162
saving, 160

Importing
applications, 37
DBF File, 49
index, 51
support module, 60

Inheritance and subclassing
creating a subclass, 116
customizing generated code, 117
overview, 115
parent, 115
subclass, 115
subclassing with generted code, 116
superclass, 115

Installing ODBC drivers, 54

Integrated Development Environment
IDE, 15
incremental development, 15
multi-tiered repository, 15

L

Libraries and Dynamic Link Libraries
libraries, 231

Libraries and Dynamic Link Libraries
application maintenance, 232

Index 257

building a library, 235
creating a new library application, 233
dynamic link libraries, 231
efficiency, 232
library distribution, 232
moving modules between applications, 234
overview, 231
using a library, 235

List box controls, 105

M

Manual event notification, 64

Master-detail edit window, 20

MDI
child application windows, 79
DataDialog forms, 79
dialog forms, 78
modal dialog forms, 79
modeless dialog windows, 79
overview, 78
shell forms, 78

Menu
attaching to a data window, 133
checking an item, 127
collapsing/expanding the menu structure, 123
creating, 120
designing, 135
hierarchy

adding items, 123
changing menu items, 124
removing menu items, 125

Menu Editor, 21
previewing, 122
saving, 132
shortcuts, 126
specifying actions, 125

Menu event methods, 27

Modal dialog forms, 79

Modeless dialog windows, 79

Module, creating, 119

Multiline edit (MLE) controls
moving the MLE control, 98
overview, 98
viewing your results, 98

Multi-tiered repository, 15, 31

N

Name-based linkages, 80

naming controls, 112

New window, 20

Notify()
creating the method, 153
overview, 153
viewing your results, 154

O

o, 18

Objects
App:Exec()method, 18
App:Quit()method, 18
braces {}, 18
creating, 18
defining, 17
description, 16
Init() method, 17
interaction, 17
methods, 17
runtime creation and destruction, 17
used in South Seas Adventures, 18
working with, 18

ODBC
administrator, 55
installing drivers, 54

OpeningDialogResize(), 174

P

Path-independent application
DB Sever data files, 251
drive and directory independence, 250
help files, 251
icon, cursor, and bitmap files, 253
overview, 249
query path, 253
Report Editor path, 252

Path-independent applications, creating, 31

Programming techniques
control order and multiple groups, 112

258 CA-Visual Objects South Seas Adventures

naming controls, 112
overview, 110
Tab and group stops, 110

Programming with servers
event notification, 62

broadcast message activation, 65
child servers, 63
client data forms, 62
manual, 64

importing a support module, 60
overview, 60
running the application, 62
Viewing the Server Source Code, 61

Push button
adding, 91
controls, 109
methods, 27

R

Radio button and radio button group controls, 102

Report Editor
adding fields, 189
customization, 189
header and footer, 191
overview, 182
parmeters, 193
passing parameters, 196
quick tour, 188
running within your application, 192
saving your work, 192
using the Report Editor, 182
verifying results, 198

Reports, 22

Repository Explorer, using, 35

Retrieving values, modal dialog forms, 85

Running applications, 62

S

SDI
overview, 77
top application windows, 77

SetSelectiveRelation, 64

Shell forms, 78

Shell windows, 21

Single document interface (SDI), 77

Single-line edit (SLE) controls
overview, 96
single-line edit controls as data servers, 96

Source code entities
assign, 17
methods, 17

South Seas Adventures
application building blocks

overview, 16
application design, 19
IDE, 14
importing the application, 37
MDI, 14
objects, 16
overview, 13
system operations covered, 13
you should know, 16

SQL Editor, 58

SQL Server, creating, 53

Subform window, 20

T

Tab and group stops, 110

Text objects, 178

Toolbar
changing position, 130
creating, 128
other modifications, 132
spacing, 131

V

View window, 20

Viewing a MDI Application
adding fucntionality, 82
overview, 82
shell form, 82

Viewing server source code, 61

Index 259

W

Warning box, modal form, 84

Win32 API Functions
calling, 227
definition, 227
overview, 227
windows metric information, 228

Window controls, 21

Windows Metric Information, retrieving, 228

Working with Draw Objects
bitmaps

creating a bitmap object, 176
declaring as a resource, 175
declaring as a subclass, 176
overview, 175
SSABitmap, 176

