

Visual Objects
For

Windows 2000® and Windows XP®

Programmer’s Guide

Version 2.7

 Contents

Chapter 1: Introduction
What You Need to Know ...22

Metasymbol and Variable Name Prefixes ...22
General Syntax Conventions...24
General Typographic Conventions ...25

Getting Help...27

Chapter 2: From Character Mode to Windows
Application Behavior and Structure ..29
Multiple Users, Tasks, and Windows...31
User Interface ..32
New Tools for the New Approach ...33

Chapter 3: Program Structure and Flow
The Objectives ...35
Windows and Controls ...36

Ownership Relationships..36
Event Generation and Handling ...39
Types of Windows..41

Using Data Windows and Data Servers...43
Data Links ...43
Parallel Structure ...44
Business Processing...45
DataBrowser: A Spreadsheet-Like Table ..45
Form and Browse View ...46
Parallel Structure ...47
FieldSpecs ...47
Sub-Data Windows ...48

Command Events.. 49
Event Routing by Name .. 49
Control Flow .. 49
Multiple Instantiation .. 50
The Standard Application... 51

Database-Oriented Actions ... 52
Event Notification.. 53
Automatic Data Propagation .. 54

Visual Development Tools.. 55

Chapter 4: Standard Components—Classes, Objects, and
Libraries
Why You Need Components.. 57

What Is Architecture? .. 58
What Are Components? .. 58

Plugging Components Together... 59
Class Relationships... 59
Database Relations ... 61
Importance of Tree Structures ... 61
Summary ... 62

A Tour of the Visual Objects Components.. 63
Data Server Classes .. 63
GUI Classes ... 64
Classes for Annotation ... 65
Business Logic ... 65

You Can Develop Components.. 67

Chapter 5: Object Linking and Embedding
OLE Overview .. 69
Component Object Model (COM) ... 69

Basic COM Terminology.. 70
COM as an Object-Based Model ... 71
COM Interfaces .. 72
OLE and COM... 72
Issues of a Component-Based System .. 73

OLE 2 Features .. 77
Linking and Embedding .. 77
Controls and Control Containers .. 79
OLE Automation... 84

Contents iii

OLE Automation Collections ..90
Named Arguments ...91
OLE Automation and OCXs ...92

Putting OLE to Work ...96
The Sample Frame Work ..97
Inserting Objects ...98
Adding Paste and Link Support...101
Inserting Objects Using Drag-and-Drop..102
Showing Status Bar Messages...103
Using OLE in Databases..104

Chapter 6: Justifying Database Access Choices
Technology—Object-Oriented or Procedural ...108

Aliased References...108
Multi-Tasking, Multiple Documents...110
Object-Oriented Database Programming ...111
Referencing Multiple Databases Simultaneously..112
The Right Choice ..112

Database—DBF or SQL ..113

Chapter 7: Data Server Classes
Data Servers ..115
DBF Servers ..116
SQL Servers ..117

Field References in Object-Oriented SQL...118
Other SQL Operations ...118

Data Fields and Field Specifications ...119
Data Fields..119
A Data Field’s Relationship to Its Properties..120
How Data Servers Use Data Fields and Field Specifications121
How Data Windows Use Data Fields and Field Specifications..................................122

Other Data Servers ..122
Joining Tables ...123
Buffered Servers...123

iv Visual Objects Programmer's Guide

Chapter 8: Using DBF Files
Databases and Work Areas .. 125
Replaceable Database Drivers .. 126

Choosing an RDD... 127
Common Interface .. 127
Third-Party RDDs... 127

Language Overview .. 128
Commands vs. Functions vs. Methods .. 128
Which Approach to Use ... 131
Hybrid Programming ... 131
Record Scoping ... 132

Indexing ... 135
Relating Databases.. 136
Selective Relations .. 136
Undoing Changes... 137
Data Sharing ... 138

Compatibility... 138
Interoperability ... 139

Chapter 9: Concurrency Control
Using Shared Mode ... 141

When to Obtain Exclusive Use ... 142
Other File Open Operations .. 142
Retrying After an Open Failure... 142

Locking.. 144
File Locking .. 144
Record Locking ... 145
Unlocking .. 145

Resolving a Failure.. 146
Update Visibility ... 146

The Initiator .. 147
The Operating System and Other Processes.. 147
The Physical Disk ... 147
Abnormal Termination .. 147

Contents v

Chapter 10: Justifying User Interface Choices
The Terminal Emulation Layer ...149
GUI Classes...150
The Right Choice ..152

Chapter 11: GUI Classes
Events, Event Contexts, and Event Handlers ...153

Command Events ...154
Event Processing by Name ...154
The Window Handles Events ...157

The Shell and the Windows It Owns ..159
Programming the User Interface ..160
Window Relationships ...162

Controls..163
Menus ...164
Standard Dialogs..165
Data Windows ..165

Different Types of Data Windows ...166
Form and Browse View ..166
Resource-Driven Instantiation ..168
Symbolic Names ..168
Subclassing DataWindow ..169
Access to Values...169
Dynamic Instantiation ...171
Automatic Layout ...171
Linking a Data Window to a Data Server...171
Sub-Data Windows ..176

Using an Online Help System ..180
Specifying Keywords ..181
Associating Help Files ...181
Built-in Context-Sensitive Help ...182
Implementing Additional Help ...184

vi Visual Objects Programmer's Guide

Chapter 12: Other Features of the GUI Classes
Drawing Objects.. 187
Working with Controls .. 188
Transferring Data Using the Clipboard.. 189
Implementing Drag-and-Drop ... 189
Using Dynamic Data Exchange... 189

Overview of DDE Basics ... 190
Inter-Process Communication (IPC)... 192
Starting a DDE Conversation... 196
Starting Other Applications .. 197
Error Handling ... 198

Avoiding the Hourglass ... 199
Custom Events ... 200

Chapter 13: Printing
Reports .. 203

ReportQueue Class.. 203
Printing a Report.. 204
Customizing the Appearance of the Report Writer ... 205
Other ReportQueue Methods... 206

The GUI Classes .. 206
The Printer Class.. 206
Starting the Print Job .. 207
Handling PrinterExpose Events .. 207
Handling PrinterError Events .. 208

Changing the Default Printer and Settings... 208
Print Jobs and the Printers Folder... 209

Contents vii

Chapter 14: Error and Exception Handling
Exception Handling in GUI Applications ..212

Objectives ..212
The Right Level ...213
Structured Exception Handling ...214
Structure of Event-Driven GUI Applications ...215
Low-Level Exception Handling ...219
Exception Handling Architecture: A Summary ...220

Language Mechanisms...220
The SEQUENCE Construct ...221
The Error Object...225
The Error Block ...226

Chapter 15: File Handling
Naming Conventions ..231
The Defaults ..231
Runtime Configuration ..233

Environment Variables...233
Initialization Files ...233
Using Windows Defaults...234
Generated Source Code ..234

The FileSpec Class...235
The Default Directory ..236
String Manipulation ...237

Low-Level File Handling...238

Chapter 16: Hyperlabels
Purposeful Components ...239

Hyperlabel Properties..239
Interaction with Resources ...240
Use by the Status Bar ..241
Internationalization ...241
Use by Exceptions ...242

viii Visual Objects Programmer's Guide

Chapter 17: Operating Environment
Shared Libraries and DLLs .. 243

Shared Libraries .. 243
Dynamic Link Libraries.. 244
Using DLLs .. 245
Creating DLLs .. 246

Utilizing the Registry ... 248
Accessing the Registry from an Application ... 249
Managing Projects .. 249

Default Project.. 249
Multiple Projects .. 250
Sharing Project Components ... 250
The Project Catalog.. 250
Add/Delete Project ... 251

How to Distribute Your Application .. 251
Generating the .DLL and .EXE Files... 252
Other Files to Distribute ... 253
Location of Files .. 255

Chapter 18: Third-Party Components
Selecting Components... 257

Guidelines ... 257
Components as Capsules .. 258
Hypertext .. 258

Third-Party Market ... 258

Contents ix

Chapter 19: How the Visual Objects Two-Level Preprocessor
Works
Compilation ..261
Header Files ..262
How the CA-Clipper Compatible Preprocessor Works ..262
#command | #translate directive ...263

Syntax..263
Arguments..263
Description ...263
Notes...269
Examples ...269

#define directive ..271
Syntax..271
Arguments..271
Description ...272
Examples ...274

#ifdef directive..275
Syntax..275
Arguments..275
Description ...275
Examples ...276

#ifndef directive ..276
Syntax..276
Arguments..276
Description ...277
Examples ...277

#include directive ...277
Syntax..277
Arguments..277
Description ...278

#undef directive ..278
Syntax..278
Arguments..278
Description ...278
Examples ...279

#xcommand | #xtranslate directive ...279
Syntax..279
Arguments..279
Description ...280

x Visual Objects Programmer's Guide

How the Visual Objects Preprocessor Works .. 280
Why Commands? ... 280
Creating a .UDC File .. 281
Attaching a .UDC File ... 281
Compilation .. 281

Translation Rules ... 282

Chapter 20: Overview of Language Elements
The Parts of a Program .. 291
An Example Program ... 292

Entity Declarations.. 292
Variable Declarations.. 293
Instance Variable Declarations ... 294
Control Structures .. 294
Method Invocations and Instance Variable Access.. 295
Function Invocations .. 296
Command Invocations .. 296
Object Instantiation Statements... 296
Assignment Statements.. 297
Predefined Identifiers ... 298
Comments ... 299

Line Continuation .. 299
Multistatement Lines.. 300

Chapter 21: Data Types
String.. 302
Symbol .. 304
Numeric ... 305

Decimal Notation ... 306
Hexadecimal Notation... 307
Binary Notation... 307
Scientific Notation .. 308
Long Integer Notation ... 308
Negative Numbers .. 309

Date ... 311
Logic .. 312
NIL.. 313
VOID.. 314

Contents xi

Pointers ..314
Untyped Pointers..315
Typed Pointers ..317
Declaration of Typed Pointers ..318
Dereferencing Typed Pointers ..319
Pointer Arithmetic...319

Chapter 22: Variables, Constants, and Declarations
Terminology..321
Field Variables ..322

DBServer Field References..323
Aliased Field References ...323
FIELD Declarations and _FIELD Aliases ...324
Recap ..325

Dynamically Scoped Variables..325
Private ...326
Public ..328
Variable References..329
MEMVAR Declarations ..330

Lexically Scoped Variables ...331
Local ...331
Global ..334

Strongly Typed Variables ..335
Data Type Declarations ..336
Initial Values..338
Typing Parameters and Return Values...340
Class Names as Data Types...341
Structure Names as Data Types ...342
Variable Structure Alignment...343
Unions ...344
The USUAL Data Type...345

Constants...345
Declaration and Initialization ...346
Lifetime and Visibility ...346
Strong Typing...347

A Summary Table ...348

xii Visual Objects Programmer's Guide

Chapter 23: Operators and Expressions
Terminology ... 349
String Operators .. 350
Date Operators ... 351
Numeric Operators ... 353

Increment and Decrement Operators.. 355
Bitwise Operators ... 356

Logic Operators .. 358
Boolean Operators .. 358
Relational Operators .. 360

Assignment Operators .. 363
Assignments as Program Statements .. 364
Assignments as Expressions.. 364
Compound Assignments .. 364

Mixing Data Types.. 365
Automatic Type Conversion ... 365
Manual Type Conversion .. 366
Converting Typed Pointers .. 367
Type Casting ... 368

Special Operators ... 369
Parentheses... 369
Curly Braces.. 370
Subscript ... 370
Message Send .. 371
Dot .. 372
Alias Identifier.. 372
Macro.. 372
Reference .. 373

Expression Evaluation... 373
Precedence Levels... 374
Parentheses... 375

The Macro Operator .. 376
Text Substitution.. 376
Compile and Execute .. 377
Nesting Macros ... 379
Related Functions ... 379
Macros and Code Blocks... 382
When Not to Use the Macro Operator ... 383

Contents xiii

Chapter 24: Arrays
Dynamic Arrays ..385

Literal Arrays ...386
Limitations ...386
Creating Arrays ...386
Strong Typing...387
Addressing Array Elements ..388
Assigning Values to Array Elements...389
Multidimensional Arrays...390
Arrays as References...391

Dimensioned Arrays...393
Using the Array Operator on Typed Pointers ..394

Array Operator used Beyond the Third Dimension ...395

Chapter 25: Objects, Classes, and Methods
Classes ...397
Methods..398

Declaring ...398
Typing ...399
Visibility..399
Invoking..400

Instance Variables ...400
Declaring ...401
Assigning Initial Values ..402
Referencing ...402

Instantiation ..403
Virtual Variables ..406

Access and Assign Methods ..406
Encapsulation ...409

Inheritance ...410
The Class Tree ..410
Resolving Method Invocations..411
Referring to the Superclass ...412

Declaring Object Variables ...412
Binding of Instance Variables...413

Early or Late Bound ...414
Overloading Instance Variables ...415

xiv Visual Objects Programmer's Guide

Binding of Methods ... 417
Typed Early Bound Methods... 418
Typed Method Restrictions and Pitfalls ... 421

Objects as References.. 422
Equal Operator ... 422
Objects as Parameters ... 422

Destroying Objects.. 423
Using Arrays of Objects ... 424
Operator Methods .. 425

Chapter 26: Code Blocks
Literal Code Blocks ... 429
Creating Code Blocks ... 430

Declaration... 430
Strong Typing .. 431

Evaluating a Code Block... 432
Variable Scoping in Code Blocks ... 433

Creating Variables .. 433
Exporting Local Variables.. 433

Macros and Code Blocks... 434
Macro Expansion in Code Blocks ... 434
Runtime Code Blocks.. 435

Chapter 27: Functions and Procedures
Defining ... 438

Visibility ... 438
Parameters and Return Values ... 438
Calling Conventions... 439
Declarations .. 440

Function Pointers ... 440
The Function Body.. 442
Calling... 443

Default Parameters.. 443
Functions with Variable Number of Parameters .. 444
Arguments ... 445
Recursion .. 447

Argument Checking .. 448

Contents xv

Appendix A: RDD Specifics
Specifications ...449
The DBFBLOB Driver..452

Using DBFBLOB as an Inherited Driver..453
Using DBFBLOB Via DBFCDX..453

Appendix B: Reserved Words

Index

xvi Visual Objects Programmer's Guide

Chapter

1 Introduction

Note: For detailed information about the new Visual Objects class libraries, as
well as updates to existing classes, properties, and methods, refer to the Visual
Objects Help.

The Programmer’s Guide is loosely divided into three parts:

■ Chapters 1-3, Moving from Character Mode to Windows, gives you an overview
of developing applications in Visual Objects, focusing in particular on the
differences between programming in the DOS and Microsoft Windows
environments.

■ Chapters 4-19, Subsystems is about components. It contains a general
discussion of the concept of components and how they fit into the
architecture of Visual Objects and then goes on to discuss the standard
components in detail.

■ Chapters 20-27, Language Elements and Program Structure is a combination of
reference material and programming topics. It contains specific information
about the Visual Objects language that you will not find in any of the other
reference guides, such as specifics on data types and operators. It also
presents other aspects of the language by grouping together components that
are more exhaustively defined in other reference guides.

This guide is organized into the following chapters and appendices:

Moving from Character
Mode
to Windows

Chapter 1, Introduction, details the conventions and symbols used in
presenting the information in this guide. Because they are vital to your
understanding of this guide, it is highly recommended that you take the time to
familiarize yourself with them.

Chapter 2, From Character Mode to Windows, discusses some of the major
differences between programming in a character mode environment and
Windows.

Chapter 3, Program Structure and Flow, discusses how to properly structure a
Visual Objects application and explains how the visual development tools help
you build such an application.

Chapter 1: Introduction 19

What You Need to Know

Subsystems Chapter 4, Standard Components—Classes, Objects, and Libraries, discusses
the standard components in Visual Objects and describes the framework for
constructing, modifying, and using them.

Chapter 5, Object Linking and Embedding, discusses the use of object linking
and embedding (OLE) in Visual Objects. With the support of OLE 2.0 in Visual
Objects, you can use a whole world of pre-built ready-to-use components
provided by the third-party community.

Chapter 6, Justifying Database Access Choices, outlines the issues involved in
choosing a database access format and a programming technique (object-oriented
or procedural) for applications that use DBF files.

Chapter 7, Data Server Classes, provides an overview of the built-in data server
classes, discussing the common philosophy behind their designs and suggesting
ways to exploit the similarities in order to make your applications as
data-independent as possible.

Chapter 8, Using DBF Files, provides an overview of using DBF files from both
the procedural and the object-oriented perspectives.

Chapter 9, Concurrency Control, tells you how to access database files in
shared and exclusive mode, how to obtain and release locks in shared mode, and
how to resolve locking and file open failures.

Chapter 10, Justifying User Interface Choices, outlines the issues involved in
choosing a user interface programming technique—terminal emulation or
Graphical User Interface (GUI) classes—for your applications.

Chapter 11, GUI Classes, describes the standard components of Visual Objects
that deal with the GUI classes, focusing on the some of the more common
arrangements and uses of windows in GUI applications.

Chapter 12, Other Features of the GUI Classes, discusses some less typical
ways in which to use the GUI classes in your applications.

Chapter 13, Printing, discusses the various printing techniques that you can use
in your applications.

Chapter 14, Error and Exception Handling, discusses the requirements for
making an application robust and limiting the impact of exception conditions, as
well as the reasons why traditional thinking needs to be extended to
accommodate the complex structures of modern applications. It then describes
the solution for exception handling in Visual Objects.

Chapter 15, File Handling, deals with the issue of handling files in your
programs.

20 Visual Objects Programmer's Guide

What You Need to Know

Chapter 16, Hyperlabels, describes how the information in an object’s
hyperlabel is used by the system at runtime.

Chapter 17, Operating Environment, discusses both the development and
delivery platforms; topics include using DLLs and how to distribute an
application.

Chapter 18, Third-Party Components, weighs the decision of developing or
buying a new component and discusses the implications of buying third-party
components.

Chapter 19, How the Visual Objects Two-level Preprocessor Works,
describes the Visual Objects two-level preprocessor that consists of a Clipper
compatible preprocessor and the Visual Objects preprocessor.

Language Elements
and Program Structure

Chapter 20, Overview of Language Elements, introduces you to the basic
language elements that go together to make up a program.

Chapter 21, Data Types, helps you analyze your data and choose appropriate
data types from those that are available in the language.

Chapter 22, Variables, Constants, and Declarations, introduces you to
variables and constants, shows you how to create and declare them, and explains
how they come to be associated with a particular data type.

Chapter 23, Operators and Expressions, defines all of the operators that are
available to you and shows you how to use them to build expressions.

Chapter 24, Arrays, explains the array data type in greater detail and discusses
how to use arrays.

Chapter 25, Objects, Classes, and Methods, explains the object data type in
greater detail and discusses the language components that you will need to
create objects and use them in an application.

Chapter 26, Code Blocks, explains the code block data type in greater detail and
discusses how to use code blocks.

Chapter 27, Functions and Procedures, provides a brief discussion of procedural
programming in terms of defining and using functions and procedures in an
application.

Chapter 1: Introduction 21

What You Need to Know

Appendix A, RDD Specifics, presents a table of specifications for the various
RDDs supplied with Visual Objects.

Appendix B, Reserved Words, lists all reserved words in the Visual Objects
language in alphabetical order.

Index

What You Need to Know
This guide is intended to help programmers understand the implications of
programming in the Windows environment and assumes that you have a basic
knowledge of DOS programming.

In addition to an understanding of basic programming concepts, this guide
assumes that you are familiar with Windows terminology and navigational
techniques, including how to work with standard Windows items like menus,
dialog boxes, the Clipboard, and the Control Panel. If you are unfamiliar with
Windows, please refer to your Windows documentation before using Visual
Objects.

Some of the chapters build on information presented in other chapters. Chapter
22, “Variables, Constants, and Declarations” for example, assumes you
understand the material presented in Data Types Where this is the case, the
dependencies will be discussed in the introductory sections of the chapters.

In order to properly interpret syntax and programming examples, you will also
need to understand certain standard conventions, which are described in the
following sections.

Metasymbol and Variable Name Prefixes

Prefixes are used in syntax to denote the data type of parameters and arguments
and in examples to denote the data type of variables and constants. The prefix of
a variable name always appears in lowercase, followed by a logical descriptor in
mixed case.

For example, cCustomerName is a string holding a customer name, cbEval is a
code block to evaluate, and nRecordNumber is a record number.

22 Visual Objects Programmer's Guide

What You Need to Know

The prefixes are shown in the following table. For more information on a
particular data type, refer to Data Types

Prefix Represents

a
a<type>

ARRAY
The <type> indicates the data type of the array elements and may
be any prefix listed in this table. For example, acNames
represents an array of strings and adwWords represents an array
of double words.

b BYTE

c STRING (can also be a memo field)

cb CODEBLOCK

d DATE

dw DWORD

f FLOAT

i INT

id Literal identifier

k System-defined constant

l LOGIC

li LONGINT

n Numeric

o OBJECT

psz PSZ

ptr PTR

r4 REAL4

r8 REAL8

si SHORTINT

struc STRUCTURE

sym SYMBOL

u USUAL Used when more than one data type is allowed.

w WORD

Chapter 1: Introduction 23

What You Need to Know

x<type> Either a literal identifier or an expression enclosed in parentheses
(called an extended expression). The <type> indicates the data
type of the value and may be any prefix listed in this table. For
example, xcFileName is an extended string expression.

General Syntax Conventions

The following conventions are used to represent particular conditions in the
syntax:

< > Indicates an item you supply (like a variable name). For example, you would
supply an alias name specified as an extended character expression for the
following syntax representation:
CLOSE <xcAlias>

such as:
CLOSE Customer

or:
CLOSE (cDataFile)

() If shown within syntax representation, parentheses are required. For example,
given the following syntax representation:
SetDeleted(<lToggle>)

The following command would be acceptable:
SetDeleted(TRUE)

but the following would not:
SetDeleted FALSE

, Separates arguments and must be entered as shown. Two consecutive commas
in a function, method, or procedure call indicate that an argument is being
omitted.

[] Indicates an optional item or list of items. (If you enter the optional item, do not
type the brackets.) In the following syntax representation, the keyword STATIC
is optional:
[STATIC] DEFINE <idConstant> := <uValue>

Thus, both of the following statements would be acceptable:
DEFINE ONE := 1
STATIC DEFINE TWO := 2

24 Visual Objects Programmer's Guide

What You Need to Know

Square brackets are also used to define the number of elements in each
dimension of an array syntax specification. When shown as part of an array
specification, they are a literal part of the syntax and must be entered as shown.

→ Used in function and method syntax representations to indicate the type of value
returned. In the following example, the return value for the AllTrim() function is
cTrimString:
AllTrim(<cString>) → cTrimString

... Indicates that you can repeat the preceding element. In this syntax
representation, your can specify several TO...INTO clauses:
SET RELATION TO [<uRecID> INTO <xcAlias>]
 [, [TO] <uRecID> INTO <xcAlias>...]

Also used to indicate intervening code:
BEGIN SEQUENCE
 < ents>... Statem
 IF lBreakCond
 BREAK
 ENDIF
RECOVER
 < ryStatements>... Recove
END SEQUENCE

| Separates a list of mutually exclusive choices—you must choose one. For
example:
SET DELETED ON | OFF
SET ORDER TO <nPosition> | TAG <xcOrder>

@ Indicates that an argument must be passed by reference. The @ symbol is a
literal part of the syntax and must be entered as shown. For example, for the
following syntax:
FRead(<ptrHandle>, @<cBufferVar>, <nBytes>)

you might enter:
FRead(ptrFileOne, @cTextBuff, 254)

General Typographic Conventions

This guide employs several typographic conventions (such as capitalization or
italic formatting) to distinguish between language elements and discussion of
them.

Key Names The names of keys, such as Enter, Ctrl, and Del, appear in the document as they
do on your keyboard, where possible.

Chapter 1: Introduction 25

What You Need to Know

Note that when referring to the four arrow keys as a group, they are referred to
as Direction keys; however, the name of each Direction key (for example, Up
arrow or Left arrow) is used when referring to them individually.

Key Combinations Whenever two keys are joined together with a plus (+) sign (for example,
Ctrl+R), you should hold down the first key while pressing the second key to
complete the command. Release the second key first.

Key Sequences When keys are separated by a comma (,), press them in the sequence indicated.
The keystroke sequence Alt+E, C, for example, indicates that you should hold the
Alt key down while pressing the E key, release them both, and then press and
release the C key.

UPPERCASE The following appear in uppercase:

■ Commands (like CLEAR MEMORY)

■ Keywords (for example, AS, WORD, and INT)

■ Reserved words (for example, NIL, TRUE, and FALSE)

■ Constants (for example, NULL_STRING and MAX_ALLOC)

Mixed Case / Initial
Capitalization

The following are displayed using mixed case:

■ Function, method, and procedure names (like
SetDoubleClickTime() and Abs())

■ Class names (for example, TopAppWindow and DBServer)

■ Variable names (for example, oTopAppWindow and nLoopCounter)

Italic Variable names are displayed in italic in syntax (for example, Abs(<nValue>))
and when referring to them in the discussion text.

Cross References The following conventions are used:

■ Guide name in italic:

 See the IDE User Guide.

■ Part name in single quotes:

 See ‘Subsystems’ in the Programmer’s Guide.

■ Chapter name in double quotes:

 See “Creating an Application” in the IDE User Guide.

■ Section name as it appears in the document:

 Also see the Saving a Program section.

26 Visual Objects Programmer's Guide

Getting Help

Getting Help

Visual Objects provides online Help, which can be used to
display information on your console as you work. You can use
any of the following Help menu commands:

Menu Command Description

Index Displays an index of available help topics
about the Visual Objects language and IDE.

Context Help Allows you to get context-sensitive help for
an item or area currently displayed on your
screen.

How to Use Help Describes how to use the Windows online
Help system.

In the IDE you can also receive context-sensitive help for a menu or menu
command by pressing either the F1 key or the Shift+F1 key combination. Press
Shift+F1 to receive context-sensitive help for most dialog boxes and windows.

Additionally, when the Source Code Editor is open, you can receive
context-sensitive help for the keywords, commands, classes, and functions in a
selected module or entity. Simply highlight the keyword, command, class, or
function and press the Shift+F1 key combination.

Chapter 1: Introduction 27

Chapter

2 From Character Mode to Windows

GUI: Graphical
User Interface

If you are used to developing programs in a character mode
environment, you will undoubtedly find Windows
programming different. Windows is a Graphical User Interface
(GUI). Things behave differently. Users expect different
things. The ambition level for a Windows application is higher.
Things you never considered before are now par for the course.

Programming in this new environment has both good and bad sides. There are
wonderful new toys, new opportunities, and new ways to structure the
solutions, and the end result can be much more satisfying—to you and to your
clients. On the other hand, there are new programming challenges to overcome,
new terminology to learn, and new ways to make mistakes.

By discussing some of the major differences between programming in character
mode and Windows, this chapter gives you some general ideas of the challenges
you face when programming for a GUI environment.

Chapter 3, “Program Structure and Flow,” takes those issues one step further,
offers specific programming solutions for creating a high-quality, well-behaved
GUI application in Visual Objects.

Application Behavior and Structure
Most applications designed to run in a character mode environment have the
same basic hierarchical structure, in which higher-level routines call lower-level
routines based on user input, such as menu selections.

In such a hierarchical application, the program is in control, not the user. The
user has certain flexibility in choosing what path to take, but the application has
complete control over the sequence of events and what paths are available to the
user.

For a character mode application, this hierarchical structure works well.
However, it is not well suited for a Windows application. Applications designed
like this can certainly be made to run in the Windows environment, but they do
not behave the way users have come to expect a Windows application to behave.

Chapter 2: From Character Mode to Windows 29

Application Behavior and Structure

This is because in a Windows application, the user, not the program, controls the
sequence of events. Decisions, such as the order in which fields should be filled
or even if they should be filled at all, are made by the user. While editing a
record in one window, the user might jump to another window to edit a different
record, open a new window to add another record, or switch to another
application that might work on the same database.

Event: Something that
happens (particularly
user input)

In Windows, actions—like opening a file or printing a
document—are referred to as events. For example, when the
user clicks a toolbar button or chooses an item from a menu,
he/she generates an event.

Event-driven:
Application that is
controlled by events at
any time (particularly
user input)

Windows applications, therefore, are said to be event-driven,
because the events generated by the user dictate what happens
in the application. This is contrary to character mode
applications, in which the program has control.