Bitmaps
instantiating an SSABitmap, 176

dynamic positioning of controls, 179
making the dialog box resizable, 173
overview, 171
text objects, 178
the resize event, 174
viewing the results in the application, 180

Working with Icons and Cursors
cursor

creating and modifying, 166
importing, 167
predefined, 166

icon
attaching to shell forms, 164
creating, 157
displaying on a window, 165
in the Program Group, 162
labeling your application, 162
saving, 160

overview, 157

	CA-Visual Objects 2.7 South Seas Adventures
	Contents
	Chapter 1: Introduction
	Welcome to South Seas Adventures!
	Using the Integrated Development Environment
	Creating the Application Building Blocks

	What You Should Know
	What Are Objects?
	What Can Objects Do?
	Are Objects Defined?
	How Are Objects Created and Destroyed?
	How Do Objects Interact?
	When Does It All Begin and End?
	How Are Objects Used in South Seas Adventures?

	South Seas Adventures Application Design
	Creating the Primary Building Blocks
	Data Tables, Servers, and Fields
	Data Windows
	Shell and Dialog Windows
	Window Controls
	Event Handlers
	Reports
	Help Systems
	Icons, Cursors, and Draw Objects

	Linking the Primary Building Blocks
	Completing the Remaining Building Blocks
	Developer-Coded Entities
	System-Generated Entities

	Linking the Remaining Building Blocks

	Begin Your South Seas Adventures...

	Chapter 2: Exploring the CA-Visual Objects 2.7 Integrated Development Environment
	Overview
	Choosing a Directory Structure
	The South Seas Directory Structure
	Creating Path-Independent Applications

	The CA-Visual Objects 2.7 Multi-Tiered Repository
	Application Component Hierarchy
	Automated Make and Entity-Level Compiling

	Grouping Your Entities into Modules
	Module Design Considerations
	Module Naming Conventions

	Exercise
	Using the Repository Explorer
	Importing the Application
	Configuring Your Application Environment
	Application Options
	Compiler Options

	Viewing the Application Modules
	Building the Application
	Running the Application
	Running the Program Dynamically
	Creating and Running an Executable File

	Summary

	Chapter 3: Working with Data Servers
	Overview
	Exercise
	Creating a Customer Data Server
	Invoking the DB Server Editor
	Importing a .DBF File
	Importing an Index
	Saving the Data Server

	Creating a SQL Server
	Installing ODBC Drivers
	The ODBC Administrator
	Using the SQL Editor

	Programming with Servers
	Importing a Support Module
	Viewing the Server Source Code
	Running the Application

	Event Notification
	Client Data Forms
	Child Servers
	Manual Notification
	Broadcast Message Activation

	Summary

	Chapter 4: Defining Field Specifications
	Overview
	Exercise
	Creating and Modifying Field Specifications
	Planning Data Server Field Properties
	Attaching a Field Spec to a Data Server Field
	Creating Field Specs from the DB Server Editor

	Summary

	Chapter 5: Creating and Using Windows
	Overview
	Single Document Interface Applications
	Top Application Windows

	Multiple Document Interface Applications
	Shell Forms
	Dialog Forms
	Modal Dialog Forms
	Modeless Dialog Windows
	DataDialog Forms
	Child Application Windows
	Data Forms
	Server Use
	Data Propagation
	Form and Browse View

	Data Validation
	Using the Window Editor
	Disconnected Controls

	Exercise
	Viewing a MDI Application
	The Shell Form
	Adding Functionality

	Creating a Modal Dialog Box
	Warning Box Modal Dialog Forms
	Retrieving Values from Modal Dialog Forms

	Creating a Data Form
	Importing a Support Module
	Creating a Data Window Template
	Designing Your Window Layout
	Adding a Push Button
	Compiling and Testing Your Changes

	Summary

	Chapter 6: Adding Controls to Your Windows
	Overview
	Exercise
	Single-line Edit (SLE) Controls
	Multiline Edit (MLE) Controls
	Moving the MLE Control
	Viewing Your Results

	Combo Box Controls
	Check Box Controls
	Radio Button and Radio Button Group Controls
	List Box Controls
	Group Box Controls
	Fixed Icon Controls
	Push Button Controls
	Programming Techniques
	Tab and Group Stops
	Control Order and Multiple Groups
	Naming Controls

	Summary

	Chapter 7: Inheritance and Subclassing
	Overview
	Exercise
	Customizing Generated Code