For a well-behaved Windows application to be event-driven,
the program structure of the application must turn “inside
out.” Rather than a traditional hierarchical structure, it must
execute in tiny atomic units that can start up at any time, do
their task quickly, and finish. The higher-level routines do not
call the lower-level ones directly. Instead, they yield control to
the GUI environment, which in turn dispatches events to the
various action routines, the event handlers. Such an
event-driven application has no life except in these event
handlers: all activity in the application occurs in response to
events passed on from the operating system.

This type of behavior requires very modular programming. Unless the event
handlers are well isolated from one another, there is no way to manage the
behavior of the program: side effects will spread like rings on a pond, with
interactions multiplying explosively and unpredictably.

It also requires very “defensive” programming. No piece of code can make any
expectations about its environment. Just because the situation was good a
moment ago, you cannot assume it is good now—who knows what happened in
the interim?

In summary, porting a character mode application to the Windows environment
without making significant modifications is possible, but if you want to design a
well-behaved Windows application, you must structure it differently. Good
structure is the key to developing a successful Windows application.

30 Visual Objects Programmer's Guide

Multiple Users, Tasks, and Windows

Multiple Users, Tasks, and Windows
Another difference between a character mode environment and Windows is that
a Windows application must be designed with multi-user situations in mind,
even if it will be used only on a stand-alone computer.

Under DOS, it is possible to program an application for a single user. Because
DOS is basically a single-user, single-task operating system, you can know
exactly what to expect. If the application is not designed for a network, you can
ignore interaction with other programs.

On the other hand, under Windows, even a single user operating on a
stand-alone computer, requires that applications are designed for a multi-user
(actually multi-tasking) environment. For example, the user may want to access
the same database with multiple applications (or multiple instances of the same
application).

MDI: Multiple
Document Interface

Indeed, even a single application can do many things at the
same time. Most Windows applications, for example, have a
Multiple Document Interface (MDI). You can open multiple
documents (databases, records, or whatever) into multiple
windows and work with them simultaneously. You can even
open the same document in several different windows, without
fear that one window will lose track of what you are doing in
another one.

Think about the implications of this. Allowing a user access to multiple records
might mean accessing several orders for the same customer (or different
customers) at the same time. This means that you must open the same database
in multiple work areas, present each work area in a separate window, and keep
independent positions and record locks.

Concurrency control:
Managing conflicts
between different
programs or tasks

It means that both the window and the program that does the
work must be self-contained units that can exist in several
copies without “stepping” on themselves. It means that
windows must be notified when another window that looks at
the same or related data does something, such as moving or
changing the data. The program must protect against
conflicting access and data corruption—this is called
concurrency control.

The problem lies in the fact that although most Windows applications need
behave like this, few Windows development systems make it easy to do.
Designing a robust, multi-user application in which each individual component
can safely coexist with itself is not so easy—you need to obtain record locks or
file locks, or open files exclusively, and alert the user when data is inaccessible.
In this area, traditional hierarchical programming techniques are woefully
inadequate.

Chapter 2: From Character Mode to Windows 31

User Interface

In summary, because Windows is a multi-tasking environment, your
applications must provide solutions for concurrency control and the
multi-instance scenario presented here.

User Interface
Finally, there is the issue of user interface. Users have come to expect that their
Windows applications have a particular look and feel about them.

Part of the user interface issue is simply appreciating the distinction between
programming a character-based user interface and programming a graphical
one. The purpose of the GUI is to increase bandwidth. That is, to increase the
amount of usable information the user can view at one time and to increase the
speed with which the user can cause the application to do something.

You increase the bandwidth by presenting information in the form of graphs or
pictures. Even when you present text, you can convey more information by
using color, type styles, and other forms of decoration and by placing the text in
meaningful groupings. You also increase the bandwidth by enabling the user to
exercise more flexible control.

Another point to factor into the user interface issue is that while the Visual
Objects terminal emulation layer gives you basic compatibility and support for
DOS-style terminal I/O, you need to realize that users’ expectations are much
higher than they were in the DOS world. As a developer, your ambition level
must rise to meet those expectations—for example:

� Modal menus in which the user must make one selection that is exclusive of
all others are no longer acceptable. Users want menu access to do anything
the application has to offer at any time, no matter what else they may be
doing at the time.

� Users expect to operate your application without the manual and, at the
same time, expect speed, convenience, and power.

� Every menu item, every button, and every control must be labeled, display a
descriptive message when selected, and have online help.

� Mouse support is no longer an option, it is a requirement.

� Applications that take over the CPU and do not yield control to other
applications when asked are not acceptable.

And it is not just ease-of-use or ergonomics. Applications are supposed to be
pretty. You must deal with color choices, typography, layout, and the latest
design fads. As if programming was not hard enough, there are entire texts to
read on the subject of user interface design.

32 Visual Objects Programmer's Guide

New Tools for the New Approach

In short, users expect applications to take full advantage of the Windows
environment and to provide as many bells and whistles as possible, without
compromising speed or integrity. They expect a simple and predictable look and
feel with both power and flexibility. However, accomplishing this is not at all
simple for the developer.

New Tools for the New Approach
Despite all we’ve said in this chapter, it’s not all bad news. Meeting the
challenges of Windows programming using traditional tools and techniques is
hard indeed, but the new tools of Visual Objects take care of many of the details
for you (you’ll learn more about this in the next chapter).

While you must still deal with the design challenges, the Visual Objects tools set
up a framework for you and automatically take care of many of the more
complex tasks, such as memory management, event routing, multi-tasking, and
concurrency control. This enables you to focus on the business tasks and on the
appearance and behavior of your solution.

Chapter 2: From Character Mode to Windows 33

Chapter

3 Program Structure and Flow

To describe what it is like to program in Visual Objects, you must look at a
number of aspects: the IDE and its repository, the programming language itself,
the visual development tools, and the class libraries. However, the most
important aspect of the system is the structure and control flow of a prototypical
application.

In fact, the principal difference between a traditional Xbase application and a
Visual Objects application is the way in which they are structured. The language
you use to write your business logic is familiar and the database operations are
the same (even though you have the option to dress them up in an
object-oriented “wrapper”). The program structure, however, is different.

This chapter discusses how to properly structure a Visual Objects program and
explains how the visual development tools help you build such an application.
After reading it, you will see how the class libraries provided by Visual Objects
are designed to facilitate programming a GUI-based, event-driven, MDI
application, as well as how the IDE tools leverage the class libraries to generate
code that is not only usable but pedagogical.

The Objectives
Visual Objects is aimed at producing a full-fledged Windows application. This
means:

■ Multi-document interface, with no constraints on opening several databases
or the same database in different windows

■ Event-driven operation, with no limitations on user flexibility and control

■ Top-flight graphical appearance

■ Full-fledged annotation, prompting, and help

■ Support for Windows conventions and subsystems, such as clipboard,
drag-and-drop, and help

■ Self-configuring behavior

Chapter 3: Program Structure and Flow 35

Windows and Controls

■ Maintainability, allowing extension of the system without destabilizing it or
requiring wholesale changes

This is a high ambition level that you cannot realistically reach if you must
program every detail explicitly. With Visual Objects, you get a development
system that takes care of the implementation details, allowing you to concentrate
on the business solution. In this system, object orientation holds the key, and the
class libraries provide built-in support for these expectations.

The prototypical application is based on four class libraries: the RDD and SQL
class libraries for database processing, the GUI Classes library for user interface
processing and the OLE library for object linking and embedding. These libraries
are designed to work together and are interconnected through automatic routing
of message traffic and event notification. You need not be concerned with the
details of the relationship, but it is good to know which things you do not have to
worry about.

Windows and Controls
To understand the structure and control flow in an event-driven, multi-instance
application, you need to look at the components that make up a program. Rather
than looking at code and calling sequences, you will examine the different objects
and their relationships to each other. Later, you will see how these relationships
are embodied in code.

Ownership Relationships

Everything in a Visual Objects GUI application has an owner. Each owned object,
by convention, can tell you who its owner is via a property called Owner. This is
a very important concept that controls much of the action in the application.

Consider a typical MDI application, with a shell window and a number of child
windows. The shell is owned by the App, an invisible object that controls the basic
event processing of the system:

36 Visual Objects Programmer's Guide

Windows and Controls

App

owns

Shell
Window

Child
Windows

owns

On the window sit controls of many types, from simple text fields (also called edit
controls) to push buttons and spreadsheet-like tables:

App

owns

Shell
Window

Child
Windows

owns

ownsowns

Controls

Windows also own menus and toolbars in a similar structure.

Chapter 3: Program Structure and Flow 37

Windows and Controls

Meaning of Ownership Relationships

The ownership relationships hold the key to many important aspects of the
application, from message routing, to the display of prompts and diagnostics, to
error handling.

In an object-oriented application, these relationships serve much the same role
that the call stack serves in a procedural program. Under event-driven
execution, the action routines are called from the dispatcher, so returning up the
call stack does not lead to a component with larger knowledge of the application.
To reach the higher authorities, those parts of the application with broader
knowledge, you look to your owner rather than your caller.

Visual Signs of Ownership

Ownership is not necessarily reflected in the visual display: while an MDI child
window can own a menu, under the Windows convention this menu is actually
displayed in the shell window. The ownership affects operation: as different child
windows are created or switch focus, the menu in the shell window changes to
reflect the type and status of the currently active child.

(Of course, in most cases the controls that a window owns are also displayed
within the window, and the child windows that a shell window owns are
displayed within it. Such a visual relationship is common, but not necessary, to
an ownership relation.)

Ownership vs. Inheritance

Note that in the preceding diagrams, the relationship depicted is ownership and
not class hierarchy. The distinction is represented by two different verbs, has-a
and is-a. “A shell window has a child window” is a correct statement, but “a shell
window is a child window” is incorrect.

Ownership is a dynamic, runtime relationship between objects, while inheritance
is a static, compile-time relationship between classes. Both ownership and
inheritance are one-to-many: each object has only one owner and each class has
only one parent, but an object can own many things and a class can have many
subclasses.

Client-Server Another important relationship is uses-a, which reflects the client-server
relationship (a client uses a server). You can say, for example, that “a child
window uses a data server.” Like has-a, uses-a is a one-to-many (each client can
have only one server, although each server can have many clients), runtime
relationship, but it does not necessarily imply ownership. (These and other
relationships are discussed in greater detail in Chapter 11, “GUI Classes”.)

38 Visual Objects Programmer's Guide

Windows and Controls

Event Generation and Handling

In a Visual Objects application, the controls that sit on a window (such as push
buttons, list boxes, or menu items) own data and initiate events. For example,
clicking on a push button generates a command event.

It is important to note that the controls themselves do not perform any serious
processing logic—that belongs instead to the event handlers, or methods, of the
window that owns the controls:

App

owns

Shell
Window

Child
Windows

Methods

owns

ownsowns

has

Controls

It is natural and correct to think of the controls as generating the events.
However, internally, events are actually directed first to Windows and then to
Visual Objects before being dispatched to the window and ultimately its event
handlers for processing.

Chapter 3: Program Structure and Flow 39

Windows and Controls

This idea is illustrated below:

Events

Windows

App

owns

Shell
Window

Child
Windows

Methods

owns

ownsowns

has

Controls

 Visual

Dispatcher
Objects

For example, since clicking on a push button generates a command event, a push
button labeled “OK” might be used to close a dialog window after the user is
finished with it. To handle the command event generated by this push button,
its owner dialog window would need a method that would take care of shutting
itself down.

A window can have other components that generate events or display
information, such as a menu, a toolbar, and a status bar. As with controls, these are
secondary—the window does the processing. The Visual Objects dispatcher, in
combination with the default methods of the GUI classes, ensure intelligent
routing of the events to the object that is interested..

Smart Windows, Dumb
Controls

This arrangement—controls generating events and windows
processing them—is one of the key structural principles of the
GUI classes provided by Visual Objects: that of “smart”
windows and “dumb” controls.

This is not the only possible way to arrange the logic of an application (it is
possible to attach event handlers to controls). But this approach has several
important advantages:

� It facilitates data sharing within the processing logic.

� It sets up natural scoping and referral rules.

� Perhaps most important, it fits with a traditional concept of what a program
is and thus minimizes the conceptual relearning required. Because the
windows own both the data and the code that works on it, everything is
naturally connected.

40 Visual Objects Programmer's Guide

Windows and Controls

Do not look down on the dumb controls, however. They are not all that dumb.
For example, many controls, such as push buttons, edit controls, toolbar buttons,
and menu items, have a Description property, which is a textual prompt that
appears in the status bar. When a user goes to one of these controls, the control
signals this focus change and causes the prompt to be displayed in the status bar.
These controls also have a Help Context property that can be used in an
context-sensitive, online Help system. When a user requests context-sensitive
help about one of these controls, the control starts up the help system at the
appropriate topic.

Types of Windows

There are six main kinds of windows, each of which is implemented as a class in
the GUI Classes library. They are introduced individually in the following
section.

TopAppWindow

TopAppWindow is the top window of a Single Document Interface (SDI)
application. It is structured around displaying one document (for example, file
or record) at a time.

SDI applications are the closest to traditional DOS applications and are relatively
rare in GUI environments.

ShellWindow

ShellWindow is the main window in an MDI application. MDI is the Windows
convention for structuring an application around the presentation of multiple
documents simultaneously in many windows.

MDI applications typically use a shell window (based on the ShellWindow class)
as the main, or owner, window. The documents that are opened in the shell
window are referred to as child windows. Child windows are “owned” by the
shell and are typically derived from either the ChildAppWindow or
DataWindow class.

Note: While MDI is a specific convention for Windows, other GUI environments
support applications that are structured in a similar way from a logical
perspective, even if the visual presentation is different.

Chapter 3: Program Structure and Flow 41

Windows and Controls

ChildAppWindow

ChildAppWindow is a “child” window in either an MDI or an SDI application.
In the former, child windows are usually owned by the shell window and in the
latter by the top window.

DialogWindow

DialogWindow is a secondary, usually transient, child window used to collect or
display utility information. Dialog windows can be modal or modeless. They
are most often modal, which means that the user must respond before the
application can proceed (menus and controls in other windows are unavailable
while a modal dialog window is open). Modeless dialog windows do not impose
this constraint and can, therefore, stay open longer.

Any kind of window can own a dialog window, including other dialog windows
(the standard Print dialog which can usually call a Setup dialog is an example of
nested dialogs).

It might appear that the difference between a modeless dialog window and a
child window is small, and, visually, this is indeed the case (although there are
some visual clues such as the standard border treatment).

The main difference lies in how they behave by default and in how they are
intended to be used. For example, the child windows currently open in an MDI
application are typically listed in the Window menu and can be rearranged with
the Tile and Cascade menu commands. This is not the case for dialog
windows—whether modal or modeless, they are independent of the MDI
structure.

DataWindow

DataWindow is used to represent a data-aware window: this type of window can
optionally be connected, or linked, to one or more databases. When connected to
a database, a data window “knows” about the database upon which it is
intended to operate: the controls that sit on the window—simple edit controls as
well as spreadsheet-like tables—are connected to fields in the database.
Furthermore, the data window has built-in behavior for standard operations,
such as Skip Forward and Skip Backward, Go Top and Go Bottom, and Delete
and Insert.

In most database applications, the data windows represent a significant portion
of the business logic; therefore, this type of window is discussed more fully in
the next section.

42 Visual Objects Programmer's Guide

Using Data Windows and Data Servers

DataDialog Window

DataDialog windows can be created either be modal or modeless. They can also
have a data server attached to them. There is no real benefit to creating modal
DataDialog windows because their behavior would be almost identical to that of
Datawindows.

Using Data Windows and Data Servers
A data window can be used as a top window, a child window, or a dialog
window. When it is instantiated, the data window determines its context and
creates the type of underlying window it needs. Thus, if the owner of the data
window is an application, it acts as a top window; if the owner is a shell window
(which is the most common configuration), it acts as an MDI child window; in
other cases, it becomes a dialog window.

This is important and bears repetition: once you have defined a data window,
you can use it all by itself, creating a simple application with only this window.
Or you can combine it with other windows and allow opening as many copies as
you want under a shell window. There is no difference in how the window is
defined: short of ensuring that the database is opened in shared mode, no special
effort is required to allow the window or its database to be opened many times.

A data window acts as a combination of a dialog window and an application
window: internally, the display and navigation among its controls are handled
automatically by the dialog manager, but the external behavior is handled like
the corresponding top window or child window.

Data Links

When a link is established between a data window and a data server, each
control on the window is automatically matched with each field of the database
based on common names. In this example, the CustomerWindow and
CustomerDB classes have been created by the Window and DBServer Editors,
respectively; you simply tell the window to use the data server, and the link
between the CustNo control and the CustNo field is established automatically:
CLASS CustomerWindow INHERIT DataWindow
 // Generated code...

CLASS CustomerDB INHERIT DBServer
 // Generated code...

METHOD OpenCustomerWindow() CLASS EmptyShellWindow
 LOCAL oCustomerWindow, oCustomerDB AS OBJECT
 oCustomerWindow := CustomerWindow{SELF}
 oCustomerDB := CustomerDB{}
 oCustomerWindow:Use(oCustomerDB)
 ...

Chapter 3: Program Structure and Flow 43

Using Data Windows and Data Servers

Once this relationship has been cemented, you can refer to
oCustomerWindow:CustNo and oCustomerDB:CustNo, and get the same value.
Because the fields are linked, changes in one are reflected in the other.

Parallel Structure

The data window and the data server have a parallel structure. They represent a
record as a whole, an aggregate of data elements, and contain components that
represent individual data elements. The relationships between the components
are exactly the same on both sides:

Data
Window

ownsowns

has

Data
Server

owns

has

Methods Methods

owns

Controls Data Fields

When you link the two, the link relationships between them mirror this
structure:

Data
Window

ownsowns

has

Data
Server

owns

has

Methods Methods

owns

Controls Data Fields

Use()

Linked by Name

44 Visual Objects Programmer's Guide

Using Data Windows and Data Servers

Business Processing

The business logic of your application sits in the event handling methods of the
window, which is where most of your classical Xbase language will go. Since the
window also owns the controls, this means that the business logic can use data
fields without requiring complex, object-based referencing. This was a key
objective of Visual Objects: to allow the business logic to have a regular
appearance without requiring new, object-oriented styles of referencing fields
and variables.

For example, if you want a method for calculating and displaying tax
withholdings for income fields in the data window, you would create a push
button and associate it with this method:
METHOD CalcSalesTax() CLASS CustomerWindow
 SalesTax := TaxRate * (TotalSales + Shipping)

Because this is a method of the data window, the references to the values are
correctly identified with the controls on the window which, in turn, are linked to
the database fields.

In fact, the control values are ACCESS and ASSIGN methods rather than instance
variables. They intercept the assignment or reference and ensure that the values
are properly propagated to and from the data server, just like the Get objects do
in traditional @...SAY...GET processing.

DataBrowser: A Spreadsheet-Like Table

DataBrowser is a class that lets you represent data using a spreadsheet-like table,
often called a browse view. It is a very powerful facility with extensive built-in
behavior: it handles scrolling, editing, inserting, and deleting automatically and
provides for resizing and rearranging of columns, as well as a split bar for
dividing the table into two independently scrollable parts. Both keyboard and
mouse interfaces are fully automatic.

Chapter 3: Program Structure and Flow 45

Using Data Windows and Data Servers

A data browser is populated by DataColumn objects, which hold the data and
provide formatting, validation, help, and so on. The behavior and programming
interface of the DataBrowser class is patterned on that of the TBrowse class
introduced by CA-Clipper, although it offers more display flexibility.

A data browser is very much like a data window from an internal viewpoint
(with respect to such things as data linkage and handling of many data-oriented
events), but it is more like a control from an external viewpoint (with respect to
such things as control flow and message traffic).

Form and Browse View

A data browser is much like a data window. A data window can switch between
form view, the standard data window view in which one record is displayed in
the window, and browse view. The standard data browser view displays multiple
records in the window. This feature, which is activated by a message like any
other data window action, is often invoked by View Table and View Form
commands on the main menu. Of course, you may choose not to provide this
option for a particular window, making it available in only one view or the other.

Advance #1:
Automatic Layout

When switching from a predefined browse view into form
view or vice versa, there may be no predefined layout—you
may have defined only one layout for this window. In that
case, the system automatically generates a default layout for
the form view or the browse view, as required. Indeed, it is
possible to instantiate a view that has no predefined layout, in
which case both layouts are automatically generated. It is also
possible to define both layouts explicitly.

If you look at the program presented earlier in this chapter that linked the
predefined CustomerWindow data window to the predefined CustomerDB data
server, you can see how you could have done it without any subclasses at all,
with completely automatic self-configuration:
METHOD Start() CLASS App
 LOCAL oCustomerWindow AS OBJECT
 oCustomerWindow := DataWindow{SELF}
 oCustomerWindow:Use(DBServer{"customer"})
 oCustomerWindow:Show()

46 Visual Objects Programmer's Guide

Using Data Windows and Data Servers

Parallel Structure

A data window has controls, and in a typical database-linked window most of
the controls are linked to specific database fields. Similarly, a data browser has
columns, and most of them are linked to database fields.

This similarity reaches further: a column responds to the same data-oriented
messages as a control, including validation. A column also has the same
annotation features as a control: a caption, a description/prompt message, a help
context, and so on.

Thus, there is a parallel structure among all three types of objects: the
DataServer, DataWindow, and DataBrowser on the higher level, and the fields,
controls, and columns on the lower level:

owns

Data
Window

ownsowns

has

Data
Server

owns

has

Methods Methods

Controls

Use()

Linked by Name

Data
Browser

Use()

has

Methods

owns owns owns

Data Fields Data Columns

Linked by Name

FieldSpecs

The properties of a database field are grouped together in a FieldSpec object,
which includes data type and size, annotation such as a caption (label), a prompt
and context-sensitive help, formatting, validation rules, error messages for the
validation rules, and help for the error messages.

But these properties are also of interest on the GUI level. In fact, controls on a
data window and columns on a data browser also have their properties grouped
in such FieldSpec objects. The developer can provide a field specification
explicitly for the control or column. This is the approach most similar to
traditional Xbase programming, where VALID and PICTURE clauses are
specified with the @...SAY...GET statement.

Chapter 3: Program Structure and Flow 47

Using Data Windows and Data Servers

Advance #2:
Inheritance of
FieldSpecs

But unlike the Xbase Get system, the control and column
automatically pick up a field specification from the database
field they are linked to if none is provided. On the next level, if
you provide no explicit field specification for the database
fields, they generate a standard one based on record layout.
Thus, none of this infrastructure of documentation and
processing rules is required: simply opening an existing
database and linking it with a data window will work. The
FieldSpec extensions represent opportunities, not requirements, to
manage data, its presentation, and its behavior in an organized
way.

Sub-Data Windows

A data window can also be used as a subwindow by placing it on another
window. The sub-data window is designed independently using the Window
Editor, and may be displayed either in Form View or Browse View. It can be
linked to a database and has its own processing logic. But from the viewpoint of
the host data window that owns it, it behaves like a complex custom control.

In other words, from an internal perspective (with respect to such things as data
linkage and handling of many data-oriented events) a sub-data window is like
any other window. From an external perspective, (with respect to such things as
control flow and message traffic), a sub-data window is like a control.

Like any data window, a sub-data window can be switched between browse and
form view. In practice, a very common approach is to limit a sub-data window
to the browse view. This is useful in producing a standard master-detail
relationship, such as the classical Customer-Orders.

Sub-data windows may be placed on data windows only, not on other types of
windows that are not data-aware. Only a data window knows what to do with a
sub-data window.

Note that sub-data windows are not a special kind of window. Any kind of data
window can be used as a sub-data window or as an independent window. You
specify how you want the window to behave when you create it: normally it is
an independent window, but if you give it a placement parameter (a position or a
resource ID) like a control, it becomes a control.

48 Visual Objects Programmer's Guide

Command Events

Command Events
Command events are generated by four sources: push buttons, menus, toolbars,
and accelerators.

■ A push button can be placed on any dialog or data window and is directly
linked to a particular command event.

■ A menu can be owned by a TopAppWindow, ShellWindow, or an MDI-type
ChildAppWindow, or by a DataWindow that is not being used as a sub-data
window. Note that sub-data windows and dialog windows cannot have
menus.

■ A toolbar is logically like a menu. It is owned by the window and generates
command events. However, a toolbar differs from a menu in that any
window or sub-data window can have one.

■ An accelerator is just a keystroke sequence that is associated with a
particular menu item; the menu item does not even have to be visible on any
menu, and thus an accelerator can be seen as a direct keystroke sequence for
generating a command event.

Event Routing by Name

By default, command events are linked to a method of the owner window
through a symbolic name. Thus, each menu item and each push button are given
a symbolic event name, and the window has a method of that name. For example,
on the File menu there is a menu item called Print; it is automatically linked to
the Print() method of the child window through its symbolic name #Print.

(The native Windows resource IDs, 16-bit integers, are required by the compiler
but are not exposed to the developer. Routing is done by symbolic name.)

Control Flow

A command event is sent first to the lowest level window that has focus. If that
window does not want to deal with the event, it passes the event up the
ownership chain to its owner, who passes it on up. If no one wants the event, it
will do nothing.

This automatic propagation is quite useful. In an MDI application, for example,
the File Save and File Print menu commands should be handled by the specific
child window that handles each document, while File Open and File Print Setup
should be handled by the shell window.

Chapter 3: Program Structure and Flow 49

Command Events

Multiple Instantiation

As described so far, the structure provides little more than the Xbase Get system.
In a graphics mode: you can design data windows, place controls on them, and
link database fields to the controls in such a way that data is automatically
propagated back and forth between window and database. You can also specify
validation rules for the fields.

Advance #3:
Multiple Windows

The major advantage with this object-oriented approach,
however, is that the entire structure can be implemented many
times. For example, the simple little program that creates a
data window and links it to a data server can easily be
converted into an MDI application that allows you to open any
number of customer windows with different records in them.
For the sake of simplicity, a menu item is added to the system
menu:
METHOD Start() CLASS App
 LOCAL oWindow, oMenu AS OBJECT
 oWindow := ShellWindow{SELF}
 oMenu := oWindow:EnableSystemMenu()
 oMenu:AppendItem(100, #New)
 oWindow:Show()
 SELF:Exec() // Start the app!

METHOD New() CLASS ShellWindow
 LOCAL oCustomerWindow AS OBJECT
 oCustomerWindow := DataWindow{SELF}
 oCustomerWindow:Use(DBServer{"customer", ;
 DBSHARED})
 oCustomerWindow:Show()

Note: In this example, the DBServer object is instantiated using DBSHARED as
its second argument to allow the database file to be opened multiple times. In
your own application, you can specify DBSHARED in the data server’s Init()
method so that when the data server is instantiated, its open mode will be
properly set. Specifying DBSHARED overrides the default behavior of all Visual
Objects applications, which is to open files exclusively unless otherwise
specified. Another solution is to SetExclusive(FALSE) in the application’s Start()
method—this changes the default open mode to shared.

The key to this application is the name New. The new system menu item has a
label #New. Selecting this menu item will automatically invoke the New()
method (as described earlier in the Event Routing by Name section), which
creates a customer window and links it to a customer data server.

Both the DataWindow and the DataServer classes are built with multi-instance
support. No matter how many new customer windows you open, they will
operate independently, with the database opened multiple times in separate
work areas until you run out of work areas or DOS file handles.

This is a real advance over the traditional Xbase approach.

50 Visual Objects Programmer's Guide

Command Events

How much will this program do? With just a few short lines of code, it will
allow you to do the following:

■ Open the customer databases in independent windows. The databases will
be shown in browse view.

■ Allow you to browse up and down in the database, rearrange the columns,
and modify the database by just typing into the fields.

Twelve lines of code produce a multi-window browser/editor for the Customer
database. A few more lines will allow you to dress it up with a real menu and a
few other things.

The Standard Application

The ShellWindow class provides a basic shell window with no frills, something
you need to have available. But you will often build standard applications that
follow common practice. For example, MDI applications usually have a menu
with File, Edit, View, Window, and Help items on it, and these menus have
standard items, standard accelerator keys, and so on.

Advance #4:
Built-in Behavior

Because this is a good starting point for most typical programs,
the system can generate a default framework for you, called the
Standard Application. With the Application Wizard, simply
accept all the defaults when creating a new application, and
you get a working standard application. With the Application
Gallery, select StandardMDI on the Standard tab page and then
click OK.

The Standard Application provides a higher level of built-in behavior by creating
a subclass of ShellWindow called StandardShellWindow and implementing
several methods that serve as event handlers for standard menus. (There are two
menus, EmptyShellMenu and StandardShellMenu, that are also part of the
Standard Application.)

In the Start module, the StandardShellWindow is instantiated as follows:
METHOD Start() CLASS App
 LOCAL oMainWindow AS StandardShellWindow
 oMainWindow := StandardShellWindow{SELF}
 oMainWindow := Show(SHOWCENTERED)
 SELF:Exec()

Note: When creating the Standard Application from the Application Gallery,
there is an extra line of code after the LOCAL statement, SELF:Initialize(), which
has no bearing on this discussion.

Chapter 3: Program Structure and Flow 51

Database-Oriented Actions

Using the Standard Application, you do not have to bother adding a New item to
the system menu. The StandardShellWindow has a fully functional system menu
with standard options, such as Restore, Move, Size, Minimize, and Maximize. It
also has a toolbar and standard menu commands, such as File Open, Close, and
Print Setup, Edit Cut, Copy, and Paste, View Form and Table, and Window Tile
and Cascade.

The File Open command is similar to the New system menu item in the previous
example. It presents you with a directory list box from which you can open any
database file in a self-configuring data window that defaults to browse view.

The Standard Application is a good prototype for a real-world application. It
comes with a large amount of built-in behavior. For any operation that you want
to add, simply write a method for the StandardShellWindow class and hook the
method, by name, into the appropriate menu using the Menu Editor. For any
operation that you do not want, simply remove it from the menu definition and,
optionally, delete the corresponding method. For any operation that you want to
change, simply edit the appropriate event handler method to meet your specific
needs.

Database-Oriented Actions
You have looked at data field linkage between the window and the database.
What about data operations, such as navigation through Skip and Goto or
actions such as Delete and Append?

The data server has methods with these names, so you can write a method of the
window that invokes these methods for the connected server:
METHOD GetRidOfJones() CLASS CustomerWindow
 DO WHILE !SELF:Server:EOF
 IF SELF:Server:LastName == "Jones"
 SELF:Server:Delete()
 ELSEIF SELF:Server:Credit > 1000
 SELF:Server:Credit += 500
 ENDIF
 SELF:Server:Skip()
 ENDDO

However, the DataWindow class also has methods for the basic database
operations:
METHOD GetRidOfJones() CLASS CustomerWindow
 DO WHILE !SELF:Server:EOF
 IF LastName = "Jones"
 SELF:Delete()
 ELSEIF Credit > 1000
 Credit += 500
 ENDIF
 SELF:Skip()
 ENDDO

52 Visual Objects Programmer's Guide

Database-Oriented Actions

There are some advantages to using these window methods instead of the
database methods. Perhaps the most important benefit is that the window is
aware of what is going on and can respond accordingly. You can also configure
the data window to handle the Skip() operation differently when changes have
been made to the data, if it automatically updates the database, discards the
changes, or presents a dialog box and asks the user if the data should be saved or
discarded.

The data window provides extensive built-in intelligence to handle many
practical situations like this. The most sophisticated is automatic event
notification.

Event Notification

In an MDI application, you often need to coordinate between independent
windows. If two windows show data on the same record or on records in
separate but related (linked) databases, updates and movements in one window
should be propagated between them. For example, if you have a general
customer review window and the ability to open a customer credit history
window for the same record, skipping forward and back in the main window
should be reflected in the other window.

It is possible to do this manually, by one window calling the other one whenever
data should be propagated. Indeed, this is the standard approach in many
development systems. But this approach has some serious disadvantages:

■ It is a hassle.

■ It tends to dictate a particular structure so that data and actions need be
propagated in one direction only. For example, that the general customer
record is the main window and the credit history window is secondary.

 But what if the credit history window can be used as a child window from
the general window, as a child window from the order processing window,
or as a stand-alone utility? Who should communicate with whom? And
even among the two of them, who instigates the action? Who sends the
instruction to whom?

■ It is very difficult to handle arbitrarily complex, dynamic situations. The
different windows need to learn to communicate with different windows.

■ It is difficult to add a new feature to the system. If you add a customer sales
history window, you need to modify lots of other pieces of code to insert the
communication handles. It prevents you from dynamically extending a
system without destabilizing changes.

Chapter 3: Program Structure and Flow 53

Database-Oriented Actions

The automatic event notification facility of the class libraries handles all these
situations without requiring explicit coding. Windows are notified when there is
an action in a data server to which they are linked, whether the action originated
in the current window or in another:

Data
Window

Data
Window

Skip()
Notify Clients Notify Clients

Data
Window

Data
Window

SetRelation()

Notify Child

Data
Window

Automatic Data Propagation

Changed data is automatically sent to the data server before a move and copied
back up to the window after a move, in the Xbase style. However, the data
window supports several other modes of behavior, including:

■ Save, discard, or prompt before a move

■ Conservative or optimistic concurrency control, with single record locks,
multiple record locks, or no record locks but reread-and-verify

Advance #5:
Event Notification
Among Windows with
Shared Data Servers

If two or more windows share a data server, changes are
automatically propagated among them, regardless of where
they originated. If a user types in one window, it is reflected in
the other; likewise, if a user invokes a Skip() method, a Delete()
method, or a Delete(<scope>) method, all windows reflect the
change.

In all these cases, the windows and data server coordinate by exchanging event
notification messages. For example, after a field change, the windows are given
a NotifyFieldChange message; after a single record operation, such as Skip(),
they are given a NotifyRecordChange message; after a wholesale change, such as
Delete(<scope>), they are given a NotifyFileChange message.

54 Visual Objects Programmer's Guide

Visual Development Tools

Similarly, before a move is made, the windows are given a NotifyIntentToMove
message to give them a chance to save their data or prompt the user.

The data server keeps track of its clients so that all interested parties are
informed of the action, regardless of where it originated. Because there is no
direct relationship between the different windows (they are related only
indirectly, through their server), new windows can be added to an existing
application without undue effort or risk.

Advance #6:
Event Notification
Among Windows with
Related Data Servers

If two Xbase databases have a SetRelation link, a movement in
one will affect the other. In this case, the event notification will
cross between the data servers and indirectly find its way to all
the affected windows, automatically.

Visual Development Tools
Visual Objects is a complete Windows and Windows NT development
environment, but it is also designed to provide you with a migration path for
your character mode applications. To make the move from character mode to
Windows, you must truly rethink the way you program. Exploiting the visual
development tools to the fullest extent possible is your key to making this
transition.

The visual development tools (such as the Window Editor, Menu Editor, and
DBServer Editor) allow you to lay out visual elements, define data elements
interactively, and generate the code that embodies the design. The code
generators are built to leverage the class libraries described above. They
generate subclass definitions (essentially, a class declaration, a resource, an Init()
method, and a number of ACCESS/ASSIGN methods) to instantiate the window
or menu. The action methods can be methods inherited from the standard
classes or custom code—you enter the code using the Source Code Editor, which
is invoked by whatever editor you are using. In any case, these methods are
straightforward code and do not involve any generation.

The code generated by these tools is not only useful because you are saved the
step of writing it, it is also of pedagogical value. Painting a window produces a
usable program, a starting point for modification into a complex program, an
educational sample, or all of the above. Many of the topics discussed in this
chapter are covered in greater detail in Chapters 4 through 19, which include
parts on database programming, user interface programming, and other topics
such as exception and file handling. Using these resources and what you have
already learned, you should be well on your way to meeting the new
programming challenges.

Chapter 3: Program Structure and Flow 55

Chapter

4
Standard Components—Classes,
Objects, and Libraries

In this chapter, you will see how Visual Objects provides a framework for
constructing, modifying, and deploying standard components, and includes a
large library of components that meet many of the common needs of
applications. You will also see how it provides a flexible architecture in the form
of a standard framework, a skeleton of control flow on which you can hang the
muscles of your specific business solutions.

Note: If any of the OOP terminology used in this chapter is unfamiliar to you,
refer to Chapter 25 “Objects, Classes, and Methods.” That chapter will also
provide you with implementation-level details of OOP in Visual Objects.

Why You Need Components
Components + Relationships + Logic = Applications

What are components? What relationships do they have? What is architecture? How do
you construct software quickly? How do you construct software that stays constructed?
Where does the business logic go?

Components When constructing a building, you always use prefabricated components:
girders, door frames, sink units. When constructing a computer, you assemble
prefabricated integrated circuits, power supplies, disk drives. Nobody would
consider producing such complex artifacts from concrete and raw lumber, from
transistors and sheet metal.

Yet, when constructing software applications, often equally complex, the
tradition of using prefabricated components is not as well established. Using
components improves both productivity and quality of software construction.
But you need some tools and techniques to make it practical.

Along with OLE Automation, OLE Controls (OCXs) are perhaps the most
obvious example of software component reuse. Controls represent a major
advance in component software since they represent well-defined, encapsulated
behavior that can be reused in multiple development environments
independently of the language used for programming them.

Chapter 4: Standard Components—Classes, Objects, and Libraries 57

Why You Need Components

Architecture Just as you would not consider a complex construction project without the use of
components, you would not start assembling a building or a computer without a
plan—an overall architecture—that guides the entire construction. The success
of a project often hinges on the quality of the architecture, and this is as true of
software as of any other discipline.

Yet, software construction differs from many other human endeavors in its need
for continuous adjustment and elaboration. For this reason, the standard
components must be easy to modify and adapt to new uses and circumstances,
and the architecture must allow the continuous rearrangement of components
and addition of new components.

What Is Architecture?

Architecture is the set of principles by which you construct an application. It both
dictates and depends on the set of tools, techniques, and prefabricated
components that together help the application to grow along its architectural
guidelines.

The primary goal of the architecture described here is to enable you, the
developer, to create applications that can sustain incremental enhancement.
Incremental enhancement is the principle and technique by which you iterate
through these steps:

1. Start with an application in which you have complete confidence

2. Make a small change to it

3. Finish with an improved application in which you still have complete
confidence

What Are Components?

Software components used to consist only of functions, or libraries of cooperating
or related functions. The set of DML functions in Xbase is an example of a
widely used software component.

Visual Objects offers other types of components, such as classes. In fact, it
supports the encapsulation of a whole collection of classes as a compiled library
(technically, it is implemented as a Windows DLL). The interface to the library
consists of just the list of properties and methods of the classes within.

Although libraries are discussed in the context of classes here, a compiled library
can of course contain many other types of components (for example, functions,
defined constants, and global variables).

58 Visual Objects Programmer's Guide

Plugging Components Together

Essentially, software components are the analog of door frames and window
units in buildings. Constructing a building would take a lot more effort if you
had to build every single component by hand. Similarly, developing a software
application would be much more difficult without the help of some standard
components. When you have finished reading this portion of the Programmer’s
Guide, you will agree that the set of components bundled with Visual Objects
goes a long way towards automating the tasks that are common to a majority of
business applications.

Superficially, software components fill the same role as prefabricated
components in any other form of construction. They save you time because they
implement large chunks of your application without your having to program
them. But software components differ from doors and kitchen units in the fact
that you can adapt their appearance and behavior.

Visual Objects specializes in managing and enhancing components. It supports
classes and inheritance. This is object orientation.

Plugging Components Together
Software components are extremely valuable because they implement useful
default behavior and because they support encapsulation and inheritance
uniquely well. But, how do you plug them together to make applications?

Class Relationships

Classes relate to each other in several important ways, each of which is discussed
in this section. The interesting effects of these relationships occur at runtime,
when objects manufactured by the components cooperate with each other. To
cause this cooperation, the components themselves—the classes and libraries—
must conform to some minimal conventions.

Inheritance

Inheritance is also known as an is-a relationship. For example, if Employee
inherits from Person, you would say that an Employee is a kind of Person.

Tree: A set of nodes that
can be reached from a
single branch-point, in
exactly one way

Inheritance forms a tree: each class can have at most one ancestor that it
inherits from, although that parent class may of course inherit from its
ancestor, etc. Each class can have any number of descendants. (Many people
use the term class hierarchy instead; this is correct but less precise, since a tree is
a specific type of hierarchy.) The internal states of objects also form tree
structures.

Chapter 4: Standard Components—Classes, Objects, and Libraries 59

Plugging Components Together

Ownership

Particularly in GUI programming, ownership is an important relationship.
Suppose FancyWindow, a subclass of DataWindow, owns a number of controls,
such as push buttons. Syntactically, the controls plug into the DataWindow by
the fact that you (or the Window Editor) declare them as internal variables
within the FancyWindow class. Dynamically, you or the Window Editor must
construct each control in the Init() method of the FancyWindow class.

Ownership brings with it the responsibilities of controlling the lifetime of, and
handling the exceptions raised by, the owned objects.

Ownership is also known as a has-a relationship, because a FancyWindow has a
PushButton that it manages, a Customer has an Order, or an Order has a line item.

In the case of the Visual Objects components, ownership is taken one step
further. Each owned object, by convention, remembers who its owner is. In fact,
it has an access called Owner that returns the object’s owner, whenever you ask it
to.

The special keyword, SELF, refers to the object itself. In the following typical
code, SELF is the object, for example FancyWindow, that is creating the push
button and is therefore its owner:
oPushButton := PushButton{SELF, SOMEBUTTON_ID}

Code using the push button can then say something like:
oPushButton:Owner:Close()

to close the FancyWindow. You can regard owned objects as constituents of
their owner. The owned objects are sometimes called subobjects. Subobjects
implement the internal state of an object. (Do not confuse subobjects with
subclasses. Subclasses are subordinate to this class in an inheritance hierarchy;
subobjects are subordinate to this object in the ownership tree at runtime.)

Client-Server

The client-server relationship is used typically for the relationship between
applications and databases. The database object is the server and it can have
many clients. The clients cause changes to the database by invoking methods of
the database object. The database notifies its clients whenever its data has
changed by invoking their methods.

Conventionally, the Use() method establishes the link between a client window
and its data server. This is called a uses-a relationship, because a client uses a
server.

60 Visual Objects Programmer's Guide

Plugging Components Together

Each client can have only one server, although each server can have many
clients. Thus, the client-server relationship also constitutes a tree.

In the following typical code, the server, oDBServer, has already been created and
the DataWindow links to it by invoking its own Use() method:
SELF:Use(oDBServer)

Database Relations

The classical technique for linking tables in Xbase databases is the relation, which
establishes that movement in one table causes corresponding movements in
other tables. There is a one-to-many relationship: from one table, you can set up
relationships to many tables, but each table can be the child in only one relation.

Thus, this classical structure also forms a tree.

Importance of Tree Structures

Each of the fundamental structures in the Visual Objects application architecture
is a tree.

� The inheritance tree builds up at compile time, and you can walk it using the
Repository Explorer when grouped by class view. The Repository Explorer
draws many trees on their side (that is, fallen over), with each root on the left
and branches that fork to the right.

� The ownership tree builds up at runtime, as your application creates objects
which, in turn, create more objects.

� The client-server tree builds up at runtime as you connect windows to data
servers.

� The database relation tree builds up at runtime as you define relations
between databases.

If you store references to objects in state variables of other objects, without any
specific rules (or architecture), you have something which is no longer a tree.
Technically, it is called an arbitrary graph. Trees, which are a special,
constrained kind of graph, are easier to understand and handle than arbitrary
graphs.

Chapter 4: Standard Components—Classes, Objects, and Libraries 61

Plugging Components Together

Branch-point: A node
that contains a list of
nodes

Node: A leaf or a
branch-point with no
further structure, as far
as the tree is
concerned

Structuring an application as a number of trees makes its
behavior more predictable because the most common
programming error is to attempt to use an object outside its
lifetime. In the tree structure, each branch-point is responsible
for creating and destroying the nodes that it contains.
Therefore, the lifetime of objects follows the tree structure. If
the classes are also well-encapsulated, an object is not even
visible outside of its lifetime.

Another common problem is memory or resource leaks, where
the application gradually uses up more and more of the
resources of the machine as it runs, eventually causing the
system to grind to a halt. The automatic garbage collection
scheme of Visual Objects takes care of the resources that are
within its reach, but sometimes other resources must be freed
as objects are destroyed.

In many environments, notably Windows, the sequence in which objects are
destroyed is very sensitive. Again, a tree structure makes it simpler to ensure
that all resources are freed in the correct order.

One last word about tree structures. The Xbase languages deal with tables. The
primary concept is that you have a number of tables and you can add or remove
rows in them. The tables are an elegant and efficient way of dealing with a large
number of structurally identical things, such as customer records. The other
kind of data structure found in Xbase is the array. Conceptually, an array is very
similar to a one dimensional table, or list. Xbase does not provide any more
complex structure than that.

In moving from Xbase to GUI development, you move from a realm where the
main metaphor is a table—huge numbers of similar items—to one where there
are small numbers of dissimilar items. There may be many dialogs in an
application, but each has some unique behavior. This small population, high
diversity world needs tree structures rather than tables. So Visual Objects
programs maintain their data in tables, as in Xbase, but present their data
through an architecture dominated by trees.

Summary

Keep in mind that the architecture of Visual Objects components is a convention,
not an absolute law. To support these simple mechanisms for plugging things
together, rigorous encapsulation and lifetime management of the components
supplied with Visual Objects are enforced, and standard methods, such as Use(),
are provided to strengthen the convention.

62 Visual Objects Programmer's Guide

A Tour of the Visual Objects Components

By convention, the important relationships between components are inheritance,
ownership, and client-server. All of them form tree structures. One line of code
suffices to establish any of these relationships. Built into the design of each
component is the expectation that it will plug together with other components
according to these conventions.

A Tour of the Visual Objects Components
The Visual Objects standard components mostly fall into two large groups: those
that deal with the GUI and those that deal with the database. There are also
other components designed to handle aspects of your application do not neatly
fit either of these two categories. This short section gives an overview of all the
components and how they cooperate.

Data Server Classes

The DataServer class is an abstraction of anything that supports both indexed
and sequential access. It could be an ISAM file. It could be a database. It could
be an array. It could be a DDE link to a server that supports this protocol. You
can add your own subclasses of DataServer to support anything you like, so long
as what you add behaves superficially like an ISAM file.

There are two built-in subclasses of DataServer: DBServer to support DBF
databases and SQLSelect to support SQL databases. The methods of DBServer
and SQLSelect fall into three groups:

1. Those that are inherited from DataServer. These methods are required for
DataWindow and DataBrowser support—these objects cannot use-a data
server unless it supports at least this set of methods.

2. Those that have common names between the two classes. These methods
enable much of your code to be independent of the database technology you
choose.

3. Those that are unique to one implementation or the other. For example, it is
not meaningful to reindex an SQL database, so SQLSelect has no Reindex()
method. You should isolate calls to these unique methods to small regions of
your code, thereby isolating the code that you must change if you decide on
a different database technology.

Chapter 4: Standard Components—Classes, Objects, and Libraries 63

A Tour of the Visual Objects Components

GUI Classes

GUI classes account for the majority of classes supplied with Visual Objects.
Very roughly, the GUI classes include one class for every kind of object that you
encounter in a GUI. There are Window and Dialog classes. There are Control
classes, such as ScrollBar and PushButton. There are Menus and Toolbars.

Portability Just as the data server classes make your application portable between DBF and
SQL databases, the GUI classes make it inherently portable to any GUI—not just
Microsoft Windows variants. The Visual Objects runtime system does not yet
run on other GUIs, but the GUI classes ensure that any application code you
write will have a good chance of being portable in the future.

SDI vs. MDI Windows Every application must have a window (if you do not explicitly specify one,
Visual Objects supplies one for you). Windows can own further windows, and
that is how the application grows. The window you start with can be a
ShellWindow or a TopAppWindow. Choose ShellWindow if you require
Multiple Document Interface (MDI) behavior. Choose TopAppWindow for
Single Document Interface (SDI) behavior. Either kind of window can own
ChildAppWindows and DialogWindows. DialogWindows can own Controls.

Windows have two sets of methods.

1. Those that are invoked by your application code. This set of methods does
things to the window, such as positioning it or drawing things on its canvas.

2. The event handlers. These methods are usually invoked by the Visual Objects
dispatcher in response to some action that the user took, such as pressing a
push button or choosing a menu action.

Data-Aware Windows Supplementing these purely GUI classes, there are data-aware GUI classes. For
example, DataWindow is a kind of ChildAppWindow that can be a client of a
data server. The DataBrowser is a tabular display that may also be connected to
a data server as a client.

When you develop an application to use a database, you can use the Window
Editor to lay out data-aware windows that your application uses. The Window
Editor generates code to manage the whole operation, including setting up the
default behavior of a field based on the database server to which the field maps.

The Standard Application It was mentioned earlier that if you do not specify a window in your application,
Visual Objects will create one for you. Indeed, whenever you include the GUI
Classes library in an application’s search path, Visual Objects creates not only a
window in which to run the application, but a complete, working application
called the Standard Application.

64 Visual Objects Programmer's Guide

A Tour of the Visual Objects Components

The Standard Application exhibits standard MDI behavior. It allows the user to
view one or more databases in table form. The user can change the view, causing
the program to present the data in a self-configuring data window. In other
words, the data window’s default implementation is that it lays out a form
automatically fitted to the data in the database—even though it has never seen
the database before.

When you code your application to handle exceptions such as “the database
layout changed, but nobody told me,” you can fall back on the elegant default
behavior of the GUI classes to respond to the user. Similarly, you can prototype
much of an application’s behavior using only the DataWindow and DataBrowser
classes.

Classes for Annotation

There is an automatic system for escalating exceptions upwards through the
ownership hierarchy, so that your application can deal with exceptions where
they occur, but still provide more general handling if necessary. This mechanism
works by connecting the Error class to the GUI Classes library’s event system.
(See Chapter 14, “Error and Exception Handling” for more information.)

DataField and FieldSpec classes provide for automatic validation and type
checking, without changing the contents of existing databases.

The HyperLabel family of classes integrates the context-sensitive help system
with your program. Hyperlabels trigger status prompts that appear on the status
bar and hypertext topics that appear on the help window when the user requests
help.

The GUI classes also implement a wide range of stock objects, such as useful
icons, bitmaps, and colors.

Business Logic

As discussed in detail in the first part of this guide, a move from Character Mode
to Windows requires a move away from traditional program structure. The
event-driven nature of Windows (or any other GUI) requires you to use methods
as event handlers throughout your applications. The modeless behavior
required of world-class applications dictates that you create objects that respond
independently to the events.

Modeless behavior means that the application never stops to wait for some
specific user action—it is always able to respond to any user action. On very rare
occasions, you must use modal behavior (for example, when you have failed to
handle an exception and you require the user to make a decision before it is safe
to do anything else).

Chapter 4: Standard Components—Classes, Objects, and Libraries 65

A Tour of the Visual Objects Components

Despite these sweeping and necessary architectural changes, your business logic
remains surprisingly intact. The code you write to fetch data from the database,
to validate data that you capture, and to commit it back to the database looks
very similar to the code of traditional Xbase programs. The skeleton is entirely
new, but the muscles of business logic that make it effective remain unchanged.

It is a fairly trivial matter to partition the source code of your application into
classes and methods. That, in itself, gives you the ability to find code quickly
and to control changes to the source code more effectively. The tough job
consists in controlling changes to the dynamic structure of your application—the
structure that it exhibits at runtime.

The standard components supplied with Visual Objects work to control changes
to the dynamic structure. That is why this chapter has stressed the ownership
tree so much. The goal of the Visual Objects architecture is to enable you to
develop your applications by a process of safe, incremental enhancement.

OLE Controls

OLE Controls is a technology that allows standardizing of plug-in functionality
for development tools. Regardless of the functionality that individual controls
impart, all controls have a general architecture in common. For example, all
controls have properties that can be accessed or assigned which direct their
functionality. In addition, most controls also cause events to be communicated
to the container (client) housing them based on input from the end-user. The
OLE Controls specification is a formal attempt to standardize how this
communication between a control and its container (your control-aware
window) takes place.

OLE Automation Servers

OLE Automation Servers are applications such as Microsoft Excel which can be
used as stand-alone applications and can also be controlled programmatically
from any development tool that is an OLE Automation Controller (client). Let’s
say you program Excel to load the spreadsheet template, fill in the appropriate
input variables as collected by the user interface portion of your application, and
perform a recalculation returning the result for display back to your user
interface. All of this can be done without accessing Excel’s user interface. In
other words, Excel can be launched and made to load and recalculate a
spreadsheet completely invisibly. In this manner the business logic of Excel
itself, which is the ability to manipulate spreadsheet data, has been exposed to
anyone interested in using it in the form of an OLE Automation Server software
component.

66 Visual Objects Programmer's Guide

You Can Develop Components

OLE Automation

OLE Automation is a technology designed to exploit the natural (logical)
separation of user interface and business logic which occurs in software. The
assumption is that although the user interface code typically represents the most
expensive part of the application in terms of time, it is the business logic that is
the most valuable code as it is the most likely to be reused. OLE Automation is a
concentrated effort to package this logic as a separate software component so
that it may be reused over and over again by any other client software
component that needs it.

You Can Develop Components
You have seen that the standard components bundled with Visual Objects
address many aspects of application development. Particularly, they address
those areas that most business applications have in common. But they do not
address aspects that would be specific to a particular industry type, such as
banking or manufacturing.

You can appreciate the great benefits that standard components bring to
application development. You can amplify these benefits and extend them to
other areas of your development effort by designing your own components. You
can also copy the overall style of the built-in system components, which are
thoroughly worked out and tested.

Generally you should start by designing subclasses of DataWindow that
uniquely address your industry. You can also very simply design subclasses of
DataServer that attach to different data sources. You can use the concepts of is-a,
has-a, and uses-a to extend the Visual Objects architecture into new areas. It
requires some familiarity and experience to do this, but using the standard
components as a role model, it is not so difficult.

Chapter 4: Standard Components—Classes, Objects, and Libraries 67

Chapter

5 Object Linking and Embedding

In this chapter, you will learn how Visual Objects accommodates object linking
and embedding (OLE). With the support of OLE 2 in Visual Objects, you can
utilize a variety of prebuilt, third-party components. This chapter provides an
in-depth explanation of what OLE is all about and how you can easily apply
(including sample codes) linking and embedding, custom controls, and
automation servers to your application.

OLE Overview
OLE is not a new technology—it existed before the release of Windows. It was
used primarily in Microsoft Office applications to create compound documents—
one or more foreign applications linked or embedded inside another application.
For example, creating a Microsoft Excel spreadsheet file inside a Microsoft Word
document enables you to directly change the linked spreadsheet file in the
Microsoft Word document, if changes are made to the spreadsheet file.

Microsoft has now developed OLE 2, which is a central component of Windows.
OLE 2 is a full 32-bit technology, which does more than facilitate compound
documents. It includes subtechnologies, such as automation, data transfer,
memory allocation, file management, OLE controls (OCXs), and other new
technologies that are being developed. Visual Objects is a comprehensive OLE
client, which supports all of OLE 2 technologies.

Component Object Model (COM)
A new architecture, called Component Object Model (COM), serves as the
foundation for OLE 2. COM employs a binary interface, which allows
components supplied by different Independent Software Vendors (ISVs) to
interoperate in a reliable, controlled manner. It lays the groundwork for
developers to build specialized software components that interface commonly.

Chapter 5: Object Linking and Embedding 69

Component Object Model (COM)

With COM, software vendors do not have to exchange specifications, or in any
way coordinate the design and assembly of their specialized software
components. By merely adhering to the COM-based OLE standards, the
different ISV software components will be able to interoperate automatically.

For example, it is not necessary for an OCX designer to communicate with the
vendor of a specific OCX-aware window painter tool. The two components will
naturally be able to interoperate as long as each follows the COM-based OLE
standards. That is, the Window Editor (OLE Control “container”) will be able to
interrogate the OCX to determine what functionality it possesses and provide an
interface to that functionality.

Basic COM Terminology

Components consist of one or more objects, and each object is a collection of one
or more interfaces. Interfaces are sets of semantically related functions or methods.
OLE is nothing more than a specification for a number of these interfaces. For
example, if a component is to support the OLE drag-and-drop capability, it must
implement the OLE interfaces which provide that capability (IDropSource and
IDropTarget). Likewise, if that same application wants to support uniform data
transfer under OLE, then it must implement the interfaces, which provide those
capabilities (IDataObject, etc.).

So, at its lowest level COM is the specification for how an interface is defined,
whereas OLE is a specification for a set of interfaces. COM specifies the details of
how interfaces are structured in memory, whereas OLE defines a collection of
useful COM interfaces.

All COM interfaces have the same general memory layout, which is consistent
across all COM implementations, regardless of the operating system. Basically, a
COM interface is nothing more than a pointer to a pointer to a function table,
which contains pointers to the actual functions (the implementation) of the
interface. While this memory layout may seem unusual, it is structured this way
for historic reasons—namely because it mirrors the layout of a C++ object in
memory. It is, therefore, not surprising that COM interfaces can be implemented
directly using C++ objects, since that language has become the most popular
development language in recent years among systems-level programming
professionals.

However, it is important to understand that using C++ to implement a COM
object is not required. COM is a binary standard, which means it does not
assume any specific language. Instead, all it assumes is that the implementation
language can construct a memory layout (as shown above) and be able to
deference a pointer to a pointer to a function pointer.