	Summary

	Chapter 8: Creating Menus and Toolbars
	Overview
	Exercise
	Creating a New Module
	Creating the Menu
	Using Auto Layout
	Previewing Your Menu
	Collapsing/Expanding the Menu Structure
	Adding an Item to the Hierarchy
	Changing the Hierarchy of a Menu Item
	Removing Menu Items from the Hierarchy
	Specifying Menu Actions to Perform
	SSAWindow Event Name

	Providing Menu Shortcuts
	Checking a Menu Item
	Creating a Toolbar
	Changing Toolbar Button Positions
	Spacing Between Toolbar Buttons
	Other Modifications to the Toolbar
	Saving the Menu
	Attaching a Menu to a Data Window
	Putting It All Together
	Designing a Menu
	Customizing a Menu
	Disabling Menu Items
	Editing Toolbar Buttons

	Summary

	Chapter 9: Accessing and Updating Data
	Overview
	Narrative
	Xbase Compatibility
	Access and Assign Methods
	Generated Data Server Classes
	Base DBServer and SQL Classes
	Data Forms
	Data Servers Attached to Data Forms
	Controls

	Summary

	Chapter 10: Customizing Window Event Handlers
	Overview
	Exercise
	Using the EditChange() Method
	Viewing Your Results

	Using the Notify() Event Handler
	Creating the Method
	Viewing Your Results

	Using the QueryClose() Event Handler

	Summary

	Chapter 11: Working with Icons and Cursors
	Overview
	Creating an Icon
	Saving the Icon
	Attaching Icons to Data Forms
	Labeling Your Application with an Icon
	Icons in the Program Group
	Attaching Icons to Shell Forms
	Displaying an Icon on a Window
	Using Predefined Cursors
	Creating and Modifying Cursors

	Summary

	Chapter 12: Working with Draw Objects
	Overview
	Exercise
	Making the Dialog Box Resizable
	The Resize Event
	Using Bitmaps
	Declaring a .BMP File as a Resource
	Creating a Bitmap Object
	Drawing a Bitmap on a Window

	Using Text Objects
	Dynamic Positioning of Controls
	Viewing the Results in the Application

	Summary

	Chapter 13: Reporting with the Report Editor
	Exercise
	Using the Report Editor
	Quick Tour
	Adding Your Personal Touch
	Saving Your Work
	Running Your Report Within Your Application
	Report Parameters
	Passing Parameters to the Report Editor from CA-Visual Objects
	Verifying the Results

	Summary

	Chapter 14: Debugging Your Application
	Error Browser Exercise
	Importing a Module with Errors
	Resolving the Errors

	Debugger Exercise
	Viewing the Error
	Introducing an Error
	Set Debugging On
	Set Debugging at the Module Level

	Running the Application Using the Debugger
	Locating the Bug
	Evaluating Expressions
	Correcting the Error

	Summary

	Chapter 15: Adding Help to Your Applications
	Overview
	Context-Sensitive Help

	Exercise
	Implementing Context-Sensitive Help
	Attaching Your Help File
	Assigning Help to a Window
	Assigning Help to a Control
	Assigning Help to a Menu Command

	Invoking Context-Sensitive Help
	Viewing Help for a Control
	Viewing Help for a Window
	Viewing Help for a Menu Command

	Implementing Direct Calls to Help
	Menu Commands

	Creating Help Files
	Topic Files
	Project File

	Summary

	Chapter 16: Using Win32 API Functions
	Overview
	Exercise
	Windows Metric Information

	Summary

	Chapter 17: Using Libraries and Dynamic Link Libraries
	Overview
	Libraries
	Dynamic Link Libraries

	Exercise
	Creating and Using a Library
	Creating a New Library Application
	Moving Modules Between Applications
	Building the Library

	Creating and Using a DLL
	Creating a New DLL Application
	Copying Modules Between Applications
	Using a DLL
	Creating a .DLL File
	Using a CA-Visual Objects .DLL

	Summary

	Chapter 18: Distributing Your Application
	Overview
	Exercise
	Generating the Executable
	Using the Install Maker
	Specifying Other Files for Installation
	Specifying File Properties

	Creating a Project File
	Creating Disk Images

	Creating and Testing the Distribution Disks

	Summary

	Appendix A: Creating a Path-Independent Application
	Establishing Drive and Directory Independence
	Help Files
	DB Server Data Files
	Report Files
	Icon, Cursor, and Bitmap Files

	Summary

	Index