70 Visual Objects Programmer's Guide

Component Object Model (COM)

Components are little more than a container of windows objects. In the simple
case where a component is made up of only one object, the distinction between
the two disappears and the terms component and object become interchangeable.

In any case, a developer never really works with an object directly. In fact, a
developer can never have a physical pointer to an object. Instead, a pointer to an
interface on the object is obtained. By obtaining such an interface pointer for the
first time, the object is automatically and dynamically loaded and remains in
memory as long as the interface pointer is still in use.

By formally hiding the physical underlying object from the developer and
forcing him to access the object only by a published interface of functions,
complete object encapsulation is achieved. The COM specification does not
allow for the developer to access the state information of the object directly,
because it does not specify how that state information is laid out in memory.
This implementation detail is left up to the implementation of the object.
Therefore, all access to object data must be done through the interface functions,
providing a safe environment for the object to exist in as well as a greatly
simplified COM specification.

COM as an Object-Based Model

It is important to understand that COM is not an object-oriented model. It is
object “based”. Therefore, implementation inheritance is not a property of COM.
Rather, it is a model based solely on the idea of encapsulating behavior and data
in such a way as to make it available in a standard binary form. While it is very
possible that the internal construction of a COM component is object-oriented in
implementation, the presentation of that component is not. In other words,
while it is meaningful to speak of COM objects (or components), the COM
specification does not provide for a way to create a new COM object by
inheriting from an existing COM object.

This seeming omission is by design. Many developers believe that it is
impossible to support implementation inheritance in an object model without
placing restrictions on how the model can be used. Specifically, they assume that
COM components are not constructed in any particular language. Hence, the
standard is not language-specific but binary-specific. If a COM component is
defined based on the definition of another COM component (also known as
inheritance) then it would be possible for a relationship to exist between two
components from separate companies. This would be fine until the vendor of
one of the components decided to update their component. The problem is that
the “contract” or relationship between components in an implementation
hierarchy is not clearly defined; it is implicit and ambiguous. When the behavior
of a component changes unexpectedly, the behavior of related components can
become undefined.

Chapter 5: Object Linking and Embedding 71

Component Object Model (COM)

An implementation hierarchy works well when all of the components in the
hierarchy are under complete control, such being written by the same vendor in
the same language. However, in a distributed environment where components
come from different vendors written in different languages, and where source
code is not available, implementation of inheritance is not a viable option.
Inheritance violates the principal of encapsulation which is by far the more
important aspect of any object technology. So, Microsoft has purposely left
implementation inheritance capabilities out of the COM specification.

COM Interfaces

Component objects are programmed through interface pointers (pointers to
pointers to function tables of pointers). Objects can be composed of several
unrelated interfaces, each providing some useful functionality on behalf of that
object. Interfaces simply represent “function sets”—logically related collections
of functionality that are combined in a manner that allows them to be reused.

It is very important to understand that an interface is a specification of behavior
only. It has no particular implementation. You can think of it as an abstract class,
the individual services (functions) of which must be implemented by you. This
means that it is entirely possible that different developers will implement
different versions of the same interface. While the implementation details are
free to change from developer to developer, and environment to environment,
what must remain consistent is the intended behavior.

For example, consider a fictitious COM interface called IStack. Such an interface
might have the services Push and Pop defined. The interface’s formal
specification would then detail such things as the order the function pointers
appear in the function table. For example the pointer to the Push function in the
first slot and the pointer to the Pop function in the second slot. It would also
detail the semantic meaning of each of the functions. This would then represent
everything a developer who required such an interface would need to implement
it. Details such as the data structure to implement the stack (array, linked-list,
etc.) and the language the implementation is written in, would be left entirely up
to the implementation of the interface.

OLE and COM

So COM is a model by which developers can build objects made up of reusable
interfaces. OLE, a collection of standard services, is defined completely in terms
of COM interfaces. OLE is a broad specification covering many facets of
windows programming. However, it is generally thought of as a collection of
interface specifications for common Windows-specific services, which are most
advantageous for Windows applications. These services include memory
allocation, object persistence (structured data storage), uniform data transfer,
object linking and embedding, and drag and drop.

72 Visual Objects Programmer's Guide

Component Object Model (COM)

However, OLE is not limited to the specification of these interfaces. In many
cases, OLE has execution, which is part of the operating system in the form of
DLLs. So, the developer does not have to implement all of the interfaces, but can
use the default implementations instead. Nonetheless, consistent with the
openness of the specification, you are still free to replace one of the default
implementations with your own if you find it is not meeting your needs. In
general, however, you will find their implementations perfectly adequate.

OLE is COM, plus a detailed specification of general-purpose Windows services
in the form of interfaces, and some default implementations of those interfaces.

Issues of a Component-Based System

Let’s review the design goals of COM.

There are four classic challenges facing component-based systems development:

� Interoperability

� Versioning

� Language independence

� Transparent remoting

COM was designed to overcome each of these difficulties.

Interoperability

A fundamental concern with the development of any component object model is
compatibility. Components supplied by different ISVs must be able to
interoperate safely without their developers having prior knowledge of the
specifications of each other. Component software units require that other
component software units have common required services.

COM solves this problem by making it possible for any object to query another
object for a given service (interface) at runtime. For example, by being able to
ask whether a software component supports drag-and-drop (implements the
IDropTarget for example), another software component can dynamically
determine how it should behave as an IDropSource in relation to that
component.

Chapter 5: Object Linking and Embedding 73

Component Object Model (COM)

If a particular object is made up of a set of interfaces, COM specifies that by
obtaining a pointer to any one of them, a developer can query for and obtain a
pointer to any other interface on that object. This works because all COM
interfaces, by definition, support a QueryInterface() service which allows it to ask
its owner (the object which holds the interface) if it holds any other interface.
The result of the query is either “no such interface exists,” or a pointer to the
interface of interest is obtained. In this manner, given any interface on an object,
a developer can find out if it supports—and then actually obtain a pointer to—
any other required interface on the object by simply querying for it.

Using this query system, components can interrogate each other for common
features and exploit them if found, or safely ignore them. By designing
components to optionally use services that are available and to default behavior
intelligently if those same services are missing, robust software components can
be built that are reusable in many diverse situations.

Versioning

How can one software component be updated without affecting others that are
related to it? How can you provide a new version of a component and still
guarantee backwards compatibility? We have all witnessed at one time or
another the versioning problems DLLs present in the Windows environment.
Two applications from different vendors rely on a DLL from a third vendor and
all three vendors are working with different versions of the DLL. When a more
recent version of the DLL is overwritten by an older version because one of the
application vendors is not up to date, code relying on the functionality of the
most recent version of the DLLs breaks. This is currently a huge problem and it
will only get worse in a component-based system unless a solution is found.
Again, COM solves this problem.

COM provides a versioning mechanism that allows seamless evolution of
components. When one component of the system is upgraded it is not necessary
to replace, recompile, or even notify other components in that system of the
change. This is accomplished by forcing interfaces to be immutable. This means
that once you have published a specification for an interface you can never add
to, delete from, or otherwise modify the functional specification of that interface
in any way.

Consider our earlier example of the IStack interface. After designing this
interface and publishing the specification internally within my organization, I
may realize that I need to add some additional behaviors to the interface. For
example, Duplicate and Exchange, which would allow me to duplicate the
topmost entry on the stack and exchange the positions of the top two entries on
the stack, respectively. However, the COM specification strictly forbids me to
change the interface specification.

74 Visual Objects Programmer's Guide

Component Object Model (COM)

So, the only solution I have is to create a new interface called IStack2, which
implements the original two services Push and Pop as well as the two new
services Duplicate and Exchange. This may seem awkward at first, but in reality it
is a very efficient solution. The new version of the stack implementation would
then support not one but two interfaces, IStack and IStack2. Systems that were
built using IStack and do not know or care about the new functionality of IStack2
will continue to work as before. However, new systems that want to take
advantage of the new Duplicate and Exchange functionality can query for and use
IStack2 instead.

It may appear that the forced duplication of common services will unnecessarily
bloat future versions of interfaces. However, an interface designer can control all
aspects of exactly how the interface is implemented and so avoid duplication of
common services. All he must do is ensure that COM interface architecture
(pointers and function tables, etc.) is adhered to. In the case of this new interface,
the duplicated Push and Pop services will simply point to the implementation of
the previous interface, thereby reusing that code and avoiding redundancy.

By strictly enforcing that interfaces are immutable, COM ensures that legacy
systems do not break, since old interfaces are supported forever, and new users
can query for and use new interfaces. The obvious benefit of this form of version
control is that more care will go into the designing of interfaces to ensure robust
specifications that are sufficient to avoid having to version the interface itself.

Language Independence

How is it possible for a software component written in one language to use the
functionality of a software component written in another? COM ensures this by
defining a binary rather than a source code standard for interoperable objects.
This means it does not rely on any given language’s object model. By employing
an object model that can be supported by a number of different languages
(including those that are not otherwise object-based, such as C), the choice of
which language to write a component object in becomes an unimportant
implementation detail.

Language independence is one of the advantages of using COM. COM objects
are more reusable than source-code objects, such as C++, since those objects can
typically only interact with other C++ objects. Even within a given language,
different vendors can create subtle differences, which do not allow for proper
interoperation. For example, it is possible to build a C++ DLL with Microsoft
Visual C++ and not be able to use it within a Borland C++ project. With COM,
however, the reusability transcends the source code and such differences in
object representation are avoided.

Chapter 5: Object Linking and Embedding 75

Component Object Model (COM)

COM has minimal language requirements to be able to work with component
software units. For your language of choice to be able to implement a COM (create
component objects) it must be able to support the creation of a table of function
pointers. For your language of choice to be able to access a COM interface (and,
therefore, work with component objects) it must support the ability to call
functions by dereferencing pointers. Given these modest requirements in today’s
development environment, COM’s proliferation is almost assured.

Transparent Remoting

How can clients communicate with component objects without concern for
where those components physically reside? COM provides for full distribution.
A component object is accessible regardless of where it resides on the network.
More than a simple “internet-like” technology, which brings the component to
the local machine to call it, COM actually runs the component remotely wherever
it resides and only returns the result to the client. This allows for a true
client/server distributed architecture.

COM components (also known as COM Servers) can be implemented in one of
three ways:

� In-Process

� Local

� Remote

Clients who make use of these servers do not need to know which type of server
they are calling. COM provides transparent cross-process interoperability by
abstracting away and separating the calling transport mechanism from the
component itself.

In-Process Server In the case of an in-process server, which uses a traditional DLL, there is little
work to be done. When the client loads the component, it is done so in the same
address space as the client (the program). Therefore, the two components share
the same memory space and file handles, and can communicate with each other
with the highest efficiency.

Local Server Implementation of a component that is packaged as an .EXE on the same
physical machine as the client (program) is called a local server. Linking from the
client to the component is a more complicated process than that of in-process
servers. Calls to the server component (and their method parameters and return
values) need to be packaged and transferred across the process boundary in both
directions since the two components do not, in general, share memory (assuming
32-bit components). This transfer process is performed automatically and
invisibly by COM using Lightweight Remote Procedure Call (LRPC) technology.

76 Visual Objects Programmer's Guide

OLE 2 Features

Remote Server When the server is remote (resides on another physical machine somewhere on
the network) conceptually the exact same transfer process needs to take place.
The only difference is the transport protocol that is used. With local servers
LRPC is used. With remote servers, true RPC across the network is used.

In all cases, neither the server nor the client need to worry about their proximity
to one another. Neither server is written to assume a certain transport
mechanism. All of this can be determined by COM at runtime based on various
operating system settings, which means that clients use the same simple
programming model when calling components regardless of where they are
running. Therefore, a developer could build and test a component locally, and,
once it is production ready, it can be moved out onto a remote machine on the
network, and none of the test code needs to be changed.

Achieving cross-process interoperability is the key to solving the component
software problem. It would be relatively easy to design a component software
architecture that assumed all component interactions occurred within the same
process space. The COM library encapsulates all the legwork associated with
finding and launching components and with managing the communication
between components. Because components are insulated from location
differences, when a new component is released with support for cross-network
interaction, existing component objects will be able to work in a distributed
fashion without requiring any source code changes, recompilation, or
redistribution of any kind.

OLE 2 Features
As mentioned before, OLE is a comprehensive technology that consists of several
subtechnologies like:

� Linking and Embedding

� Controls

� Automation

Linking and Embedding

Linking and embedding objects into “containers” or “compound documents” is
the basic foundation of OLE. These two methods store items, which were
created by one application, inside a document of another application. The
application that created the object is called the server application and the
application that stores the object is called the container or client application.

Chapter 5: Object Linking and Embedding 77

OLE 2 Features

Embedding Embedding is the more common of the two methods. For example, creating a
picture or a spreadsheet and placing it inside a Microsoft Word document. There
are several ways of embedding an object into a container. An object can be
pasted using the Paste or Paste Special menu items, dragged and dropped into
the container, or inserted via the Insert Object menu item. Whichever way you
choose, the end result is the same; the object created by a server, such as Paint or
Excel, will appear to be part of the client’s (Microsoft Word’s) document.

An object has two states, passive and active. After the object is placed in the
container, it is in the passive state. An object will stay in this state until it is
necessary to make modifications to it, in which case it will become active by
some user action defined by the client. Activating the object, to edit it, launches
the application (for example, Microsoft Paint or Microsoft Excel) used to create
the object.

The application can be launched in two ways, depending on how the client
application has implemented activation support. The first way is for the client to
start the server as a separate application in a separate window. The second way
is for the client to become the server application for the duration of the object
editing session. In this case, the client will change into the server. This change
encompasses menus, toolbars, status bars, and any palette windows. Microsoft
Word is a good example of this behavior, called “In-Place Activation” or “Visual
Editing.”

There are also two models for activating objects: outside-in activation and inside-
out activation. Outside-in activation requires an explicit action to activate the
object, such as choosing the Object Edit menu command or double-clicking the
object itself. This model is the most common because it reduces the risk of
inadvertently activating an object, which can take a significant amount of time to
load and dismiss. Inside-out activation requires no extra user interaction; simply
placing the cursor on the object will activate it. Thus, inside-out objects are
indistinguishable from the client application’s native data. This model can be
used when the overhead of activating the object is small.

Linking An object can also be linked to the client application. A linked object is a
representation of (or pointer to) the actual object which resides elsewhere (either
in the same document or in a different document).

An object can be linked by selecting the Paste Link option in the Paste Special
dialog box. When you choose to paste link the object to the client, a picture of the
contents of the clipboard is inserted into your document. The Paste Link option
creates a link to the source file so that changes to the source file will be reflected
in your document. The Insert Object dialog box also supports linking of objects.
When you select the Link check box, along with the Create From File radio
button in this dialog, a new object will be created that is linked to a selected file.
A picture of the file contents will be inserted into your document. This picture
will be linked to the file so that changes to the file will be seen in your document.

78 Visual Objects Programmer's Guide

OLE 2 Features

Editing a linked object is very similar to editing an embedded object. The only
difference is that the data for a linked object remains in the document that
created the object, whereas the data for an embedded object travels with the
object to the client application. Additionally, editing a linked object is always
done “Out-of-Place.”

Controls and Control Containers

An OLE custom control (OCX) is a special kind of OLE 2 object. It is an
embedded OLE 2 object with an extended interface that lets it behave like a
Windows control. An OLE control container is an application that can support
OLE controls. Thus, OLE custom controls are a set of extensions that turn simple
OLE 2 containers and objects into more powerful Control Containers and Controls.

The OLE 2 standard for compound documents meets many of the requirements
of both control and control containers, but not all of them. Writing a control
involves some other issues, primarily those dealing with OLE automation. A
control must expose its events, methods, and properties to a control container.
And a control container must expose ambient properties and its own events to the
control. Ambient properties are named characteristics or values of the container
itself that generally apply to all controls in the container. Some examples of
ambient properties are default colors, font, and whether the container is in design
mode or run mode.

The difference between controls and simple OLE objects is that controls generally
do not need a lot of user interface components, like toolbars and menus.
However, they do have additional needs for event capture—such as focus and
keystrokes.

OLE Support Inside Visual Objects Window Editor

To support OLE 2, the Visual Objects Window Editor has become both an OLE
object and an OCX container. Thus, it will have design and runtime modes,
dragging and dropping of objects and controls from the Window Editor palette,
embedding and linking of objects, in-place activation and editing of embedded
objects, and the ability to access all the methods, properties, and events of an
OCX.

The following figure shows the Window Editor containing a business graphic
OCX. Note that the OCX events and properties are listed inside the OLE Control
Properties window.

Chapter 5: Object Linking and Embedding 79

OLE 2 Features

When the Window Editor is invoked, the Visual Objects IDE View menu extends
to include “Test Mode...”, thus giving the Window Editor two modes or states,
design mode and run (or test) mode. OLE controls will not be active at design
time (they will not have a window handle yet), but will appear only as a
representation of contents. This is done in order to increase performance and
memory by minimizing the number of open windows. When in test mode,
however, the controls will be activated.

The Visual Objects IDE Edit menu now includes several OLE-related menu
items, including Insert OLE Object, Insert OLE Control, and Setup OLE Control.

Insert OLE Object

Selecting the Insert OLE Object menu item launches the Insert Object standard
dialog box:

80 Visual Objects Programmer's Guide

OLE 2 Features

The Insert Object dialog box is a common Windows dialog box. To create a new
OLE object, click on the Create New radio button and select the new Object type
from the Object Type list box. The Result group box describes the object that is
selected.

If the OLE object to be inserted is from an existing file (for example, to use
256color.bmp file, which comes with Windows as an OLE object), the Create
from File radio button should be selected. By clicking this radio button, the
Insert Object dialog box removes the Object Type list box and replaces it with a
File edit control for the path and object filename, as shown in the next figure:

The Link check box, if selected, creates a linked object instead of an embedded
object. This means that if there are changes to the object, in this case is
256Color.bmp, the linked object is updated in the window right away with the
new changes. This is where the difference between linking and embedding can
be seen clearly. An embedded object does not have a pointer to the actual file,
but a linked object does.

Another option that can be selected in the Insert Object dialog box is Display as
Icon. This check box is only available for Create New and Create from File
modes. It is used to insert OLE objects as icons instead of the look and feel of
actual objects. For example, instead of having the actual spreadsheet shown in
your data window, the inserted spreadsheet object can be displayed as an icon.
If you need to see the spreadsheet file, the icon can be double-clicked and your
data window displays the spreadsheet file.

Chapter 5: Object Linking and Embedding 81

OLE 2 Features

Insert OLE Control

Selecting the Insert OLE Control menu item launches a dialog box with a list of
all the OCXs that are registered in the database on your machine:

The only action required is to select the OLE control and press the OK button or
double-click on the OLE control that is going be inserted into your window.
These OLE controls are either automatically registered to the registry or can be
registered manually, as described in the next section, in the Setup OLE Controls
dialog box.

Setup OLE Control

The Setup OLE Control menu item launches a dialog box with all OCXs—which
you can register or unregister, and generate the OLEControl class from them:

82 Visual Objects Programmer's Guide

OLE 2 Features

The Setup OLE Controls dialog box is similar to Insert OLE Controls, except it
has more functionality. Several actions can be done in this dialog box at once:

� Registering OCXs

� Unregistering OCXs

� Adding registered OCXs to the tool palette

� Removing OCXs from tool palette

� Generating an “OLEControl” class

A new OCX would not be useful unless it is registered to the Windows Registry.
Registering an OCX can be done in two ways-either through this Setup OLE
Controls dialog box or by installation. The procedure to install OCXs is usually
the same as the procedure to install any regular software, except OCX
installation registers the OCXs automatically.

Similarly, you can unregister an OCX by pressing the UnRegister button or doing
an uninstall, which usually comes with the installation package for the control.

To add registered controls to the tool palette in the Window Editor, press the
Add to Palette button. This action also adds the controls to the Select From
Palette command in the Edit menu.

And of course, any OCXs that are added to the Tool Palette and the Select From
Palette command can also be removed by clicking on the Removing from Palette
button.

OLE controls can also have all of their functions included in the source code by
pressing the Generate push button. This action is similar to generating an OLE
automation server, which will be discussed later in this chapter. Visual Objects
will create a specific class for the OCX, which inherits from an OLEControl class.
Note that you can program OCXs without having to generate a base class
through the OLEControl class, but for performance and compile time checking
reasons you may decide to generate a base class. Base classes for OCXs inherit
from the OLEControl class.

Once the control is inserted into the Window Editor, clicking on the new control
reveals its associated properties box. Since it is an OCX, the control will be
queried for its properties. The control’s methods and events are also queried and
displayed in the standard Visual Objects properties box. Thus, clicking on a
particular event from the properties box launches the Source Code Editor so that
code can be written to handle the event.

An object browser, similar to the Visual Objects Class Browser, will also be
available so that a particular control’s properties, methods, and events can be
seen without inserting the control onto the Window Editor. The object browser
queries the registration database and the object itself for this information.

Chapter 5: Object Linking and Embedding 83

OLE 2 Features

OLE Automation

OLE automation is very different from the original OLE features of linking and
embedding. While the concept of compound documents is central to linking and
embedding, OLE automation does not compound documents. But internally it
uses the same techniques as linking and embedding for the communication
between clients and servers. It allows one application to drive another
application. Therefore, automation is also considered a part of OLE.

The basic idea behind automation is to define a standard for cross-application
macro languages. Most standard applications, for example word processors or
spreadsheets, incorporate some kind of programmability through a macro
language. If this macro language is proprietary, it can only be used inside the
application itself. It is not possible to control or program the application from
another application.

Establishing a standard for accessing the macro language allows applications to
start some other, maybe specialized, application and program it to perform a
certain task. This is the basic idea behind OLE automation. Note that OLE
automation only standardizes the protocol of the language, but not the language
syntax. Different automation controllers might implement the same macro
language using a completely different syntax. Actually, some OLE automation
enabled applications might be programmable only through other applications.
Visual Objects, of course, uses its own syntax.

When discussing OLE automation, the two most important terms are “client”
and “server.” An automation server is an application that implements an
automation interface. This automation interface enables other applications or
automation clients, also called “controllers,” to program it. The automation
interface is often referred to as IDispatch or dispatch interface. In order for this
to work, the automation server must “expose “its interface to the automation
client. The interface has an object-oriented structure consisting of functions,
parameters, its return type, and also its properties, which might allow
read/write or read only access. The benefit of exposing IDispatch is to provide
functionality that is useful for other applications. For example, a word processor
might expose its spell-checking functionality so that other programs can use it.

Automation servers are added to the registry, so any application can find out
what automation servers are available by accessing the registry. Once a server
has been found, the application can obtain the IDispatch through the OLE API or
OLE2VIEW.EXE, which comes with the Win32 SDK.

This information of IDispatch becomes a component of the automation object.
Here you will find functions being mapped to methods along with properties,
and variables being mapped to access and assign methods.

84 Visual Objects Programmer's Guide

OLE 2 Features

Note: A server without IDispatch or type information cannot be used with
Visual Objects. However, most automation servers provide the controller with
type information.

Visual Objects and Automation

Since IDispatch has an object-oriented structure, representing OLE servers within
a Visual Objects class seems natural. This can be done in two ways: either using
a generic OLE automation object, or a specific object that is instantiated from a
server-specific class. Visual Objects includes a tool that creates this specific
automation object from the IDispatch of an automation server. This tool, which
will be discussed later, is called Automation Server Generator.

Automation functions support a similar flexibility as late bound (untyped) Visual
Objects methods—parameters might be polymorphic or optional. Additionally,
automation supports named arguments, to pass parameters in any order. For
these reasons, automation methods, properties, and variables can only be
mapped to late bound (untyped) Visual Objects methods.

Runtime Automation Handling

To demonstrate OLE automation, the Microsoft Word automation server will be
used as an example. A Microsoft Word Automation server IDispatch is called
WordBasic. In order for WordBasic to be used as an automation server, we need
to know its program ID or PROGID. This information can either be obtained
from the documentation that comes with an automation server, or by directly
looking into the registry with a tool like OLE2VIEW.EXE.

The first way of running WordBasic as an automation server from Visual Objects
is to create an OLEAutoObject and pass the PROGID to the Init() method. The
following lines of code instantiate a WordBasic automation server:
FUNCTION Start()
LOCAL oAuto AS OLEAutoObject
oAuto:=OLEAutoObject{“word.basic”}

If you run this code, nothing will seem to happen. The reason is that WordBasic
is started as an automation server and comes up invisible by default. This
behavior depends on the server you are instantiating. Some servers may come
up visible, others may come up invisible. Bringing up an automation server
invisibly is better because the application can start an automation server and do
several tasks without the user noticing.

Chapter 5: Object Linking and Embedding 85

OLE 2 Features

In order to implement OLE automation, you need automation server
documentation because the descriptions of those parameters are not available in
IDispatch. In some automation server documentation, all the methods,
properties, and variables of the server including argument names, types, and
descriptions are listed. For WordBasic, take a look at the WordBasic.hlp which
comes with Microsoft Word versions 6 and 7.

Using an automation server is not easy if method names and arguments are not
available. This is when tools like OLE2VIEW.EXE or Visual Objects Automation
Server Generator (which will be explained later in this chapter) are useful.

Compile-Time Automation Handling

So far, all the automation logic has been handled exclusively at runtime. The
automation object was created through the generic OLEAutoObject class and the
runtime system figures out the specifics of the automation object at the time you
create it. This is similar to creating a DBServer on the fly instead of using the
DB Server Editor at development time.

Using a generic OLEAutoObject is very flexible, but there are also disadvantages
to it. At the time the object is instantiated, the runtime reads and processes all
the type information for the server. Since OLE is resource intensive, reading the
IDispatch is a time-consuming process which involves several interprocess calls
(at least if you are not using an in-proc server that runs in your applications
address space) for each method, access, assign, or variable. Interprocess calls are
also called Local Remote Procedure Calls, or LRPCs. For Microsoft Word, which
has 1000 functions, this process might take more than a minute.

Another disadvantage is that compile-time error checking cannot be performed
for automation code that uses OLEAutoObject. Since all the methods you call in
the code do not exist at compile time, you will receive warnings about unknown
methods. But you are not able to catch misspelled method names.

The alternative to using OLEAutoObject is to use a pregenerated class that
inherits from OLEAutoObject. This pregenerated class is specifically generated
for each automation server you want to use. Visual Objects provides the tool,
Automation Server Generator, to pregenerate the specific class. It is a simple
concept similar to using the DB Server Editor or creating a specific class, that
inherits from the DBServer class.

86 Visual Objects Programmer's Guide

OLE 2 Features

Automation Server Generator

To use Automation Server Generator the following steps must be performed:

1. The Application must have GUI classes and OLE libraries included in the
application properties.

2. Focus must be on the module where the automation object will get created.

3. Select the Automation Server command from the Tools menu.

4. The Automation Server Base Class Generation dialog box appears:

5. Select the server name from the server list and click the Show Interfaces
button or simply double-click the server name to show the selected
automation server’s interface(s).

6. Select the interface to be generated by the automation server code generator.
One interface can be generated at a time.

7. Type the class name to be generated. By default, Visual Objects puts the
interface name as the class name.

8. Click the Generate Source button.

9. Close the Automation Server Base Class Generation dialog box by clicking
the Close button after the code generation process is complete.

Chapter 5: Object Linking and Embedding 87

OLE 2 Features

In the next figure we will show a module that contains an automation server
object, its methods and properties that are created from the WordBasic interface.
Since the class name to be created is WordBasic, Visual Objects creates a
WordBasic class, which inherits from OLEAutoObject class. The Automation
Server Generator supports the OLE-provided help document string. This string
might be part of the type information for a method, giving a brief explanation of
what the method does. If the description for the interface is available, it will be
created along with each entity, as long as Include Description Info check box is
selected in the Automation Server Generator dialog box.

Using a Pre-Generated Automation Class

As long as only one interface class is involved, things are pretty simple. Instead
of using OLEAutoObject, we simply use the generated class and, since the class
knows its server, we do not have to pass any arguments on the instantiation.
After the WordBasic class is generated, we can bring up the WordBasic server
with the following code:
FUNCTION Start()
LOCAL oWordBasicApp AS WordBasic
 oWordBasicApp:=WordBasic{}

Notice that in the instantiation of the WordBasic class, nothing is passed as
parameters. This is because in the Init() method of the WordBasic class, as
shown in the following lines of code, are generated from the Automation Server
Generator.
METHOD Init(ObjID) CLASS WordBasic
 IF(ObjID=NIL)
 ObjID:=“word.basic”
 ENDIF
 Super:Init(ObjID,0,.T.)

88 Visual Objects Programmer's Guide

OLE 2 Features

An automation server may have several interfaces. Combining several interface
classes makes the process complex. There is no way for the Automation Server
Generator to find out which specific interface is returned by a method. Although
OLE provides the information that a dispatch interface returns, it does not tell
which one. This is not a Visual Objects limitation, but a general OLE problem.
The generated code creates another OLEAutoObject for a returned dispatch
interface. The generated code is functional, but since it uses the generated
OLEAutoObject class, it sub-optimal. In the next section, we will explain how to
get around this problem.

Changing Generated Automation Server Code

If you are dealing with a dispatch interface hierarchy, the generated code for
methods that return IDispatch may be changed manually. This involves
changing a class name from OLEAutoObject to the name of the class you
generated for the specific dispatch interface.

Within a generated access, you will find the following lines of code close to the
end. This line is the same for all methods, accesses, and assigns returning a
dispatch interface. Unfortunately, the WordBasic automation server only has
one IDispatch.
// To use a pre-defined class here,change
// OLEAutoObject to desired class name
uRetValue := If(uRetValue:pInterface!=NULL_PTR,; OLEAutoObject{uRetValue},;
 NULL_OBJECT)

To return a specific automation object, you have to change OLEAutoObject in the
IF() statement into the desired class name. Since this is not applicable to
WordBasic, we use a make-believe DICAVO automation server which is a
subclass of OLEAutoObject. The changes would look like the following lines of
code:
uRetValue := If(uRetValue:pInterface!= NULL_PTR,;
 DICAVO{uRetValue},;
 NULL_OBJECT)

Similarly, you have to change OLEAutoObject to the generated automation
server class name (DICAVO) in each method to type the whole interface
hierarchy. There are still more changes that need to be done, and they should be
changed in the Start function as follows:
FUNCTION Start
 LOCAL oDICAVO AS DICAVO
 LOCAL oInterface2 AS DICAVOInterface2
 LOCAL oFunc1 AS DICAVOInterface2
 oDICAVO:=DICAVO{}
 oInterface2:=DICAVO:Interface2
 oFunc1:=oInterface2:Func1()
 oFunc1:Visible:=True
 oFunc1:AddText(“New Text”)
 oDICAVO:Quit()

Chapter 5: Object Linking and Embedding 89

OLE 2 Features

The only change to the pregenerated automation server code is to change
OLEAutoObject to the new generated class.

Advantages of Using a Pre-Generated Automation Class

There are several advantages of using a pre-generated automation class.

� Enhanced compile-time checking for nonexistent or misspelled servers or
methods. Such errors can be avoided since compiler warning would be
shown.

� Instantiating an automation server object is much faster using a generated
class since all the type information is already available. If OLE automation is
done at run time, the application must pull the information together each
time an OLEAutoObject is created.

� Method invocations are faster than that of a generic class. Your application
does not have to look up the dispatch ID any time you do a method
invocation.

� OLEAutoObject contains a huge array to hold all the type information of the
server. This array does not get created if a generated automation server is
used. However, this does not save memory since the generated automation
server code adds to your .EXE and also requires storage space.

Tip: The WordBasic example contains one thousand methods. If only a
small amount of methods are used, then it makes sense to generate the
WordBasic class in a separate application and copy the class definition, the
Init() method, and the methods and properties that are going to be used in
the application. Visual Objects links all classes and methods found in your
application and its search path into the executable.

OLE Automation Collections

Unfortunately, WordBasic does not implement one special feature of OLE
automation—collections. Collections are comparable to arrays that are managed
through access and assigns. Collection properties do not return or accept a
complete array, but they manage the array internally and only return or accept
individual elements. This means you have to be able to pass array indices to the
access and assign methods encapsulating these properties.

The following code calls the access MyAccess of the object MyObject, expecting it
to return an array and use the dimension operator on the returned array, which
is not how OLE collections work:
? MyObject:MyAccess[1]

90 Visual Objects Programmer's Guide

OLE 2 Features

Therefore, a new syntax for calling accesses and assigns of OLE collections has
been created:
? MyObject:[MyAccess, 1]

This calls the access MyAccess of MyObject and passes 1 as a parameter. This
means you are also able to declare access methods with a parameter list as
follows:
ACCESS MyAccess(x) CLASS MyClass

Assigns work the same way:
MyObject:[MyAssign, 1] := 87

and
ASSIGN MyAssign(x, y) CLASS MyClass

In this case, MyAssign is called with the value 87 for x and the value 1 for y. This
new syntax allows proper handling of OLE collections in the Visual Objects
language.

Note: This behavior is only implemented for late-bound (untyped) access and
assigns.

Named Arguments

Another feature of OLE automation is the use of named arguments. Automation
methods might support named arguments for optional parameters. In this case,
any parameter that has a name associated with it, by specifying the name with
the argument, allows the passing of arguments in any order, along with omitting
arguments completely.

The Visual Objects implementation of OLE automation and named arguments is
supported through the NamedArg class. The Init() method of this class takes
two parameters; the first one is the argument name (as a symbol) and the second
one is the actual value:
oAuto:FormatFont(NamedArg{#Points, 18})

The above code shows a typical use of named arguments. The FormatFont()
method of the WordBasic automation server contains many parameters, as in the
following line of code;
METHOD FormatFont(Points, Underline, Color,;
 Strikethrough, Superscript, Subscript,;
 HIDDEN_, SmallCaps, AllCaps, Spacing,;
 Position, Kerning, KerningMin, Default,;
 Tab, Font, Bold, Italic) CLASS WordBasic

Chapter 5: Object Linking and Embedding 91

OLE 2 Features

By using named arguments, you only have to specify the property you actually
want to change; in this case, the font size to 18. You do not need to pass the rest
of the parameters to the FormatFont() method. For example, to change the font
to Bold, no commas are necessary before the Bold argument name. You only
need:
oAuto:FormatFont(NamedArg{#Bold,1})

The following lines of code show an example of using the WordBasic OLE
automation server, from instantiating to closing the server:
FUNCTION Start
 LOCAL o AS WordBasic
 o:=WordBasic{}
 o:FileNewDefault()
 o:ViewZoom100()
 o:Insert("Visual Objects 2.7 is the ")
 o:FormatFont(NamedArg{#Points,24})
 o:Insert("Best ")
 o:FormatFont(NamedArg{#Points,12})
 o:Insert("Application Development Tool")
 o:FileSaveAs("c:\samples\VOWord.doc")
 Textbox{,"Visual Objects Automation;
 Sample","Click OK after you are
 done"}:Show()
 o:FileExit()

Note: The WordBasic server must be running before your application is
executed if you want the user to see the process. The end result is the same and
can be viewed by opening the document file, VOWord.doc, in the path specified.
The previous example code above instantiates an OLEAutoObject as WordBasic,
creates a new document with the Normal.dot template, changes the View to
100%, inserts some text, changes the font to different sizes, saves the document to
C:\SAMPLES\VOWord.doc, and closes the server.

OLE Automation and OCXs

OLE Controls (OCXs) are custom controls that use OLE mechanisms to
communicate with their owning windows. The 32-bit OCX market is moving
rapidly. It compels the creation of sophisticated OCXs for almost every need. To
name a few: image processing, business graphics, spreadsheets, word processors,
and Word Wide Web browsers.

Visual Objects fully supports the use of OCXs. OCXs are often a better choice
than full-blown OLE server applications because they are usually less resource
intensive and run inside the application’s address space, which gets rid of the
overhead involved in LRPCs between address spaces.

92 Visual Objects Programmer's Guide

OLE 2 Features

OCXs are not dumb controls that are simply placed on a form and send some
Windows messages to their parents. They are intelligent controls that can be
programmed and can fire any kind of events to their owners. As you have
probably guessed, programming OCXs happens through OLE automation. Just
as with normal automation servers, Visual Objects supports runtime and
compile-time OCX handling. Let’s take a look at the runtime-based handling
first.

Runtime-Based Automation Handling

OCXs are available as controls in the Window Editor. By choosing the Insert
OLE Control command from the Edit menu in the Window Editor, you can select
an OCX. From inside the window, the OCX is treated like a regular control and,
therefore, an object is created in the Init() method of the form. Before we look at
the generated code and see how we can talk to the OCX, we can first take a look
at the functions and properties that make up an OCX.

After having selected an OCX on the form, choose the OLE Control Methods
command from the Edit menu. This brings up the Invoke Control Method dialog
box that shows all properties and functions with their parameters for the selected
OCX. You can even enter parameters and invoke these methods through this
dialog. This way, you can set up the OCX for the initial appearance at runtime
and see what certain methods do.

All the methods and properties listed in this dialog can be directly sent to the
object representing the OCX control. The class for a simple data window
containing a Light Lib OCX is shown below:
CLASS OCXWin INHERIT DataWindow
 PROTECT oDCLLibOCX AS OLECONTROL

Chapter 5: Object Linking and Embedding 93

OLE 2 Features

The object representing the OLE object is inherited from OLEControl. Anywhere
inside a method of class OCXWin, you can now call methods or set/query
properties of the OCX. Adding this code at the end of the generated Init()
method, makes the OCX load the specified image any time the form is invoked:
oDCLLibOCX :Load(“cai.bmp”,0)

Usually, the OCX would not load the same image at startup, but the OCX would
be prepared in the Window Editor in such a way that the image is already loaded
when the control appears.

Compile-Time Automation Handling

The approach we have taken so far simply sends messages to the control object
that was inherited from OLEControl. This is completely runtime-based. To
provide compile-time handling, we have to generate a class again. This is done
through the Setup OLE Controls dialog box, which is accessible via the Setup
OLE Control command from the Tools menu:

To generate a LightLibImages class from LightLibImages Control:

1. Select the OCX (for example, LightLibImages Control).

2. In the Class Name field, enter the name of the new class that you want
Visual Objects to generate. By default Visual Objects uses the control name
as the class name, such as LightLibImages.

3. Enable the Include Description check box if you would like Visual Objects to
generate the descriptions.

4. Click the Generate button.

94 Visual Objects Programmer's Guide

OLE 2 Features

5. In the Window Editor, after the LightLibImages class is generated, change
the Inherit from Class property in the OLE Control Properties window to
LightLibImages, as shown here:

This causes the Window Editor to generate a class definition for the form to use
the generated automation class for the OLEControl as follows:
CLASS OCXWin INHERIT DataWindow
 PROTECT oDCLLibOCX AS LightLibImages

The Init() method of this window class would look like this:
METHOD Init(oWindow,iCtlId,oServer) CLASS OCXWin
 …
 oDCLLibOCX := LightLibImages{SELF,;
 ResourceID{DW_OLECONTROL1,_GetInst()}}
 oDCLLibOCX:Hyperlabel := Hyperlabel{#LLibOCX,;
 NULL_STRING,NULL_STRING,NULL_STRING}
 oDCLLibOCX:CreateFromAppDocStorage(;
 OleAppDocStorage{"C:\…\Application 1.MDF",;
 "OCXWin", "LLibOCX"})

Events

As mentioned before, OCXs can also fire custom events. This is not really part of
automation, but the OCX event handling is available to Visual Objects windows.

Chapter 5: Object Linking and Embedding 95

Putting OLE to Work

OCXs do not necessarily have events; the Light Lib Image OCX (the current
version) does not have events. If an OCX supports these events, they do not
become part of the OCX object; however, they do become methods of the
window that own the OCX. You can generate OCX event handling by selecting
the event and clicking the ellipsis (...) button for that particular event in the OLE
Control Properties window, as shown below:

This brings up the Source Code Editor with the method declaration, including
the parameters that the OCX passes when firing the event. Once again,
parameters can be obtained from the OLE type information for the OCX, from
either the documentation or the OLE2VIEW.EXE.

Putting OLE to Work
OLE is much more than just a Windows add-on. Additionally, on the
programming side, the complexity of OLE is mirrored in the OLE programming
interface. OLE objects, servers, and containers communicate by means of
interfaces, each of which provide a different set of functionality. Interfaces are
arranged in a hierarchical inheritance tree, starting with a root interface called
IUnknown. Given a pointer to the IUnknown method,
IUnknown::QueryInterface can be used to ask for additional interfaces supported
by the OLE object.

96 Visual Objects Programmer's Guide

Putting OLE to Work

The minimum set of interfaces to be implemented for an OLE object or container
is quite well defined and varies with the range of functionality you want to
support. To illustrate this, a list of the standard interfaces for use with the Visual
Objects Window Editor follows. These can be used to create an OCX container:
IUnknown
IDispatch
IOleInPlaceUIWindow
IDropTarget
IOleUILinkContainer
IOleInPlaceFrame
IAdviseSink2
IPropertyNotifySink
IOleClientSite
IOleInPlaceSite
IOleControlSite
...

Each interface provides a set of standard methods, all of which have to be
implemented, even though in many cases they are just dummies returning a
NOT_IMPLEMENTED constant.

To make things even more challenging OLE works with it’s own file format,
which are called DocFiles (.DFL files), and memory management, and uses
Unicode strings (in 32-bit) throughout, regardless of whether it is running on
Windows or Windows NT.

It should be evident that the complexity of OLE calls for some kind of support
layer between your application and the OLE basics, especially because most of
the infrastructure you are required to provide is always identical and
application-independent. Therefore, Visual Objects encapsulates OLE to hide the
necessary but always identical basics, such as the needed set of interfaces from
the user, and instead exposes a lean and clear interface to OLE.

In the following section, you will see how to use Visual Objects to implement a
multiple document interface (MDI) OLE container application, which can
manage embedded or linked OLE objects and supports “In-Place” activation.
Implementing the container using the Visual Objects OLE classes, requires much
less work than doing the same low-level implementation in C or C++.

The Sample Frame Work

Start by simply select the Standard OLE MDI application on the Standard tab
page:

Chapter 5: Object Linking and Embedding 97

Putting OLE to Work

This creates the Standard OLE Menus module, which contains the
EmptyShellMenu and StandardShellMenu entities. StandardShellMenu contains
OLE menu items such as Insert Object, Paste Special, and Links.

Inserting Objects

The Insert Object menu item calls the InsertObject() method of the DataWindow,
which in turn calls OLEObject:CreateFromInsertDialog(). This brings up the
Insert Object dialog box:

After successfully creating the object, it is positioned on the form and receives
the input focus. By default, out-of-place activation will take place:

98 Visual Objects Programmer's Guide

Putting OLE to Work

Notice that Microsoft Paint runs in a separate window, and that the OLE object
inside the Visual Objects container is grayed out as long as the object is being
edited. To close Microsoft Paint during the out-of-place activation, click
anywhere on the Visual Objects form.

To demonstrate in-place activation, you will need to modify the
StdDataWindow:Init() method as follows:
METHOD Init(oParentWindow, sFileName, lReadOnly, oServer) CLASS StdDataWindow

LOCAL sCaption AS STRING
LOCAL aKids AS ARRAY
LOCAL i AS WORD

SUPER:Init(oParentWindow)

SELF:Menu := StandardShellWindow{SELF}
SELF:ToolBar:PressItem(IDM_StandardShellMenu_View_Form_ID)
sCaption := "Browse Database:"

IF !IsNil(oServer)

SELF:Use(oServer)
SELF:Caption := sCaption + oServer:Name

ELSE
SELF:Use(CreateInstance(#DBServer, sFileName, , lReadOnly))
SELF:Caption := sCaption + sFileName

ENDIF

//Retrieve all child objects of the StdDataWindow, including the window's
//control objects
aKids := SELF:GetAllChildren()

FOR i := 1 UPTO ALen(aKids)

IF IsInstanceOf(aKids[i], #OLEObject) //If the child is an OLEObject

Chapter 5: Object Linking and Embedding 99

Putting OLE to Work

 aKids[i]:AllowInPlace := TRUE
 aKids[i]:AllowResize := TRUE
ENDIF

NEXT

Note that the AllowInPlace and AllowResize flags are set to TRUE, meaning that
the object is allowed to be edited in-place and the user is allowed to resize the
object. Compile this new code and then run the application. Double-clicking on
the object itself will demonstrate the in-place editing of the OLE object:

Note: The server can deny in-place activation even if OLEObject:AllowInPlace is
set to TRUE. In such cases, out-of-place activation will take place.

You can see that the server’s menus are merged with the original Visual Objects
container menu, and that the server’s toolbars are integrated into the MDI client
area, allowing you to work with MS Paint (or any other OLE server) from within
your Visual Objects application. From the time when the user double-clicks on
the object to the final in-place activation, many activities go on behind the scenes,
all of which you would have to code explicitly if you were doing OLE the hard
(low-level) way. The server and the container have to communicate and decide
how to merge menus, how to use the container’s client space, and what’s going
to happen to the container’s and server’s toolbars.

In Visual Objects, all of this is automatically done for you. You do not have to
implement 10+ interface classes and you do not have to worry about the OLE
basics—all the “magic” is automatically done behind the scenes.

To close, or deactivate, the server (in this case, MS Paint), simply click on the
gray area of the form.

100 Visual Objects Programmer's Guide

Putting OLE to Work

Adding Paste and Link Support

Another way of getting an OLE object inside the OLE container is via OLE’s
Paste Special dialog box.

Both the Insert Object and Paste Special dialog boxes contain options to create
links to OLE objects instead of embedding the objects. Visual Objects provides
another dialog box, Links, which allows you to manage these links. You can
update, edit, change, and break the link to the OLE server in this dialog, as
shown below:

You can bring up the Links dialog box by simply calling the
DataWindow:Links() method at runtime. This is already being done via the Edit
Links… menu item. At design time, this dialog can be displayed by having a
linked object in your window, and selecting the Links command from the Edit
menu.

The Update radio buttons are available for you to specify the type of links for the
selected linked object. Select Automatic update if you want to have the changes
of the linked object to be reflected in your linked object automatically. For
example, if there are changes to the CAVOLOGO.BMP file, the changes are
updated automatically to the linked object in your window.

To the update data for the selected linked object manually, you select the Manual
radio button. The Update Now button is pressed to update the changes in the
selected linked object. For example, if there are changes to the
CAVOLOGO.BMP file, which is used in your window, you might want to press
this button to have that changes take effect in your window.

Tip: You do not need to do this if the Update type is Automatic.

Chapter 5: Object Linking and Embedding 101

Putting OLE to Work

The Open Source button is pressed if you need to make changes (editing) to the
linked object. This object will be opened in the application the linked object was
created. For example, the CAVOLOGO.BMP file will be opened in Microsoft
Paint, an out-of-place activation will take place.

The Change Source button is pressed if you want to specify a different object for
the selected linked object. This invokes the Change Source dialog box:

In this dialog box, you can specify the location of the new linked object.

The Break Link button is pressed if you want to disconnect the link between the
linked object in your window with the file. The linked object will then be an
embedded object, and changes to the file (in our case CAVOLOGO.BMP) cannot
be updated in your window anymore. Once the link is disconnected, it cannot be
reconnected.

Inserting Objects Using Drag-and-Drop

OLE containers usually allow the user to place new OLE objects inside the
container by using drag-and-drop techniques. To achieve this in Visual Objects,
you call EnableOleDropTarget(TRUE) for the ChildAppWindow you want to
register as an OLE drop target. For the Standard OLE MDI application, this
could be done in the StdDataWindow:Init() method by adding
SELF:EnableOLEDropTarget(TRUE). After that, any OLE-related drag-and-drop
operation generates an OLEDragEvent object and one of the container’s methods,
OleDragEnter(), OleDragOver(), or OleDragDrop(), is called.

102 Visual Objects Programmer's Guide

Putting OLE to Work

Given the example of an OLE container, which should only handle WordPad
documents, you would have to examine the value of OleDragEvent:ObjectName
as follows:
METHOD OleDragOver(oDE) CLASS StdDataWindow
 RETURN oDE:ObjectName == "WordPad Document"

By returning FALSE from OleDragOver(), the drag-and-drop cursor changes to
the no-drop shape, indicating to the user that the current object cannot be
dropped. When the user releases the mouse button, and thus finishes the drag-
and-drop operation, OleDrop() is called:
METHOD OleDrop(oOleDragEvent) CLASS StdDataWindow
 LOCAL oOLE AS OLEObject
 IF (oOleDragEvent:ObjectName =="WordPadDocument")
 oOLE := OLEObject{self}
 oOLE:AllowInPlace := TRUE
 oOLE:AllowResize := TRUE
 IF oOLE:CreateFromOLEDragEvent(oOLEDragEvent)
 oOLE:Origin := oOLEDragEvent:Position
 oOLE:Show()
 oOLE:SetFocus()
 RETURN TRUE
 ENDIF
 ENDIF
RETURN FALSE

First, we check the object’s type, because we only want to allow WordPad
objects. Then, the object creation is done similarly to how InsertObject and
PasteSpecial are handled internally, except that we now use
CreateFromOLEDragEvent for creating the object. Additionally, we get the
object’s position from the event by initializing oOLE:Origin with
OLEDragEvent:Position.

Showing Status Bar Messages

When an OLE object is activated in-place, the container and the server menus are
merged. But the container’s status bar (if any) is still controlled by the container.
In order to allow the activated server to display its status bar messages (for
example, to describe its menu items) in the container’s status bar, we use
EnableOleStatusMessages—a method of ShellWindow, available as soon as you
include the OLE library in your search path. Once this is done, the method
OnOleStatusMessage() is called whenever the activated server wants to display a
status bar message. By default, OnOleStatusMessage() takes the message string
parameter and displays it in the ShellWindow’s status bar. If this is your
intended behavior, you do not have to do anything. If you want to do something
different, overload OnOleStatusMessage() in your derived class and you can do
anything you want with the message string.

Chapter 5: Object Linking and Embedding 103

Putting OLE to Work

Using OLE in Databases

Since OLE is a big part of modern applications, databases can now contain OLE
fields. You can insert objects or OLE controls into the OLE field. Each field in a
database can have a different OLE object and it can also be changed at runtime.

An OLE field is similar to a memo field. It has a pointer to another file, called a
“DocFile”, which has a DFL extension. DFVIEW.EXE, which comes with MSDN,
can be used to view the .DFL files.

To create an OLE database, you can use the Visual Objects DB Server Editor. The
process of creating a new OLE database is almost the same as that of a regular
database. The only difference is that the OLE field has to be an OLE data type.
After the server is created, Auto Layout can be performed in the Window Editor
for that new server.

Visual Objects Window Editor’s Auto Layout feature creates an OLEObject
control for each OLE field. At design time, this control looks like a MultiLineEdit
control, and it would have all the properties of OLEObject in the OLE Object
Properties window. The next figure is an example of placing an OLE field inside
of a data window. This example is taken from the DEVINFO.AEF sample
application in the \SAMPLES\OLE\DEVINFO subdirectory. In this example,
the PICTURE field is the OLE field:

At runtime, there are several things that can be done to the OLEObject field,
when the focus is on the OLEObject field, including:

� Inserting a new OLE object

104 Visual Objects Programmer's Guide

Putting OLE to Work

� Inserting a linked object

� Changing the OLE object

As you can see, you can skip to the next record, to the previous record, or to the
beginning and end of file just like regular databases. And for each record you
can place a different picture or any other OLE objects.

The procedure to insert an OLE object and create links in the OLEObject field is
the same as that of inserting and creating links of OLE objects in the Visual
Objects Window Editor.

Chapter 5: Object Linking and Embedding 105

Chapter

6
Justifying Database Access
Choices

In deciding how to build new database applications and how to make the most
of existing code and data, there are several options. Different circumstances
require different approaches. A thorough understanding of the technical
tradeoffs will aid in producing the optimal solution. This is the essence of
engineering—optimizing under constraints.

From a language standpoint, Visual Objects fully supports both the procedural
and object-oriented programming approaches. The procedural approach, the
traditional structure of Xbase applications, is not well suited for dealing with the
complex demands of GUI environments such as Windows. The object-oriented
approach provides all the capabilities of the procedural approach, but also adds
structures that fit the event-driven and multi-tasking nature of GUI applications.
In practice, a hybrid approach is often the best: an object-oriented structure
overall to handle user interfacing and navigation, and procedural programming
in the action routines that perform the business tasks.

Another choice is the type of database access to support in your application.
Visual Objects supports Xbase-style data manipulation through a replaceable
database driver (RDD) technology, allowing you a choice of different file formats
driven by a common language interface. This feature allows you to use different
file formats within the same application and to tailor your applications so that
migrating from one format to another is simple and straightforward.

In addition to Xbase database operations based on the RDD technology, Visual
Objects supports SQL databases with Open Database Connectivity (ODBC), the
standard replaceable driver technology for SQL under Windows. Although SQL
and Xbase databases use different logic, the SQLSelect class provides an interface
compliant with the DBServer class for DBF, allowing an application to operate
the same way regardless of which database it uses.

The different options presented here—procedural vs. object-oriented
programming, different types of Xbase-style databases or SQL—present very
similar programming styles, but they do not present similar performance
characteristics. The reason several options are provided is that each offers its
own strengths and weaknesses. Care should be taken in choosing the
appropriate technology for each application.

Chapter 6: Justifying Database Access Choices 107

Technology—Object-Oriented or Procedural

Visual Objects makes these choices easy by requiring minimal changes in your
programs. This chapter outlines the issues involved in choosing a programming
method and a database format and will, hopefully, help you make the right
decisions for your own situation.

Technology—Object-Oriented or Procedural
Consider the following program, written using standard, procedural, Xbase
commands:
USE employee NEW
SET INDEX TO empno
...
DO WHILE .NOT. EOF()
 IF Sex == "M"
 DELETE
 ELSE
 Salary += Raise(Name)
 ENDIF
 SKIP
ENDDO

This example is trivial, but it illustrates the major operations commonly done
with Xbase databases:

■ Opening a table in a work area

■ Using an index file for ordering

■ Checking for end-of-file (in the logical sense, if there are any more records
available under the controlling order of this index)

■ Using the value of a field (Sex) on each record

■ Manipulating records with operations such as DELETE

■ Changing the value of a field (Salary)

■ Moving the record pointer

Aliased References

Experienced programmers know that this program is not very robust because all
the database references and commands refer to the current work area. Imagine
that the function Raise() was originally written to prompt the user but was later
modified to look up the new value in a table. If Raise() neglects to select the
original work area before returning, the SKIP statement after the invocation of
Raise()—and all subsequent statements—would apply to the wrong table!

108 Visual Objects Programmer's Guide

Technology—Object-Oriented or Procedural

It could be argued that this is bad programming—Raise() should clean up after
itself. Defensive programming means not relying on others to clean up but
ensuring that your own program is robust enough to survive whatever happens.
In any case, as the world gets more complex, with multiple windows and
multiple tables open at the same time, it is increasingly unrealistic to expect that
every piece of code will be completely free of side effects.

This is especially important under the event-driven paradigm of GUI
programming. Between the USE statement and the loop (where the ellipsis
represents other code), a GUI program is likely to grant control to the user who
might do any other operation, including opening another table in another
window.

A good solution to this problem would be to qualify every reference using the
alias operator, as in Employee->Salary. However, Xbase commands like SKIP
and DELETE cannot be qualified this way. Visual Objects, therefore, supports
function equivalents for the database commands (for example, SKIP corresponds
to DBSkip() and DELETE to DBDelete()). Fully qualifying both field references
and function calls, produces code which is much more robust.

For example:
USE employee NEW
SET INDEX TO empno
...
DO WHILE .NOT. Employee->(EOF())
 IF Employee->Sex == "M"
 Employee->(DBDelete())
 ELSE
 Employee->Salary += Raise(Employee->Name)
 ENDIF
 Employee->(DBSkip())
ENDDO

This version of the program exploits the universal aliasing feature of Visual
Objects to protect every reference from undue influence. In this code, there is no
dependence on the current work area remaining selected. Each line of code
works on its own terms and is not subject to the vagaries of the context. The
original version was fragile because it depended on its state (the current work
area) to remain constant. The new version is more robust because it is stateless.

However, it is not robust enough to handle all the demands placed on a
Windows application. GUI applications are typically designed for the
multi-document, multi-window paradigm: in addition to this code fragment,
there are other pieces of code that use other tables in other windows,
simultaneously within the single application.

Chapter 6: Justifying Database Access Choices 109

Technology—Object-Oriented or Procedural

Multi-Tasking, Multiple Documents

Multiple tables in multiple windows does not by itself pose a problem for our
code—the explicit alias referencing allows the code to survive even if other
routines use other tables at the same time. Indeed, multi-tasking and
event-driven processing increase the importance of making every statement
sufficient unto itself, since it is even more likely that unanticipated operations
have been going on when this program “turns its back.”

Important! In order to open the same table more than once, you must use shared mode;
otherwise, a concurrency conflict will occur. The remainder of this discussion assumes
that the SetExclusive() flag has been set to FALSE to enable shared mode as the default
open mode. See Chapter 9 “Concurrency Control” for more information.

The problem with the above code lies in the fact that while it can coexist with
other code using other tables, what happens if the user wants to run the same
function simultaneously in different windows for different departments, all
using the same table? Can this code coexist with other copies of itself? Clearly, it
cannot. Opening the table twice using the statement:
USE employee NEW

will fail because the two work areas will, by default, be opened under the same
alias (employee), and this is not allowed. According to Xbase procedural
programming conventions, all work areas must have unique aliases, and this
approach leaves to the programmer the task of managing the different aliases.

It is indeed possible to specify an explicit alias when opening the table, but if you
want two different aliases you must write two specific programs with different
aliases explicitly written into the code:
FUNCTION Func1()
 USE employee ALIAS Emp1 NEW
 ...

FUNCTION Func2()
 USE employee ALIAS Emp2 NEW
 ...

However, this is no solution because two aliases may not be enough. What you
really need is a program that can be started an arbitrary number of times and
that finds a unique alias each time it starts. Although it is possible to write a
program that finds a unique alias and uses this in all references, the solution is so
technical that the original business logic ends up being completely swamped by
the administration of these artificial aliases.

Indeed, this problem with dynamic allocation and management of work areas,
aliases, and other components is one of the main reasons most business database
programming systems do not support opening the same data window, with the
same table, several times in independent windows. These systems thereby fail to
meet one of the basic demands of Windows.

110 Visual Objects Programmer's Guide

Technology—Object-Oriented or Procedural

You need a solution that takes care of the technological barriers and lets you use
the database as you intend. You need a program that can be run many times
without stepping on itself. You need what the technologists call a reentrant
program. In this case, you need one that is reentrant not only in itself but in its
management of the database.

Object-Oriented Database Programming

The object-oriented database services of Visual Objects provide a different way of
dealing with the database called a data server. Data servers are high-level,
abstract entities that provide you with an object-oriented interface for databases.
They hide the technological artifacts of the alias and the work area and make the
database a self-contained object that can be used as many times as you want.

Look at the following comparison between the explicitly aliased version of the
program (shown here with some syntactic artifacts removed) and a new,
object-oriented program:

// Alias-qualified procedural style // Object-oriented style

USE employee ALIAS Emp NEW Emp := DBServer{"employee"}
Emp->(DBSetIndex("empno")) Emp:SetIndex("empno")
DO WHILE .NOT. Emp->(EOF()) DO WHILE .NOT. Emp:EOF
 IF Emp->Sex = "M" IF Emp:Sex = "M"
 Emp->(DBDelete()) Emp:Delete()
 ELSE ELSE
 Emp->Salary += Raise(Emp->Name) Emp:Salary += Raise(Emp:Name)
 ENDIF ENDIF
 Emp->(DBSkip()) Emp:Skip()
ENDDO ENDDO

The two programs are remarkably similar. The first statements, which open the
table, appear different but do pretty much the same thing. In the object-oriented
version, you create a new DBServer object for the Employee file and use the
variable Emp to refer to it; in the procedural version, you select a new work area
for the Employee file and use the alias Emp to refer to it. The variable Emp
contains an object pointer, as opposed to the alias Emp in the traditional case—
but this is a technicality. In both cases Emp is the handle by which you refer to
this particular table.

But after this introduction, all the operations and field references look about the
same: instead of being qualified with Emp followed by the alias operator (->),
they are qualified with Emp followed by the object message send operator (:). Each
function name is the same, except that the object-oriented versions (the methods)
do not have the “DB” prefix.

In some cases, such as EOF, the object-oriented version has a virtual variable so
the code does not use parentheses. The DBServer object dynamically
reconfigures itself when the table is opened to allow references like Emp:Salary
that look like exported instance variables.

Chapter 6: Justifying Database Access Choices 111

Technology—Object-Oriented or Procedural

The benefit of the object-oriented program is that it can be invoked as many
times as you want, without stepping on itself. It is self-contained, reentrant, and
does not require you to get involved in managing work area numbers or aliases.
Many copies of the DBServer object can be instantiated, and each lives in its own
world without needing anything from the outside.

This works particularly well in conjunction with object-oriented GUI
programming using the GUI Classes library. As you will see in the ‘User
Interface Programming’ section of this guide, a data window is also an object that
can be instantiated many times without stepping on itself. The data server fits
naturally with this approach: you create a data window and a data server and
connect them with each other in a client-server relationship.

Referencing Multiple Databases Simultaneously

As mentioned above, other procedural solutions are possible if all you want to
do is open multiple databases at the same time. Indeed, the trivial part of the
solution is starting up several copies of the same program.

However, these solutions are not adequate if you need to refer to more than one
work area at the same time. Imagine placing a push button on the “Employee
Review” data window that copies a salary value from one employee to another.
Here you need to refer to the two work areas, something you would traditionally
do through the two aliases. Generating unique aliases is one thing, but keeping
track of an unspecified number of them is quite another problem.

With the object-oriented approach, however, you can quite simply write a
routine that takes two work areas, presented as DBServer objects, and copies the
salary from the current record of the first work area to the current record of the
second:
FUNCTION CopySalary(EmpSource, EmpTarget)
 EmpTarget:Salary := EmpSource:Salary

The Right Choice

The decision about what database access technology is right for you depends
largely on what you want to do:

■ If you have existing applications that use the procedural approach and you
see no need to adapt them for operating in a GUI, event-driven environment,
they will compile and run as is.

■ If you want to upgrade a procedural application to use the data server
approach, the task will not be as difficult as you might imagine and may be
well worth the effort considering what you gain. For example, the DBServer
Editor allows you to quickly create data servers by importing the structure of
existing database files.

112 Visual Objects Programmer's Guide

Database—DBF or SQL

■ If you are developing new applications, using the object-oriented approach
from the start will definitely be to your advantage.

Database—DBF or SQL
Thus far in this chapter, the discussion has focused on DBF files and the
alternative technologies available for accessing them, but you have another
choice in Visual Objects and that is using SQL databases instead of, or in addition
to, DBF files.

Visual Objects provides the SQLSelect class, which allows you to access SQL
databases. If you are familiar with using traditional SQL embedded in a
program, you may recognize that many of the same problems described above
exist for SQL database applications as well. In particular, the requirements for
specifying cursor names (akin to DBF aliases) get in the way of writing reentrant
code. SQLSelect overcomes for SQL databases the same difficulties that
DBServer overcomes for DBF databases.

The SQLSelect object is functionally equivalent to the DBServer object and using
it in a program is identical to using DBServer, except for the way you create the
object:
Emp := SQLSelect{"SELECT * FROM employee ORDER BY empno"}
...
DO WHILE .NOT. Emp:EOF
 IF Emp:Sex == "M"
 Emp:Delete()
 ELSE
 Emp:Salary += Raise(Emp:Name)
 ENDIF
 Emp:Skip()
ENDDO

Of course, there are other, unique ways to operate on a SQL database that have
no counterpart in the DBF paradigm. These are supported via the SQLStatement
class and include such operations as mass updates and deletions.

Use of these features will make your applications less amenable to changing
from one database format to another but, in fact, these types of operations are
rarely sufficient for business applications. Complex calculations as well as
involvement by the end user generally require creating a cursor (using
SQLSelect) and embedding business logic written in a programming language as
described above.

SQL databases also have other constraints. For example, many cannot move
backwards and, depending on how the cursor was originally defined, a SQL
database may not support updates. These constraints are usually covered in the
documentation supplied by the database manufacturer.

Chapter 6: Justifying Database Access Choices 113

Database—DBF or SQL

Thus, from a language standpoint, the decision of which database format to use
is a trivial one, because most of your code is reusable no matter what you decide.
Your decision to use SQL or DBF databases will probably be based on other
issues, such as security, performance, and data volume requirements.

114 Visual Objects Programmer's Guide

Chapter

7 Data Server Classes

Visual Objects provides several built-in classes that enable you to design
applications that are, to a large degree, independent of the type of data storage
used (for example, DBServer for DBF files and SQLSelect for SQL database). This
chapter provides an overview of the data server classes, discussing the common
philosophy behind their designs and suggesting ways to exploit the similarities
in order to make your applications as data-independent as possible.

For more information on any of the classes discussed in this chapter, see the
Visual Objects Online Help.

Data Servers
A data server is an object created from a subclass of the DataServer class. Data
servers are the object-oriented tools for data windows to interact with databases.
There are built-in data servers of different types: the two most important ones,
DBServer and SQLSelect, work with databases. Other servers can be written that
present arrays and DOS directories in a tabular format that allows them to be
manipulated like databases.

All of these data servers provide a common set of methods based on a common
database paradigm. These fundamental operations include getting and setting
field values, moving forwards and backwards by (logical) record positions,
deleting or modifying the current record, inserting a new record, and searching
for a given value. The naming conventions used for the various methods make
them similar, if not identical, to corresponding Xbase command and function
names, simplifying the transition from procedural to object-oriented database
programming.

The way a data server is defined is not standardized; it differs among the
different types of servers. For example, an SQL database supports quite complex
SELECT statements, while an Xbase work area is based on a simple definition, a
complex indexing technology, and the concept of relating several work areas. All
of these variations are provided in class-specific extensions to the basic protocol.

Chapter 7: Data Server Classes 115

DBF Servers

In particular, the way each class instantiates objects is unique. However, once an
object has been created and the database opened, its clients can use the server the
same way. Thus, you can instantiate a data server with any one of the first two
sets of statements shown below, present it as a server to a data window and, after
that, the data window can support a number of standard operations:
// Xbase
oServer := DBServer{"customer"}
oServer:SetIndex("custno")

// SQL
oServer := SQLSelect{"SELECT * FROM customer ORDER BY custno"}

oDW := DataWindow{SELF, DWResourceName}
oDW:Use(oServer)
oDW:Skip()
? oDW:CustNo, oDW:CustName, oDW:Address
oDW:CustName := "Jones"
oDW:Seek(12345)
oDW:Delete()
oDW:Skip(5)
oDW:Commit()

The data manipulation methods of the data window simply turn around and
invoke the corresponding methods of the data server, which works because all
the servers support the same basic methods.

The DataServer class hierarchy is designed and implemented specifically to offer
you a consistent interface with data presented in different formats. You can also
define your own data servers by subclassing the DataServer (or any other data
server) class. By following the method naming conventions of the built-in data
servers, you maintain the interface consistency and make your applications
easier to adapt to changing formats.

DBF Servers
The DBServer class is designed to work with Xbase-style DBF files, giving you all
the functionality necessary to manage them, including indexing, setting relations,
and performing mass operations, such as total and update.

Instantiating a DBServer object is equivalent to opening a DBF file in a work area,
but the work area and alias concepts are not integral to your use of the data
server. Because the DBServer class manages the alias and work area information
behind the scenes, you can easily design applications that are reentrant and take
full advantage of GUI environments.

The DBServer class was discussed briefly in Chapter 6, “Justifying Database
Access Choices,” which explained how using it solved certain critical problems
of GUI programming that are not easily addressed through a procedural
approach. The DBServer class is discussed more fully in Chapter 8, “Using DBF
Files.”

116 Visual Objects Programmer's Guide

SQL Servers

SQL Servers
The SQLSelect class is designed to let you work with SQL databases in your
applications. It does for SQL databases what the DBServer class does for DBF
files, using the same interface and overcoming the same difficulties that
programming in a GUI environment presents. Using SQLSelect takes you a step
beyond the ODBC approach to SQL programming, eliminating the need for
automatic generation of cursor names that can add an undesirable degree of
technological complexity to your application.

The only difference between the way you use SQLSelect and DBServer is the way
in which you instantiate the class. With SQLSelect, you use a standard SQL
SELECT statement to define the records (or rows) you want to select and the
order in which you want them presented. From this point on, however, you
operate on the SQL database in the same manner as you would a DBF file. For
example:
Emp := SQLSelect{"SELECT * FROM employee ORDER BY empno"}
DO WHILE .NOT. Emp:EOF
 IF Emp:Sex == "M"
 Emp:Delete()
 ELSE
 Emp:Salary += Raise(Emp:Name)
 ENDIF
 Emp:Skip()
ENDDO

If you are familiar with SQL, you might wonder how this is possible. The SQL
and Xbase paradigms are quite different in terms of the operations you can
perform, and one cannot successfully emulate the other. This is the reason
Visual Objects must maintain separate server classes for accessing DBF and SQL
databases—two methods (one from each class) can have the same name with
completely different implementations.

The approach in the example above, referring to fields and doing Skip until EOF
is true, is the traditional Xbase approach. The standard SQL approach is slightly
different: you do Fetch until it indicates no more data. Skip is not required
because the Fetch operation by itself moves forward. Using Skip or Fetch to
move to the next record and make the data available might appear like a trivial
distinction. The approaches are also semantically different. Opening a DBF table
automatically positions the file pointer to the first record, but an SQL database is
not positioned until after the first Fetch operation.

The SQLSelect object also supports the classical SQL-oriented approach:
Emp := SQLSelect{"SELECT * FROM employee ORDER BY empno"}
DO WHILE Emp:Fetch()
 IF Emp:Sex == "M"
 Emp:Delete()
 ELSE
 Emp:Salary += Raise(Emp:Name)
 ENDIF
ENDDO

Chapter 7: Data Server Classes 117

SQL Servers

As a user of the SQLSelect class, it is not important to you that the methods are
implemented in a different manner than in the DBServer class. The important
thing is that, because method names are standardized, the code is consistent no
matter what data server you use.

Field References in Object-Oriented SQL

References to database fields (SQL calls them columns) are done with the
object-oriented style introduced above, very similar to the alias-qualified style of
Xbase. Standard procedural SQL provides a different approach in which an SQL
statement is bound to individual variables. In this approach, the variables
automatically hold the data after the Fetch operation. This approach does not
allow direct updating of the fields—to update the fields of the current record,
you must execute an SQL statement something like this:
<Open SQL cursor>
<Locate specific record>
UPDATE employee SET Salary = 75000
 WHERE CURRENT OF CursorName

Embedded SQL and ODBC provide no simple way of doing this. In contrast, the
SQLSelect class allows you to refer to field values as if they were ordinary
variables. In this case, you write:
Emp1 := SQLSelect{"SELECT * FROM employee"}
<Locate specific record>
Emp1:Salary := 75000

The object-oriented framework gives you a very simple way of referring to the
contents of different cursors, avoiding the complexity of constructing convoluted
SQL strings with dynamically inserted cursor names.

Other SQL Operations

This approach is not the only way of dealing with an SQL database. SQL is a
powerful language that allows many operations to be done without program
logic.

SQLStatement To let you perform any SQL statement you want, Visual Objects provides the
SQLStatement class. For example, instead of using a DO WHILE loop to process
all the records meeting a particular condition (as shown in an earlier example),
you could do it with a single statement:
SQLStatement{"DELETE FROM customer WHERE Sex = 'M'"}

SQLConnection SQLConnection is another class designed to work with SQL databases. This class
allows you to define a specific connection to an SQL database, including a driver,
user name, and password. Once instantiated, an SQLConnection object can serve
as an argument during SQLSelect and SQLStatement object instantiation.

118 Visual Objects Programmer's Guide

Data Fields and Field Specifications

Data Fields and Field Specifications
The DataField and FieldSpec classes let you associate certain properties with a
database field, including data type, context-sensitive help, a prompt, a field
caption, formatting, validation rules, error messages for the validation rules, and
help for the error messages.

By using DataField and FieldSpec objects in your application you can
encapsulate these attributes with the specific data, which makes writing your
applications easier. In addition, you can reuse DataFields and FieldSpecs by
putting them in libraries or DLLs and including them in our applications or
modules.

Data Fields

A DataField object (or a data field) is defined by three properties: Name, FieldSpec,
and HyperLabel.

Name Each database table is defined by several data fields arranged in a specific order.
Thus, it is possible to refer to a field by its number or by its name (which is a
string)—either will uniquely identify the field for each database. However,
because the name is likely to be more invariant over time, the DataField class
does not allow access to the field number.

Note: The NameSym property returns the data field name as a symbol instead
of a string, which may be more efficient in some circumstances. See Accessing
Fields in Chapter 8, “Using DBF Files” for more information on the advantages
of using symbols over strings.

FieldSpec The FieldSpec property (or field specification) is defined as a FieldSpec object.
FieldSpec is a comprehensive class that contains a formatting picture and several
different validation rules, as well as methods for performing the validations,
formatting, and converting data from one type to another. Database people often
call this specification a domain or an abstract data type.

HyperLabel The HyperLabel property is defined as a HyperLabel object. HyperLabel is a
simple class: essentially a set of labels of different types, from a programmer’s
symbol to a caption, a description, and a unique identifier for linking into a
context-sensitive help system. Hyperlabels are attached to most objects in the
system (rather like shipping labels on a package) and make it convenient to
present the user with meaningful information about what is going on in the
application. For example, not only does each DataField object have a hyperlabel,
each FieldSpec object has one as well. See Chapter 16, “Hyperlabels” for more
information.

Chapter 7: Data Server Classes 119

Data Fields and Field Specifications

A Data Field’s Relationship to Its Properties

The relationships between these objects are simple: the DataField has a FieldSpec
and a HyperLabel. And, since the field specification is independent of the data
field definition, it is possible—and common—for several data fields to share the
same field specification.

Field Specifications For example, a database system may have only one field specification defined for
employee numbers, because they all have the same type, size, format, validation
rules, etc. However, the “Employee” database would have two fields (the
number of the employee and the number of the employee’s manager) that use
the employee number field specification.

Thus, the database system can define several classes:
CLASS EmployeeNumberSpec INHERIT FieldSpec

METHOD Init() CLASS EmployeeNumberSpec
 ValType := "C"
 UsualType := STRING
 Length := 10
 Decimals := 0
 Picture := ...
 HyperLabel := HyperLabel{#EmployeeNumber, ;
 "Employee Number", ... }

CLASS EmployeeNumber INHERIT DataField

METHOD Init() CLASS EmployeeNumber
 SUPER:Init(#EmpNo, EmployeeNumberSpec{})

CLASS ManagerNumber INHERIT DataField

METHOD Init() CLASS ManagerNumber
 SUPER:Init(HyperLabel{#MgrNo, ;
 "Manager Number"}, EmployeeNumberSpec{})

In this source code, you will note that both the DataField subclasses,
EmployeeNumber and ManagerNumber, use the same FieldSpec subclass,
EmployeeNumberSpec.

Hyperlabels This relationship also helps explain why both the data field itself and its field
specification have a hyperlabel. The EmployeeNumberSpec class has a
hyperlabel that includes generic descriptive information about all employee
numbers. EmployeeNumber, as a general employee number, simply uses the
hyperlabel of its field specification, but the ManagerNumber is a specific type of
employee number and prefers to create its own hyperlabel.

120 Visual Objects Programmer's Guide

Data Fields and Field Specifications

In fact, this structure is littered with hyperlabels. Every validation rule in the
field specification (there are several of them, such as data type, maximum size,
minimum size, required, range, and other, developer-defined validations) has an
error message to display if a value is rejected. This error message is actually a
hyperlabel to provide a hook for attaching context-sensitive help to the
validation. Any hyperlabel that is not provided is automatically created by the
system.

How Data Servers Use Data Fields and Field Specifications

Data fields and field specifications, therefore, are not a physical part of the
database file—they are defined by code in your application. You connect them to
a database file using a data server (also defined by code in your application) that
defines the relationships between the database file and the properties you have
defined.

When you use either the DBServer Editor or the SQL Editor to create a data
server, the code for the data fields, field specifications, hyperlabels, and data
server, is generated automatically based on your design. However, you can use
the DataServer, FieldSpec, and HyperLabel classes directly to achieve the same
benefits with data servers defined elsewhere.

You can use the generated code for a data server as a model for how to define
your own, but the basic idea is to subclass an existing data server and include a
DataField instantiation for each field in its Init() method. The data fields, of
course, use field specifications and hyperlabels that you must also define.

Note: Keep in mind that defining data fields and field specifications is completely
optional—you can ignore them altogether. If they are needed but not available,
the system will generate data fields and field specifications for any database file
based on its record layout. This happens at runtime (for example, when you
instantiate the database file as a DBServer object).

Chapter 7: Data Server Classes 121

Other Data Servers

How Data Windows Use Data Fields and Field Specifications

In addition to defining field specifications for use with a data server and
explicitly linking them to data fields, you can define field specifications for use
with a data window (or data browser) and explicitly link them to controls (or
columns).

Here again, defining field specifications is optional. When designing a data
window, if you do not provide a field specification for a particular control, it
automatically picks up one from the data field to which it is linked. And, as
stated earlier, a standard field specification is generated at runtime, if necessary,
so the data window always has something to fall back on. Thus, the ability to
define field properties in this manner represents an opportunity rather than a
requirement. The main benefit is that the properties you define as part of the
data server are reusable.

Note: Just as it is not necessary to explicitly design a data server with data fields
and field specifications geared toward a particular database file, it is also not
necessary to explicitly design a data window for a particular database file. The
data window can automatically create a default layout based on the
characteristics of the linked data server. Thus, you can instantiate any database
(new or old) as a DBServer object, instantiate a DataWindow object that uses this
data server, and view and edit the contents of the database file—even though
neither the data window nor the data server has ever seen the database file. (An
excellent example of this can be seen in the Standard Application generated by
Visual Objects).

It is when you link a data server to a data window that the properties of the data
fields come into action. The data window uses the field specifications to
properly display controls along with their correct captions and prompts, to give
the proper help text when the user requests it, to validate the information
entered by the user, and to offer helpful error messages when something goes
wrong. See Chapter 11,“GUI Classes” for more information on data windows,
data browsers, and their relationship to field specifications.

Other Data Servers
Earlier in this chapter, it was stated that you can define your own data servers
and, in fact, this is just what you are doing when you use the data server editors
provided in the IDE. With the DBServer Editor, for example, the system
automatically creates a subclass of DBServer to hold all of the information that
you specify (such as field validation rules, help, formatting, and disk file name
and location).

122 Visual Objects Programmer's Guide

Other Data Servers

For example, after designing a Customer database file, the following statement
would be generated (along, of course, with many others):
CLASS Customer INHERIT DBServer

Then, to instantiate this class you would use:
LOCAL oDBCust AS Customer

oDBCust := Customer{}

All data servers that you design in this manner will be very similar to one
another in functionality, even though each has its own unique properties;
however, you can also create special purpose data servers by subclassing any
class in the DataServer hierarchy, which is the focus of this section.

Joining Tables

The ability to define servers is a very powerful feature that you might want to
explore on your own. For example, a server can act as a piping connection to
define operations involving two or more servers. Consider joining two databases
with SetRelation, for example. When joining the Employee table with the
Department table, the Skip operation is well defined. But what does it mean to
do a Delete operation on the Employee table? Should you delete the employee,
or the employee and the department, or refuse to perform the operation? The
answer would be different for Customers and Orders or for Orders and Items. A
general purpose data server class cannot guess the correct semantics in each case
because they depend on the application logic.

The solution would be to define a specialized data server that is capable of
joining other servers. Very briefly, the server would accept as instantiation
arguments two predefined servers that you would relate in the Init() method.
Then, you would define, using methods, how operations such as Delete should
work for the joined tables and how fields should be returned and updated.

Buffered Servers

Another possible extension would be a DBServer that buffered changes, allowing
rollback of a large number of changes. The standard DBServer class allows
changes to the current record to be discarded and the original field values
restored, but once you have moved off the record, the changes are permanent as
far as the program is concerned.

Such a buffered server could sit between the client window and the actual data
server, storing changed values in memory and only writing them out when the
application invokes a Commit operation.

Chapter 7: Data Server Classes 123

Chapter

8 Using DBF Files

Visual Objects lets you design applications built around the management of
Xbase-style databases (called DBF files) with a complete set of language facilities
designed specifically to manipulate these databases. The language facilities vary
slightly, depending on the approach you use.

Note: This was discussed in “Justifying Database Choices,” which touched on
the differences and similarities between the procedural and object-oriented
approaches to database programming and the benefits of using the DBServer
class.

This chapter, while not elaborating on every possible database operation
available, provides an overview of using DBF files from both the procedural and
object-oriented perspectives.

For more specific information, refer to the online help system which includes a
list all commands and functions designed for manipulating database files. The
Online Help will also provide you with information on the DBServer methods
and instance variables.

Databases and Work Areas
The Visual Objects database system is designed around the work area, a
component for using a single database file and multiple index files. A work area
is occupied or unoccupied, depending on whether it contains an open file. At
application startup, all work areas are unoccupied, and work area number one
(1) is the current work area.

A DBF file, also called a table, consists of one variable length header record that
defines the file structure in terms of its field (or column) definitions, and zero or
more fixed length records (or rows) that contain the actual data. Each record has
one additional byte for the record delete status flag.

Chapter 8: Using DBF Files 125

Replaceable Database Drivers

The file structure is defined and added to the DBF file when the file is created. It
consists of one or more field definitions describing the name, width, and data
type attributes for each column in the table. Normally, you will define database
file structures when you are designing the application that will use them. (You
can use the DBServer Editor, documented in the IDE User Guide, for this
purpose). Visual Objects can also operate with DBF files created by other
applications, including CA-Clipper, CA-dBFast, and other Xbase systems.

The table rows are added to the file at application runtime using data windows
which understand and enforce the file structure and other validation rules.

The data for all field types except memo are stored directly in the DBF file.
Memo fields are maintained in a separate file with the same name as the DBF file
and a .DBT or .FPT extension. The DBF file contains pointers to the data in the
memo file, but all of this is completely transparent to you as a developer and to
the end users of your application.

Replaceable Database Drivers
It was stated earlier that Visual Objects can operate with DBF files created by
applications made with Visual Objects, Xbase, or by the IDE. This is largely
because DBF formats have remained fairly well standardized over the years.
Index files, on the other hand, have remained distinct and unique to the product
that invented them. CA-Clipper NTX files are different from dBASE IV MDX
files, but the DBF file formats for these products are largely compatible.

Visual Objects supports an RDD technology that allows you to choose different
file formats, including database, memo and index, within the same application.
This feature lets you tailor your applications so that migrating from one format
to another is simple and straightforward, and plays an important role in the
ability of your Visual Objects applications to share data with other applications
(see the Data Sharing section later in this chapter).

The following RDDs are supplied:

RDD Name Product

DBFCDX FoxPro

DBFBLOB Enhanced FoxPro .FPT file support
and BLOB (binary large object) file
support

DBFMDX dBASE IV

DBFNTX Visual Objects and CA-Clipper

126 Visual Objects Programmer's Guide

Replaceable Database Drivers

See Appendix A, "Rdd Specifics," in this guide for more details on the RDDs and
any special characteristics they may have.

Choosing an RDD

All RDDs listed in the table are part of the System Library, so you do not have to
do anything special to make them available to your application. You indicate
which RDD you want to use by name when you open a database file (for
example, USE...VIA "DBFMDX" or as an argument when you instantiate a
DBServer object). Thus, you can access multiple file formats in different work
areas in the same application. DBFNTX is the default RDD, but you can change
the default through the RDDSetDefault() function.

Common Interface

Regardless of the RDD, you will operate on the database using a common
interface, minimizing the amount of code you must change to use an application
with a variety of file formats and eliminating the need to learn a different syntax
for each format. The only limitations in the language are those imposed by the
original manufacturer of the database/index format or by restrictions that are
inherent in the file structure. For example, CA-Clipper does not support
multiple orders per index file. Allowing the supplied RDDs to overcome these
limitations would render the database and index file incompatible with the
applications originally designed to use them.

Third-Party RDDs

The examples in this chapter use the default RDD but will also work with the
other supplied RDDs because of their common language interface. However,
because the RDD technology is designed in keeping with Visual Objects open
architecture philosophy, it is possible and probable that RDDs from third-party
developers will become available. If you choose a third party RDD, it may not
work with all the language components because of limited functionality
associated with the database. See Chapter 18, “Third-Party Components” for
more information about choosing third-party components.

Chapter 8: Using DBF Files 127

Language Overview

Language Overview
The Visual Objects language provides a complete set of commands and functions
for manipulating an open database in a procedural manner. While most of the
commands have an equivalent in the form of a DB…() function (and a strongly
typed VODB…() function), there are functions that do not have command
equivalents, such as EOF() and RecNo(), and commands, such as AVERAGE, that
do not have functional equivalents.

The DBServer class provides each of the basic database operations as a method.
When corresponding to a DB function, the “DB” is dropped from the method
name but, otherwise, the method name is the same as the command or function
that it implements. In other words, there are at least three, and in most cases
four, ways to perform every database operation:

Style Example

Command SKIP <n>

Function DBSkip(<n>)

Strongly Typed Function VODBSkip(<n>)

DBServer Method oDBServer:Skip(<n>)

Commands vs. Functions vs. Methods

You will probably use only one of these styles for most of your programming
and, for the most part, there is a straightforward mapping between the styles of
operation: the command, the DB function, the VODB…() function, and the
corresponding method are essentially the same.

In some cases, a command and its corresponding DB function are not exactly the
same. For example, the DELETE command differs from the DBDelete() function
in that the command allows record scoping. Internally, DELETE is implemented
using DBDelete() with the record processing function, DBEval().

In cases like this, the DBServer method provides the greater functionality. For
example, the Delete() method lets you operate on the current record or specify
record scoping using code blocks.

There are also some database operations that act globally on all open database
files (for example, DBCloseAll() and DBCommitAll()) and are, therefore, not
methods of the DBServer class. Methods apply to a particular object, not to other
objects.

128 Visual Objects Programmer's Guide

Language Overview

Finally, any function whose primary purpose is to return a value, such as a status
flag or database attribute, is provided in the DBServer class as an ACCESS
method, which means that you refer to it without parentheses as you would an
exported instance variable. Examples of this are BOF, EOF, RecNo, and Header.

File Specifications

Using functions, you normally specify database file names and aliases as strings.
Using DBServer methods (and during instantiation), you can also specify them as
strings, but the FileSpec class provides a more powerful way of dealing with file
names.

In any method of the DBServer class, you can use a FileSpec object instead of a
string whenever a file name is required. Using a FileSpec object has certain
advantages over using a file name. This is discussed in Chapter 15, “File
Handling.” Similarly, when a DBServer method requires a reference to another
DBServer object, you should normally specify the object itself, but you can also
specify an alias as a string or a symbol.

Accessing Fields

Whether you are using the procedural or object-oriented style of database
programming, you refer to fields in one of two basic ways:

■ Referring directly to the field names

■ Using FieldGet() and FieldPut(), with the field identified through a
parameter

Field Names In traditional Xbase programming, you may refer to field names with or without
an alias qualifier. It is recommended that you use the alias qualifier, of course, to
avoid dependence on the current work area, as shown in the example below:
// Traditional alias-qualified field reference
USE customer ALIAS DBCust
? DBCust->CustName
DBCust->CustName := "John Smith"

With DBServer, field names are implemented as virtual variables, making field
references very similar to traditional Xbase field references with the alias
operator:
// Virtual instance variable
oDBCust := DBServer{"customer"}
? oDBCust:CustName
oDBCust:CustName := "John Smith"

Chapter 8: Using DBF Files 129

Language Overview

FieldGet() / FieldPut() The FieldGet() and FieldPut() methods of the data server classes behave
essentially the same as the FieldGet() and FieldPut() database functions. One key
difference is the extra flexibility in the field selection parameter: the FieldGet()
and FieldPut() methods allow the specification of the field name in three different
ways:

■ Field name as a symbol

■ Field name as a string

■ Field position as a number

For example:
oDBCust := DBServer{"customer"}

cName := oDBCust:FieldGet(#CustName)
cName := oDBCust:FieldGet("CustName")
cName := oDBCust:FieldGet(3)

oDBCust:FieldPut(#CustName, cName)
oDBCust:FieldPut("CustName", cName)
oDBCust:FieldPut(3, cName)

Using a symbol is often the most practical and efficient approach. By
comparison, the two other approaches have some minor disadvantages:

■ String comparison is slower than symbol comparison, so specifying the field
name as a string imposes some extra overhead in the lookup process. In
practice, the overhead is usually insignificant compared to all the other work
going on in an application, from disk I/O to screen handling. The difference
is of interest only for those who want to squeeze every last fraction of
performance out of a program.

 Another issue is programming style: many developers feel that strings
should be used to contain only things that the end user sees and that
programmer-level information should be held in other data types, such as
symbols. You will find this to be true in the system and class libraries and in
most of the examples you see in the documentation, but you should make
your own choice. As in all matters of programming style, the most
important thing is consistency.

■ Referring to fields by position makes the application code dependent on the
structure of the database. This is generally not a good idea for applications—
the customer name field is always called CustName, but it may not always
be field number 3. During the lifetime of an application, the database
structure may change. An application may also be applied to another table
that contains similar data and column names but has a different structure.

 Field reference by position is primarily of value for general purpose utilities
rather than business applications; such utilities do not know anything about
the contents of each database, and reference by position makes sense without
costing anything.

130 Visual Objects Programmer's Guide

Language Overview

Which Approach to Use

As discussed previously in “Justifying Database Access Choices,” commands are
not easily adapted to multi-tasked GUI programming and are not recommended.
Similarly, since they do not address the problem of easily opening the same
database in multiple windows, the DB functions also fall short in GUI
applications but are, otherwise, quite flexible and useful.

The DBServer methods are fully polymorphic, at least as flexible and tolerant of
parameter values as the DB functions, and often more so. Because they
inherently support multi-instance operation, this is the recommended way of
doing database operations in a GUI environment.

The strongly typed database functions, such as VODBSkip(), are equivalent to
the DB functions except that their parameters and return values are strongly
typed and they do not call the runtime error handling system. These functions
are quite particular about how they are used, but they are faster and allow for
more robust programming. Because all references are early bound (that is,
everything about them is known at compile time), nothing needs to be resolved
at runtime, and many errors are detected at compile time. These functions are
recommended for performance-critical database operations that do not involve
user interaction.

Hybrid Programming

Although not recommended, it is possible to mix procedural database operations
with object-oriented operations in the same program and even for the same
database. You can retrieve the alias of a DBServer object and use it to gain direct
access to the work area:
Select(Emp:Alias)
Salary += 100

This approach may be useful as a way of recycling a large piece of existing
procedural code within an object-oriented framework. Of course, the approach
works only if the procedural code retains control throughout and does not allow
another task within the new GUI program structure to subvert the current work
area concept.

It is even possible (but rarely a good idea) to retrieve the alias and the work area
number of a database server and use them directly in procedural code:
EmpAlias := Emp:Alias
EmpWA := Select(EmpAlias)
EmpWA->Salary += 100

Chapter 8: Using DBF Files 131

Language Overview

Two cautions are appropriate when using a hybrid approach:

■ Be aware that neither the database server nor its clients are aware of changes
made through the procedural path, and such changes are not propagated up
to the data window automatically. In general, all of the automatic provisions
of the object services are potentially subverted when the program bypasses
them.

■ Do not close the database and open a new one in a work area that is used by
a DBServer object. The DBServer knows the structure and the alias of its
database and work area and, if you change this, the methods of the DBServer
will malfunction.

Hybrid programming is complicated and not recommended except in the most
extreme cases. In general, you should choose a model and stick with it.

Using a mix of procedural and object-oriented database programming, however,
may make sense in certain cases. For instance, you may choose to do
non-interactive, performance critical database operations using the procedural
approach (and the VODB functions) and database operations that require user
interaction with the DBServer class. In this case, you would not mix the two
styles of programming but would use one or the other depending on the
requirements of your application.

Record Scoping

Many database operations can process subsets of records within a work area
using a scope and conditional clauses. For any command that allows one, the
syntax of the <Scope> is as follows:
[ALL | NEXT <nRecords> | RECORD <nRecord> | REST]

■ ALL processes all records

■ NEXT processes the current record and the specified number of records

■ RECORD processes the specified record

■ REST processes all records from the current record to the end-of-file

Commands specified without a scope default to the current record (NEXT 1) or
ALL records, depending on the command. For example, DELETE and REPLACE
process only the current record, whereas AVERAGE processes all records.
Specifying a scope changes this default by indicating how many records to
process and where to begin.

The set of records processed can also be restricted using a conditional clause that
specifies a subset of records based on a logical condition. The two conditional
clauses are FOR and WHILE.

132 Visual Objects Programmer's Guide

Language Overview

A FOR clause defines a condition that each record within the scope must meet in
order to be processed. If no scope is specified, FOR changes the default scope to
ALL records.

A WHILE clause defines another condition that each record processed must
meet; as soon as a record is encountered that causes the condition to fail, the
command terminates. If no scope is specified, WHILE changes the default scope
to REST.

Specifying a scope, a FOR clause, and a WHILE clause within the same
command syntax can raise questions regarding the order in which the clauses are
processed. The scope is evaluated first in order to position the record pointer.
Then, the WHILE clause is evaluated and, if the condition is not met, the process
terminates. If the WHILE condition is met, the FOR clause is evaluated. If the
FOR condition is also met, the record is processed; otherwise, it is not. Either
way, the record pointer is moved to the next record within the scope until the
scope is exhausted.

Scoping Through Method Parameters

Since using commands is not recommended, the preceding discussion may seem
superfluous. However, all of these commands have DBServer method
equivalents that support record scoping using a slightly different syntax.

First, commands whose default scope is not ALL have an additional method to
support the ALL scope (for example, RecallAll() and DeleteAll()). Commands
whose default scope is ALL do not have these methods because they would be
redundant (for example, Average() averages all records, by default).

All scope-dependent methods allow explicit specification of a scope and FOR
and WHILE clauses. For example, the Recall() method has this syntax:
Recall(<cbForBlock>, <cbWhileBlock>, <uScope>)

The first parameter is a code block representing the FOR clause:
// RECALL FOR Last == "Smith"
oDB:Recall({|| Last == "Smith"})

The second parameter is the WHILE clause:
// RECALL FOR First == "Jack" WHILE Last == "Smith"
oDB:Recall({|| First == "Jack"}, ;
 {|| Last == "Smith"})

Chapter 8: Using DBF Files 133

Language Overview

The third parameter is the scope clause, and can be used to specify ALL records,
the REST of the records, or the NEXT <n> records:
// RECALL WHILE Last == "Smith" ALL
oDB:Recall(, {|| Last == "Smith"}, DBSCOPEALL)

// RECALL FOR Last == "Smith" REST
oDB:Recall({|| Last == "Smith"},, DBSCOPEREST)

// RECALL WHILE Last == "Smith" NEXT 10
oDB:Recall(, {|| Last == "Smith"}, 10)

Note: With this approach, there is no equivalent to processing a specific record
number.

With no parameters, the Recall() method is equivalent to the RECALL command
and the DBRecall() function, recalling the current record only. RecallAll() is
equivalent to RECALL ALL.

Preset Scopes

The DBServer methods provide another way of specifying a scope, one that may
be more convenient in many cases. The FOR clause, WHILE clause, and scope
can be considered properties of the DBServer object and can be assigned directly:
// RECALL WHILE Last == "Smith" ALL
oDB:WhileBlock := {|| Last == "Smith"}
oDB:Scope := DBSCOPEALL
oDB:Recall()

// RECALL FOR Last == "Smith" REST
oDB:ForBlock := {|| Last == "Smith"}
oDB:Scope := DBSCOPEREST
oDB:Recall()

// RECALL WHILE Last == "Smith" NEXT 10
oDB:WhileBlock := {|| Last == "Smith"}
oDB:Scope := 10
oDB:Recall()

This approach is very convenient, especially when several operations are to be
done with the same scope. It also provides for more structured programming.
One caution: the ForBlock, WhileBlock, and Scope are persistent—they remain in
effect until reset. Do not forget to reset the scope after using it, or you may
accidentally delete all the records!

134 Visual Objects Programmer's Guide

Indexing

Indexing
Records are stored in the same order (called the physical order) as they are added
to the DBF file and, by default, this is the order in which you will access the
database. However, the physical order is not usually the ideal way of viewing
the database since data is often added in no meaningful order. Most applications
require that the records be ordered logically, according to the contents of one or
more fields. You accomplish this using orders that are stored in index files.
Orders not only let you order the DBF file to suit your application, but also give
you quick access to data using keys and allow you to set up complex
relationships between DBF files.

The indexing technology used by your application depends on the RDD, as
mentioned earlier. For example, using traditional Xbase DBF files, each order is
stored in a separate index file, but other database formats support more than one
order per file. In cases where only a single order per file is allowed, you will
often hear the terms order and index used interchangeably. Regardless of
whether you are accessing single-order or multiple-order indexes, the language
facilities are very similar—there are DB functions and corresponding methods
that work with both types of index.

If the index files are designed properly, you may have to change only the way
you open the files, leaving all operational statements the same. For example, if
you have several single-order index files, you could use this code to open and
select between them:

// Object-oriented approach // Procedural approach

LOCAL oDBCust := DBServer{"customer"} USE customer ALIAS DBCust
oDBCust:SetIndex("custno") DBCust->(DBSetIndex("custno"))
oDBCust:SetIndex("custname") DBCust->(DBSetIndex("custname"))
... ...
oDBCust:SetOrder("custname") DBCust->(DBSetOrder("custname"))
... ...
oDBCust:SetOrder("custno") DBCust->(DBSetOrder("custno"))
... ...

If you have a multiple-order index in which the orders have the same names as
the single-order index files in the previous example, you would have to change
very little to adapt this code:

// Object-oriented approach // Procedural approach

RDDSetDefault("DBFMDX") RDDSetDefault("DBFMDX")
... ...
LOCAL oDBCust := DBServer{"customer"} USE customer ALIAS DBCust
oDBCust:SetIndex("customer") DBCust->(DBSetIndex("customer"))
... ...
oDBCust:SetOrder("custname") DBCust->(DBSetOrder("custname"))
... ...
oDBCust:SetOrder("custno") DBCust->(DBSetOrder("custno"))
... ...

Chapter 8: Using DBF Files 135

Relating Databases

Relating Databases
Several DBF files that have related structures and data can be associated, along
with their indexes, using DBSetRelation() or SetRelation(). These let you
establish relationships between several files and operate on them as a single
entity known as a database, or view.

For example, these statements link the Customer and Orders database based on
the CustNum field that they have in common:

// Object-oriented approach // Procedural approach

LOCAL oDBCust := DBServer{"customer"} USE customer ALIAS DBCust NEW
LOCAL oDBOrd := DBServer("orders") USE orders ALIAS DBOrd NEW
oDBOrd:SetIndex("custno") DBOrd->(DBSetIndex("custno"))
oDBCust:SetRelation(oDBOrd, #CustNum) DBCust->(DBSetRelation("DBOrd", ;
 {||DBCust->CustNum}))

Once the link is established, the two files are treated as a single database in the
sense that when the parent (Customer) moves, the child (Orders) moves along
with it, finding the appropriate CustNum match each time. Using this feature,
you can establish master-detail relationships between your DBF files and reflect
the relationship using form and browse views.

Selective Relations
The traditional Xbase relation is only a partial solution: it positions the child table
to the correct record, but it does not limit operations to those records that match
the relation. This means that if you move forward in the child table, the system
does not prevent you from moving on to the orders for the next customer. It also
does not prevent you from moving backward to orders belonging to other
customers.

A selective relation, which is established the same way as a traditional selection,
adds automatic filtering: the child database behaves as if only records matching
the relation existed. Attempts to move beyond the last order for the current
customer raise an end-of-file condition, and attempts to move before the first
raise the beginning-of-file condition. Similarly, operations like GoTop and
GoBottom move only within the group of matching records, and properties like
RecCount reflect the number of records in the selection.

136 Visual Objects Programmer's Guide

Undoing Changes

This selective relation significantly simplifies programming of the typical
master-detail applications: the child window can operate as if it deals with a
complete table, without regard for matching field values. It also means that a
general browser for a table may be used as a child table browser without special
programming:
oDBCust := DBServer{"customer"}
oDBOrd := DBServer("orders")
oDBOrd:SetIndex("custno")
oDBCust:SetSelectiveRelation(oDBOrd, #CustNum)
oDWCust := CustomerWindow{...}
oDWCust:Use(oDBCust)
oDWOrd := DataWindow{oDWCust}
oDWOrd:Use(oDBOrd)
oDWOrd:Show()
oDWCust:Show()

A note about performance: the selective filtering obviously adds some overhead
to all regular processing, but not more so than the filtering you would normally
have to do in the application.

Note: For scope-sensitive operations like Average, the default scope is subject to
the selective relation: if you set up a selective relation and perform an unscoped
Average operation, you will get the result from the records in the selection only.
An explicitly specified scope overrides the selective relation, however.

Undoing Changes
A common requirement in GUI applications is the Undo or Cancel operation:
discarding all changes that have been made to the database with direct field
assignments. To implement this behavior, you need a kind of buffered
processing, where changes are not made directly to the database but kept in a
buffer temporarily until they are either written out to disk or discarded.

In fact, all traditional Xbase database processing buffers the data (in the RDD),
but the buffer is not accessible with standard Xbase database commands. Visual
Objects adds the DBBuffRefresh() function and the Refresh() method for
refreshing the buffer from disk, in effect rereading the old values from the disk
and discarding the changes that have been made, but not yet committed.

With this approach, a data window can continue to operate with standard
database operations, whether procedural or object-oriented, and the
Undo/Cancel operations are implemented using the appropriate refresh
operation.

Chapter 8: Using DBF Files 137

Data Sharing

Note, however, that this approach buffers one record only. To produce a more
complete buffering approach that maintains all changes in an in-memory buffer
until committed, the best approach is to produce a separate buffer server that sits
in front of the DBServer object. This approach is discussed briefly in Chapter 7,
“Data Server Classes.”

Data Sharing
When accessing a database designed for use with an application written in
another language, the questions of compatibility and interoperability arise.
Compatibility refers to non-simultaneous access of the same data by Visual
Objects and other applications, and interoperability refers to simultaneous access
of the same data by Visual Objects and other applications. Both are especially
important issues for applications designed to run in the Windows environment.

Compatibility

When sharing data between Windows and DOS applications, you must be aware
of the issue of character sets. Many other Xbase development systems, including
CA-Clipper, operate under DOS and use the DOS character set, called OEM
(Original Equipment Manufacturer) or ASCII. Visual Objects, on the other hand,
operates under Windows and therefore uses the Windows character set, called
ANSI (American National Standards Institute).

For English letters and numbers, there is no compatibility problem. However,
any application that uses words in other languages might be affected by these
differences. Names such as François Dônèl, Håkan Strömbäck, Ängström, and
Gnädige Müller-Strauß are not represented the same way in DOS and Windows
programs. Files written in one environment may not be interpreted correctly by
a program in another environment. When sharing data between DOS and
Windows applications, care must be taken.

138 Visual Objects Programmer's Guide

Data Sharing

Visual Objects operates with the ANSI character set internally and uses the ANSI
character sets in its data files, but it also understands OEM data files. When it
detects that a file was created by a DOS application, such as CA-Clipper or
dBASE IV, it automatically converts the data when reading and writing the file.
This step ensures that the file remains compatible, and indexes remain consistent,
with existing DOS applications, even after being updated by Visual Objects.

There are two minor considerations: untranslatable national letters and special
characters. ANSI is a larger character set and includes some national letters that
do not have representations in the OEM character set. Thus, a user running a
Visual Objects application might enter the name Éloise and, after storing it in an
OEM file, get it back as Eloise. This is an unavoidable consequence of the
difference between DOS and Windows: if the accented letter were stored in the
file, the DOS programs would not understand it.

Interoperability

The interoperability of two applications depends on the locking schemes defined
in the individual RDDs, and compatibility is not always achievable. The
following summarizes the types of applications with which your Visual Objects
application can safely share data:

RDD Product Interoperable

DBFCDX FoxPro Yes

DBFMDX dBASE IV Yes

DBFNTX CA-Clipper Yes

Note: When using DBFCDX, the .FPT file will remain compatible unless you
change the block size, using SET MEMOBLOCK or
RDDInfo(_SET_MEMOBLOCKSIZE), to a value that is less than 32.

Of course, any sharing of data requires that both applications are well-behaved,
opening files in shared mode to allow simultaneous data access and placing
appropriate locks when necessary. (See Chapter 9 “Concurrency Control” for
more information.)

Caution! Unless shared access between applications is explicitly supported as indicated
in the table above, database integrity is not guaranteed and index corruption will occur if
two programs attempt to write to a database or index file at the same time. For this
reason, sharing data between such applications is strongly discouraged and not
supported by Computer Associates.

Chapter 8: Using DBF Files 139

Chapter

9 Concurrency Control

When developing applications to run under Windows, you should always take
into account the issue of simultaneous, or concurrent, data access. Not only is it
possible for several users to run the same application (and therefore access the
same data), but even on a single-user workstation the user may reasonably
expect to switch back and forth between applications that use the same data.
Thus, it is important that all applications cooperate with one another and share
the data resources to the greatest degree possible.

This chapter tells you how to access database files in shared and exclusive mode,
how to obtain and release locks in shared mode, and how to resolve locking and
file open failures. For more specific reference material on any of the commands,
methods, and functions mentioned in this chapter, see the online help system.

Using Shared Mode
The first rule in writing an application that will allow concurrent data access is to
open database files in shared mode unless exclusive mode is required.

You can use either of these strategies:

� Change the status of the global SetExclusive() flag from TRUE to FALSE in
your Start() routine. This will cause database files to be opened in shared
mode by default. It also means that you must specify exclusive use of
database files when you require it.

� Specify shared access when you open a database file that requires it.

These rules apply whether you are using the DBServer class, Xbase commands,
or DB or VODB functions.

Note: The low-level file open functions, FOpen() and FXOpen(), allow you to
specify the open mode directly and are unaffected by SetExclusive(). Refer to the
online help system for more information on these functions.

Chapter 9: Concurrency Control 141

Using Shared Mode

When to Obtain Exclusive Use

Certain operations require exclusive use of a database file to function properly.
Visual Objects enforces this requirement with an error message (or a return value
of FALSE for the VODB functions) if you attempt to use any of the following
operations with a database file opened in shared mode:

■ Pack (Pack() method, DBPack() and VODBPack() functions, or PACK
command)

■ Zap (Zap() method, DBZap() and VODBZap() functions, or ZAP command)

Other File Open Operations

In addition to opening database and index files directly, several operations open
one or more files in the course of operation and determine the open mode (either
exclusive or shared) automatically. As a developer you do not have control over
this, but knowing it will help you make the proper allowance in your
applications.

There are two general rules that will help you to decide how a given operation
works: if it writes to the file, the open mode is exclusive; if it only reads the file,
the open mode is shared. For example, the Update() method attempts to open
the secondary file in shared mode. If another process has exclusive use of that
file, Update() will not be able to open it. Therefore, your programs must
anticipate simultaneous updates.

Retrying After an Open Failure

When shared access to data is allowed, the failure of a file open operation
becomes a normal possibility, and NetErr() is designed to detect and report open
failures as well as certain other concurrency conflicts (see NetErr() in the online
help system for details).

142 Visual Objects Programmer's Guide

Using Shared Mode

You should always check NetErr() immediately after any file open operation that
is likely to fail. In this example, the program retries several times before
reporting that the file is unavailable and escalating the exception:
// Procedural approach
LOCAL iOpenCount AS INT
FOR iOpenCount := 1 UPTO 10
 USE customer ALIAS DBCust SHARED
 IF !NetErr()
 EXIT
 ELSE
 LOOP
 ENDIF
NEXT
IF NetErr()
 ? "File not available in shared mode."
 BREAK
ENDIF
DBCust->DBSetIndex("custno")
DBCust->DBSetIndex("custname")

When using a data server, NetErr() will also tell you whether the file open
operation was successful, but there is another approach that you may find more
flexible—checking the data server’s Status flag. This flag will be NULL_OBJECT
if the file open operation is successful; otherwise, it will have information about
what went wrong, including an error message:
// Object-oriented approach
LOCAL oDBCust AS DBServer
LOCAL iOpenCount AS INT
FOR iOpenCount := 1 UPTO 10
 oDBCust := DBServer{"customer"}
 IF oDBCust:Status == NULL_OBJECT
 EXIT
 ELSE
 LOOP
 ENDIF
NEXT
IF oDBCust:Status <> NULL_OBJECT // File open failed
 ? oDBCust:Status:Description
 BREAK
ENDIF
oDBCust:SetIndex("custno")
oDBCust:SetIndex("custname")

Note: Your application must always anticipate that the file may not be available,
regardless of the open mode. When exclusive mode is requested, another
process accessing the file (in either shared or exclusive mode) would make the
file unavailable. When shared mode is requested, another process with exclusive
use would make the file unavailable.

Chapter 9: Concurrency Control 143

Locking

Locking
When a database file is open in shared mode, you must obtain a lock before
performing any update operation (for example Delete, Recall, Replace) on the
data; otherwise, the operation will result in an error.

There are two levels of locking: record and file. The one you use will depend on
the operation required. If you are updating one record at a time, a record lock
will be sufficient; however, if you are performing a mass update, you will need
to lock either the entire file or all of the records involved in the operation. (For
more specific information on the actual locking schema used, refer to the “RDD
Specifics” appendix in this guide and the NewDBLock() and NewIndexLock()
functions in the online help system.)

Tip: The DataWindow class provides several levels of automatic locking via
its ConcurrencyControl property. See Chapter 11, “GUI Classes” in this
guide for more information.

Note: Although it is not required, you may obtain a file lock before performing a
read-only operation, such as a report, if your application requires the data to
remain unchanged throughout the operation.

File Locking

The FLock() method and the FLock() and VODBFLock() functions attempt to
place a file lock on the current database and return a logical value indicating the
success or failure of the lock, but they only try once. Because of the possibility of
a failure (a file lock will fail if another process has a file or record lock for the
same file), you will probably want to make several attempts before admitting
defeat.

For example, assuming the Customer class inherits from DBServer, the following
method will try to lock the Customer database a specified number of times:
// Object-oriented approach
METHOD FileLock(nTimes) CLASS Customer
 // Default to two tries
 nTimes := IF(nTimes == NIL, 2, nTimes)
 // Keep trying until our time's up
 FOR iCount := 1 UPTO nTimes
 IF SELF:FLock()
 RETURN TRUE // Locked File
 ENDIF
 NEXT
 RETURN FALSE // Not locked

144 Visual Objects Programmer's Guide

Locking

A similar function which you could call instead of FLock() is illustrated below:
// Procedural approach
FUNCTION FileLock(nTimes) AS LOGIC PASCAL
 // Default to two tries
 nTimes := IF(nTimes == NIL, 2, nTimes)

 // Keep trying until our time's up
 FOR iCount := 1 UPTO nTimes
 IF DBCust->FLock()
 RETURN TRUE // Locked File
 ENDIF
 NEXT

 RETURN FALSE // Not locked

Record Locking

Record locking is similar to file locking and is accomplished with the RLock()
method and the RLock(), DBRLock(), and VODBRLock() functions. All of these
make a single attempt to place a record lock on the specified or current record
and return a logical value indicating success or failure. Except with the RLock()
function which is designed for single record locks only, specifying a particular
record as an argument adds to the current record lock list, enabling you to lock
multiple records at the same time. A record lock will fail if another process has a
file lock for the same file or a record lock for the same record.

Using code similar to the examples given above for file locking, you will
probably want to create a new record locking method or function that makes
several attempts or tries for a certain time span before giving up. This way, you
will reduce the probability that the record lock will fail.

Unlocking

Once a lock is in place, an application can write to the file. Other users’ attempts
to lock the same record or file will fail, but they will still have read access to the
data.

The lock remains in place until the application releases it by:

■ Explicitly releasing the lock (for example, with the Unlock() method or
DBUnlock() function)

■ Closing the locked file

■ Issuing another lock for the same file

■ Terminating the program normally

Because efficient applications seek to minimize the duration of the locks they
impose, you should release locks as soon as possible after they have served their
purpose.

Chapter 9: Concurrency Control 145

Resolving a Failure

Resolving a Failure
The code for opening files in shared mode and attempting locks is
straightforward and, as suggested already, you may want to try these operations
several times before giving up. If, however, a file cannot be opened or a lock
cannot be obtained within a reasonable amount of time, the application has to
abandon its original intentions and come up with an alternative plan.

You will usually want to give the user a message indicating what has happened
along with some options, such as:

■ Retry the operation

 This choice simply allows the user to extend the lock or open effort, without
seeking to resolve the failure.

■ Try the same activity, but with different data

 This choice makes sense for lock failures in many applications. If the target
record is not available, use another instead. For example, a data entry
operator working on a stack of credit adjustment slips will not mind putting
Smith’s slip at the bottom of the pile and moving on to Jones or Brown.
When the operator gets back to Smith an hour later, that record will probably
be free.

■ Abandon the current activity

 The situation in which a needed data resource is temporarily unavailable is
common, and it is usually treated as an exception when the user chooses to
abandon the activity in progress. For a general discussion on how to deal
with exceptions, see Chapter 14, “Error and Exception Handling” in this
guide.

Update Visibility
When concurrency control is a consideration, it is important to determine when
database (and index) updates actually become visible, which differs depending
on the observer. This section describes the update visibility rules for each of the
following possible observers:

■ The initiator

■ The operating system and other processes

■ The physical disk

Note: The rules specified below are for the RDDs supplied with Visual Objects
(see Appendix A "Reserved Words" for a complete list). Rules for other drivers
may differ.

146 Visual Objects Programmer's Guide

Update Visibility

The Initiator

The initiator of an operation is the process that causes an update to occur. All
updates appear to the initiator immediately after they are made.

The Operating System and Other Processes

Updates are guaranteed to be visible to other processes when the initiator writes
the update to the operating system (although they may become visible sooner).
Writing to the operating system can be done in several ways, including releasing
a lock or moving the record pointer when a record lock is in place.

The Physical Disk

Writing an update to the operating system does not guarantee that a physical
disk write will take place, because the operating system may hold recently
written records in memory. These records appear to other processes as if they
were on the disk, but if a failure occurs (such as a hardware problem), the
records may never be physically written to disk. In this case, updates are lost,
and processes to which the updates were visible may be proceeding with
erroneous data.

To ensure that updates are written to disk, commit the changes (for example,
with the Commit() method or DBCommit() function) or close the database file
(which automatically commits the changes). Any of these actions sends a request
to the operating system to perform a solid-disk write immediately.

Caution! Even if you commit changes to disk, there is no guarantee that a physical disk
write will actually occur. Some cache programs and network server software will
intercept the commit request and postpone the physical disk write. This is a violation of
DOS protocol unless the underlying system can guarantee that its method of committing
updates is as reliable as writing them to the disk controller hardware.

Abnormal Termination

When an application terminates normally, all files are closed and all updates are
committed to disk.

If the application terminates abnormally, some updates may be lost. The missing
updates may potentially include every update to a file since updates to that file
were last made visible to the operating system.

If the operating system fails during an application, missing updates may
potentially include every update to a file since the last point at which updates to
that file were committed to disk.

Chapter 9: Concurrency Control 147

Chapter

10 Justifying User Interface Choices

In deciding how to program the user interface for your application, Visual
Objects provides two choices: the terminal emulation layer and the GUI Classes
library. The terminal emulation layer (or terminal emulator) implements the
Xbase commands and functions for user interface programming, while the GUI
classes provide the object-oriented components for GUI programming.

Why are there two separate paradigms? Why not merge them? How do you
choose between them? This chapter attempts to answer these questions by
providing an overview of both paradigms and will hopefully help you make the
right decisions for your own situation.

Note: In Visual Objects, there is a class library, Console Classes, that provides an
alternative to the Terminal Lite library for character-based debug/logging
output. While the Terminal Lite library emulates character mode in a GUI
window, the Console Classes library utilizes the Win32 native console
application support. One major difference between the two types of applications
is that a Terminal Lite application will get a new window allocated while a
Console Classes application runs in the same window in which it was started.
Depending on the command line setting, a Console Classes application can also
run in a full screen, while a Terminal Lite application cannot.

The Terminal Emulation Layer
The terminal emulation layer provides a limited subset of the traditional set of
Xbase user interface commands and functions and displays their output in a
special window called the terminal emulation window. The purpose of this layer is
to enable existing Xbase applications to run under Windows.

It would seem an easy matter to bind these macros to the Visual Objects Window
Editor, enabling existing code to map onto nicely designed forms. However, this
approach could only partially simulate the Windows look and feel. Certain
inherent behaviors would remain in effect, leaving the user frustrated with an
application that, although visually similar, was not quite as good as other
Windows applications.

Chapter 10: Justifying User Interface Choices 149

GUI Classes

Data Entry Order The first problem is that in the Xbase code, the order of data entry is
predetermined: it is driven by the order in which the @...GETs are programmed.
Field-level validation and cross-field validation must occur in a precise order.

Natural Windows behavior, on the other hand, does not have this restriction. In
general, the user can enter data in any order. Field-level validation occurs as
soon as a field loses edit focus. Cross-field validation is done when the record is
ready to be committed to the database. In addition, the application can override
this behavior, so that the user has the ability to enter data several times in one
field and cross-field validation would be attempted on every focus change. In
summary, the behavior of a Windows application is a lot richer than that of a
typical Xbase application, even within the confines of a single form.

Modal Behavior The second problem is that Xbase code is modal. That is, the user cannot open
another form in the same application when they are halfway through dealing
with this form. The ability to look something up or to make a correction while
one is entering data is very valuable behavior, specific to GUIs.

Because it would not help you, or your clients, to supply applications that had
Windows look and feel while exhibiting Xbase-like modal behavior, the terminal
emulation layer gives existing applications a familiar look and feel. When your
users see this look and feel, they know they are back to the old mode in which
the program is in control. When they use a different application, they get the
modeless behavior and the Windows look and feel and know that they are in
control.

GUI Classes
World-class applications require fully modeless GUI behavior, in which the user
can do most anything at any time and the application will like it. Why is it
necessary to use classes to obtain modeless behavior? Would it not be possible to
do something with @...SAY...GET commands to make them modeless?

To get completely modeless, MDI-style behavior, the user should be able to open
a data window. Then open another data window on the same database. Then
open a few more data windows. Then chop and change, and cut and paste
between them. To enable the style of programming that can withstand this
behavior, you need an object-oriented approach. Each data window is an object.
You can make an arbitrary number of them at any time. Each of them is
self-contained and does not interfere with the other ones (except when you
explicitly program them to interact).

150 Visual Objects Programmer's Guide

GUI Classes

It would be impossible to achieve this behavior without encapsulation and
inheritance. Any approach that attempts to reuse Xbase user interface code in a
modeless environment would be a blind alley. Also, using the object-oriented
syntax allows for some significant improvements to the Xbase functionality, such
as status messages and context-sensitive help.

The GUI Classes
Compared to Windows
API

Given all the reasons that compel an object-oriented approach,
why the GUI classes? One could argue for a thin layer of
classes that encapsulate the Windows Application
Programming Interface (API).

In fact, the GUI classes do provide a very thin layer over the API. They are
highly optimized, so that CPU and memory requirements are minimal. So, why
does the GUI Classes library not resemble the API? Because, for the vast
majority of Visual Objects developers, the GUI Classes library represents a much
better solution.

Here are a few reasons why:

1. The GUI Classes library is small and fast, reducing the size and, therefore,
increasing the speed of your applications.

2. It is very easy to learn—about a hundred classes. The Windows API has
many, many more functions.

3. It provides a lot of very useful default behavior. If you write no code at all,
the system will still generate a standard application.

4. It cooperates with all the code generation tools in the IDE, such as the
Window Editor and data server editors.

5. It supplies data-aware classes.

6. It contains error detection and error correction code that will save you from
the many pitfalls of Windows programming.

7. The architecture lends itself to useful extensions.

8. It provides a role model that you can safely use to develop your own class
libraries.

9. The Visual Objects runtime system does not yet run on other GUIs, but the
GUI classes ensure that any application code you write will have a good
chance of being portable to other GUIs in the future. The Windows API, by
comparison, would impose an awkward, non-portable structure.

Chapter 10: Justifying User Interface Choices 151

The Right Choice

The Right Choice
The terminal emulation layer exists as a migration path to permit existing Xbase
applications to run under Windows; however, it cannot fulfill the Windows
user’s reasonable expectations. The GUI Classes library enables you to build
world-class applications that meet or surpass users’ expectations by providing a
simple, successful framework on which to construct your application.

152 Visual Objects Programmer's Guide

Chapter

11 GUI Classes

GUI classes account for the majority of classes supplied with Visual Objects.
Very roughly, the GUI Classes library includes one class for every kind of object
that you encounter in a GUI. There are Window and Dialog classes. There are
Control classes, such as ScrollBar and PushButton. There are Menus and
Toolbars. This chapter describes the standard components of Visual Objects that
deal with the GUI.

Events, Event Contexts, and Event Handlers
A GUI application is made up of different types of objects (for example,
windows, menus, toolbars, scroll bars, and controls). These objects interact with
each other via events. In general, the events that you are concerned with as a
developer are the ones that are generated when the user does something. For
example, a mouse click generates an event and so does a request for help made
by pressing F1.

Events are generated and handled as follows:

1. Something happens.

2. Windows sends a message to the active window saying what happened.

3. The Visual Objects dispatcher intercepts this message, converts the message
into an event that it sends to a special method, called an event handler,
designed to handle that particular type of event.

4. The event handler method does some special processing to deal with the
event.

Events In Visual Objects, events are objects, too. There are classes defined for the
various types of events that commonly occur in a GUI application. The event
classes, as expected, are tailored to the specific event for which they are
designed. These classes derive from the Event class and have “Event” tacked
onto the end of their name.

Chapter 11: GUI Classes 153

Events, Event Contexts, and Event Handlers

Event Contexts Classes that contain event handlers are called event contexts because they
represent a context in the application in which events can occur. All variants of a
window are event contexts. This is reflected in the Window class hierarchy—
classes with “Window” tacked to the end of their name derive ultimately from
the EventContext class.

Event Handlers The event class names and the event handler names are closely related. For
example, a user’s request for help generates a HelpRequestEvent that is passed to
the event handler Window:HelpRequest(). Similarly, when the user presses or
releases a key, a KeyEvent is generated; it is passed to Window:KeyDown() or
Window:KeyUp(), depending on the action. Some event handlers, such as
DataWindow:Notify(), can handle several different events, such as NotifyDelete
and NotifyIntentToMove, depending on an argument passed to the event
handler.

Many of the default event handlers have built-in behavior that is sufficient for
most applications; however, it is not possible for the default event handlers to
handle every event in the exact way that you want. For this reason, event
handlers, like all other methods, can be overridden in your Window subclass if
they do not suit your specific needs.

Command Events

For example, it is not at all unreasonable to expect an application to supply
customized event handlers to deal with push button clicks, menu command
selections, and toolbar button clicks (which are just a special case of menu
command selections). The default event handlers for these command events,
Window:ButtonClick() and Window:MenuCommand(), cannot possibly know
the design of your window or menu in order to implement these event handlers
for you; instead, they assume you are going to implement your own methods to
handle these events individually.

Event Processing by Name

To make processing them easy and straightforward, command events are
handled based on the symbolic name of the push button or menu item generating
the event. For example, you might create a push button and give it the symbolic
name PostOrder. Then whenever the user clicks that push button,
Window:ButtonClick() retrieves the symbolic name of the push button and looks
for a method of that same name (in this case, it looks for the PostOrder()
method). The Window and Menu Editors are set up to support this structure
and generate the code it requires.

154 Visual Objects Programmer's Guide

Events, Event Contexts, and Event Handlers

Generated Code When you define a window or menu using the appropriate visual editor, Visual
Objects generates code to assign a HyperLabel object to each push button or
menu item (other objects generated by the editors also have HyperLabel objects
associated with them). The HyperLabel object holds, among other things, the
symbolic name used for command event processing.

For example, the code generated to place the PostOrder push button on a
window named InformationWindow would look something like this (slightly
simplified):
STATIC DEFINE INFORMATIONWINDOW_POSTORDER := 100

RESOURCE InformationWindow DIALOG 4, 19, 174, 101
STYLE DS_MODALFRAME | WS_POPUP |;
 WS_CAPTION | WS_SYSMENU
CAPTION "Information Window"
FONT 8, "MS Sans Serif"
BEGIN
 CONTROL "Post Order",
 INFORMATIONWINDOW_POSTORDER,;
 "Button", BS_PUSHBUTTON | WS_TABSTOP;
 | WS_CHILD, 69, 16, 35, 12
END

CLASS InformationWindow INHERIT DialogWindow
 PROTECT oCCPostOrder

METHOD Init(oWindow) CLASS InformationWindow
 SUPER:Init(oWindow,;
 ResourceID{"InformationWindow"})
 oCCPostOrder := PushButton{SELF,;
 ResourceID{INFORMATIONWINDOW_POSTORDER}}
 oCCPostOrder:HyperLabel := ;
 HyperLabel{#PostOrder,;
 "Post Order", "Post the order transaction"}
 ...

Note: For more examples of this, use the various editors and look at the
generated code.

Resource IDs Here, INFORMATIONWINDOW_POSTORDER is a constant that holds the
resource ID (a 16-bit number) for the PostOrder push button. This ID is used to
uniquely identify the push button control to Windows (in the CONTROL
statement of the resource entity) and to tie that object to the corresponding object
in your application. You can see this in the InformationWindow:Init() method,
where the ID is used to create a ResourceID object for the PostOrder push button.

Resources The code for the resource entity creates a standard Windows resource to define
what the window or menu looks like. Within this definition, Windows requires
the resource ID mentioned above for each control and menu item (and every
other object) that appears on a window or menu.

Chapter 11: GUI Classes 155

Events, Event Contexts, and Event Handlers

Symbolic Names After the PostOrder push button is instantiated, a hyperlabel is created for it.
The hyperlabel contains the symbolic name #PostOrder (which is used to control
program operation), the text that goes on the face of the button (“Post Order”),
and the prompt string that shows up in the status bar (“Post the order
transaction”).

Note: The hash mark character (#) identifies #PostOrder as a special data type
called SYMBOL. The SYMBOL data type provides an internal representation
that handles strings very efficiently. See Chapter 21, “Data Types,” later in this
guide, for more information on this and other data types available in the Visual
Objects language.

Windows does not know about symbolic names; however, since each control and
menu item in your application knows about its Windows resource ID and its
symbolic name, your application can use symbolic names only, ignoring the
Windows resource IDs altogether.

Event Handlers Given such a structure, all you have to do is write the PostOrder() method to
handle the event, which you can also do from the Window Editor using the
When Clicked property. This brings up the Source Code Editor with the
following line of generated code:
METHOD PostOrder() CLASS InformationWindow

After you write the code for the event handler, there is nothing more to do. Once
the window is instantiated, clicking on the PostOrder push button will
automatically invoke the PostOrder() method.

With this structure, the Window and Menu Editors and the GUI Classes library
provide the overall framework for the control flow of the application. Building
an application consists of visually defining the windows and menus (and their
associated toolbars), and writing the application logic in the event handling
methods.

The standard Window classes provide built-in methods for many of the basic
operations, such as destroying and hiding windows. The DataWindow class
(discussed later in the Data Windows section of this chapter) provides a richer
set of methods designed specifically for data-oriented operations, such as
SkipNext(), SkipPrevious(), Append(), and Delete().

To use a built-in event handling method, either assign its name directly to the
push button or menu item, or call the method from within your own event
handling method using, for example, SELF:EndDialog() or SELF:SkipNext().

156 Visual Objects Programmer's Guide

Events, Event Contexts, and Event Handlers

The Window Handles Events

When the Visual Objects dispatcher receives messages from Windows, it
translates them into events and sends them to the appropriate window. That is,
events are not sent to the control or menu that generated the event, but rather to
the window that owns the control or menu. (Remember that the Window class
inherits from EventContext, but Control and Menu do not; therefore, windows
can handle events, but controls and menus cannot.) This architecture has several
advantages. Since the event handlers are methods of the window, they can
directly reference the data held by the window. If the event handlers were
methods of the controls, scoping conflicts would arise: the action code would
have to reference the window’s data indirectly.

This means that when designing a menu, the individual menu items do not have
code attached to them, they only have the name of the event handler to call.
When a menu is attached to a window, the link is complete: selecting a menu
command sends the corresponding event to the window, causing the
corresponding event handler method to be called.

Tip: All windows have a Menu property to identify the menu owned by the
window. This makes it easy to call methods of the menu from your event
handler methods, as in Menu:CheckItem() or Menu:EnableItem(). Similarly,
data windows have a Server property that makes calling methods of the
server equally convenient.

Isomorphism:
When different types of
objects respond to the
same message

This provides for a very useful form of isomorphism (a term that
is described in greater detail in Chapter 25, “Objects, Classes,
and Methods” later in this guide). Consider the Print
command on the File menu. Different types of windows can
have different code for printing their data: printing a customer
record is not the same as printing the orders for that customer.
However, the menu does not need to know about this
difference: it just sends the Print message, and the appropriate
Print() method of each particular window is invoked to do the
right thing.

Chapter 11: GUI Classes 157

Events, Event Contexts, and Event Handlers

Escalation of Events On the other hand, it creates the possibility of missing event handlers: if a menu
has an item for which no event handler is provided in the window, the menu
command will not work.

Consider the Open command on the File menu. The standard interpretation of
Open in an MDI application is that opening a new document is equivalent to
opening a new window. Keep in mind that in an MDI application, the shell
owns the child windows. It would not make sense, therefore, for a child window
to handle the Open command, because you do not open the new document in the
child window—you open it as a new child window in the shell. The Open
command should be handled by the shell.

This means that the child windows—for example, the customer window, the
order window, the item list window, the credit history window—do not have
Open() methods to handle the Open command. So, what happens when the user
is sitting on a customer window and selects File Open?

First, when the menu command event is generated, the message goes to the
default Window:MenuCommand() event handler, which retrieves the symbolic
name of the menu item, Open. Then, the Open message goes to the current
window, which is the customer window in this case. Because there is no Open()
method, the message is simply passed up to the customer window’s owner,
which is the shell window. Since the shell window does have an Open() method,
it is invoked. In some cases the ownership hierarchy may be longer, but
regardless of the structure, an unsupported message is always passed up the
ownership chain until something can handle it.

Eventually, if the message reaches the top of the application (the shell window or
the top window) and no window had a method that matched, the shell or top
window checks if there is a subclass of Window or ReportQueue with a matching
name. If there is, it is instantiated with the shell or top window as its owner.
Thus, a simple way to open a child window or print a report in an MDI
application is to define a menu item with the same name.

Overriding Behavior Of course, you can write a new MenuCommand() or ButtonClick() method for
your Window subclass. Using this approach, you can intercept the event before
it goes to the corresponding default event handler and apply processing logic in
some other way. In particular, you can write a CASE construct that tests for the
various resource IDs that you want to process. You can either supplement the
default behavior by calling the same method in the superclass or override it
completely.

158 Visual Objects Programmer's Guide

The Shell and the Windows It Owns

This example uses the default behavior for all but the File menu commands:
METHOD MenuCommand(oMCE) CLASS CustomerWindow
 LOCAL nItemID := oMCE:ItemID

 DO CASE
 CASE nItemID = IDM_MYMENU_FILE_OPEN_ID
 // Process File Open command

 CASE nItemID = IDM_MYMENU_FILE_CLOSE_ID
 // Process File Close command

 CASE nItemID = IDM_MYMENU_FILE_CLOSE_ALL_ID
 // Process File Close All command

 CASE nItemID = IDM_MYMENU_FILE_EXIT_ID
 // Process File Exit command

 OTHERWISE
 SUPER:MenuCommand(oMCE)
 ENDCASE

This approach is less convenient and arguably less object-oriented than the
matching of methods to symbolic names, but you may prefer it if you are used to
this style of programming.

Eventually, if nobody handles the event—if no window has a matching method,
if there is no Window or ReportQueue subclass that matches, if no customized
MenuCommand() or ButtonClick() method did anything—the event quietly fails.
This allows you to do top-down design of the user interface during prototyping:
menu items and buttons that have no implementation are ignored and do not
raise an error condition of any kind.

The Shell and the Windows It Owns
Thus, one of the main functions of a window in a GUI application is to handle
events that are generated when the window has focus. As a developer, you can
choose to provide explicit code to handle each type of event or you can leave it to
the default behavior of the GUI classes. In addition to processing events,
Windows serve two other purposes:

The Canvas
for Viewing

First and foremost, the window acts as a viewer for data, text,
or graphics. To present its information to the user, it needs the
concept of a canvas on which the program paints the data or the
words. In most GUIs, the canvas area must be rectangular in
shape. Thus, a window is just a large rectangle, and it has
methods for drawing lines or printing text.

Chapter 11: GUI Classes 159

The Shell and the Windows It Owns

Controls for
Initiating Actions

To enable the user to perform actions on the window, the
window needs an assortment of controls, such as a minimize
button or a status bar. Just as the controls for driving a car are
on the dashboard, the controls for driving a window occupy
convenient locations around the window. The program also
manipulates these controls. For example, it can disable controls
when their use would be inappropriate for the moment or hide
them when they are not relevant.

Programming the User Interface

Programming the user interface starts with the shell window (derived from the
ShellWindow class), which manages all the other windows in an application.
The shell window is the first window that the application constructs.

There is a well-established convention that an application constructs just one
shell window, during App:Start(), and that shell is then owned by the App
object. The Standard Application generated by Visual Objects follows this
convention and is an excellent example of how to structure an MDI application
(see “Learning the Basics” in the Getting Started guide for more information on
the Standard Application). If you abide by the convention, for example by using
the Standard Application as your starting point, you will achieve behavior that is
typical of many commercial Windows applications.

Top Window The simplest possible application uses a top window, derived from the
TopAppWindow class instead of the ShellWindow class. Like a shell window, a
top window is owned by the App object and can own further windows of its
own, but the similarity ends there. Top windows present the menu for a whole
application, supporting the SDI in Windows—they do not have the automatic
arrangement, status bar, and menu management that a shell window does.

The canvas of a top window has all the capabilities of the canvas of a child
window. This means that in the simplest of all applications the top window can
perform the presentation functions of a child window, which serves well enough
in situations where the window is required to present only one view at a time.

Note: For information and a broader understanding of the various types of
windows you may want to consult the Microsoft Windows style guide, The
Windows Interface: An Application Design Guide.

In the Microsoft text, top windows correspond to “application windows,” child
windows controlled by a shell window correspond to “document windows,” and
dialog windows correspond to “dialog boxes.”

160 Visual Objects Programmer's Guide

The Shell and the Windows It Owns

The Shell as Owner

In the conventional style, a single shell window is the ultimate owner of all the
active elements of the application. Child windows constructed by the shell are
clipped to lie within its canvas. The shell represents the physical boundary of the
application on the Windows desktop, and all the activity of the application takes
place within the confines of the shell’s canvas.

Besides its own canvas, title bar, and border, the shell window conventionally
displays a menu, a status bar, and a toolbar. Initially, the menu and status bar
refer to the shell itself, but once the shell has constructed further windows, it
presents the menu for whichever of its owned windows currently has focus and
displays messages from that window on its status bar. Each child window,
however, displays its own toolbar.

The shell constructs further child windows that it owns and manages. When the
user iconizes a child window, its icon appears at the bottom of the shell’s canvas.
The ShellWindow:Arrange() method arranges all child windows based on an
argument defining the arrangement. For example, the default shell window of
the Standard Application has Window Tile and Cascade menu commands that
call this method. The ShellWindow class handles all this window management
for you.

Customizing the Shell

Visual Objects permits you to place controls on the canvas of the shell. However,
this is contrary to convention. By convention, you place controls only on the
canvas of a data window or dialog window.

One exception to this is that it is not unusual to put window scroll bars on the
shell. These are special scroll bars that snap to the right side and bottom of the
window. Their conventional significance is to indicate that the window is a
partial view of a larger area, and the scroll bars move the partial view to traverse
the larger area. The GUI classes do not interpret them in any way. If you have
window scroll bars on the shell, you must handle the scroll events that occur by
writing explicit code.

When you want to change the behavior of the shell window, it is best to subclass
it. In your subclass, you can hide or even remove the status bar. You can
remove either (or both) the menu and toolbar. You can change the border style,
background and foreground colors, and many other properties. If you look at
the list of assign methods for ShellWindow and its ancestors using the Class
Browser, you will get a good idea of the variety of things you can change.

Chapter 11: GUI Classes 161

The Shell and the Windows It Owns

Window Relationships

Once you have established your shell window, there are four kinds of windows
that it can own.

Child Windows

Child windows, which inherit from the ChildAppWindow class, have practically
the same functionality as shell windows except they are constrained to their shell
window’s canvas. Generally, you would use a child to present graphical views,
such as block diagrams or charts. Child windows are commonly used for
drawing objects, such as EllipseObject and BitmapObject (see “Other Features of
the GUI Classes” in this guide for additional details on this subject).

Data Windows

Another common variety of window is the data window (derived from the
DataWindow class). Essentially, they model business forms, and they interact
automatically with data servers. Data windows are discussed in more detail in
the Data Windows section later in this chapter.

Dialog Windows

If you wish to display or capture information using a formal layout without
storing the information in a database, you can use a dialog window (derived
from the DialogWindow class). Dialog windows are usually displayed in
response to menu command or push button events. Their purpose is to gather
additional information needed to process the event.

You create the layout for a dialog window using the Window Editor, just as you
would do for a data window, but without making the connection to the database.
The Window Editor generates all the necessary code, including a resource entity,
resource IDs for the dialog window and all its controls, and an Init() method that
creates the necessary control objects and hyperlabels for the controls and the
dialog window itself. A good example of this can be found in the code generated
for the HelpAbout dialog window in the Standard Application.

In your program, you can connect the dialog window to a push button or menu
item of the same name. This is what happens in the Standard Application with
HelpAbout. It is linked by name to the Help About menu command.
Alternatively, you can instantiate the dialog window and display it directly:
HelpAbout{SELF}:Show()

Either way, the dialog will appear with the layout that you designed using the
Window Editor.

162 Visual Objects Programmer's Guide

Controls

DataDialog Windows

DataDialog windows are dialog windows that can have a data server attached.
DataDialog windows are modal Dialogs and unlike normal DataWindows, are
not MDI child windows. The behavior for the Modeless DataDialog windows is
almost identical to that of regular DataWindows.

DataDialogs expect the underlying window to be an AppWindow and not a
Dialog. Therefore, the EnableVerticalScroll and EnableHorizontalScroll methods
do nothing for DataDialogs. Assigning a menu causes the menu to be displayed
at the top of the Dialog. This is a direct consequence of not being an MDI child.

Controls
As stated earlier, you place controls, by convention, only on the canvas of a data
window or dialog window. Detailed interaction between the window and the
user takes place via these controls. The most common controls are edit controls
and push buttons, but the GUI Classes library supports all of the controls that
GUIs use. Typically, the class that implements a particular control has the name
that is most frequently used to refer to controls of that type. Hence, there are
classes called ComboBox, PushButton, ScrollBar, and so on, as shown here:

You normally place these controls on a window using the Window Editor. When
they occur on a data window, they are automatically data-aware. That is, the
data window associates certain controls with data fields in the data server using
the symbolic names you supplied to the Window Editor.

Chapter 11: GUI Classes 163

Menus

In addition to their data-aware behavior, Visual Objects controls have a lot of
other automatic behavior. You can specify the tabbing sequence among controls
and an Alt+key sequence used to select the control using the Window Editor.
(Both the tabbing sequence among controls and the Alt+key are coded into the
window’s resource entity and managed by the Windows dialog manager at
runtime.) When the control gets focus, the prompt from its hyperlabel appears
on the shell window’s status bar. Controls have virtual variables, named Value
and TextValue, that enable you to assign values directly to and from the control.

Menus
A menu is a visible object that enables the user to activate parts of an application.
It is the means of navigation in a GUI application.

Visual Objects implements a number of different navigation mechanisms as
menus. Whether the user chooses a menu item with the mouse, uses an
accelerator key or Alt+key combination, or clicks a button on the toolbar, the
only interest for the developer is to know which item the user selected. Visual
Objects hides from the application the route by which the user arrived at the
choice.

You construct the physical appearance of menus using the Menu Editor. You lay
out the hierarchy of the menu, specify icons, accelerator keys, Alt+key
combinations, and toolbar buttons, and specify the status messages to appear by
default when the user probes each menu item. The Menu Editor generates code
that produces the menu, along with its corresponding accelerator table and
toolbar. When the menu is instantiated, it is given an owner (a window); it
assigns itself, and the accelerator table and toolbar, if any, to the window.

Menu selection event handling has already been discussed in detail in this
chapter, but there are two other menu events that may prove of interest to your
program. The MenuSelect event occurs when the user moves over an item
without choosing it. The default implementation of the Window:MenuSelect()
event handler posts the appropriate message to the shell window’s status bar.
The other menu event is Window:MenuInit(), which occurs just before a menu is
to drop down. You only need this one if you create menu items on the fly rather
than predefining them using the Menu Editor.

Under most circumstances, the Menu Editor alone gives you sufficient control
over the behavior of a menu and its associated toolbar.

164 Visual Objects Programmer's Guide

Standard Dialogs

Standard Dialogs
A standard dialog is a dialog that the GUI provides. Its look and feel are common
across all applications.

Many menu items result in a standard action, such as opening a file. Visual
Objects provides many of the standard dialogs supported by Windows, such as
Printer Setup and Save As. Through the OpenDialog class, it extends the file
open dialog to support opening index files together with DBF files and to enable
the user to select the appropriate RDD.

Typical code to open a file would use the OpenDialog class, as illustrated in the
example below:
METHOD FileOpen() CLASS MyShellWindow
 LOCAL oOD AS OpenDialog
 LOCAL oDB AS DBServer
 LOCAL oDW AS DataWindow
 // Display File Open dialog
 oOD := OpenDialog{SELF, "*.dbf"}
 oOD:Show()
 // If user did not Cancel...
 IF !Empty(oOD:FileName)
 // Open DBF file in a server
 oDB := DBServer{oOD:FileName}
 // If opened successfully...
 IF oDB:Status = NULL_OBJECT
 // Create a data window
 oDW := DataWindow{SELF}
 // Assign data server to window
 oDW:Use(oDB)
 oDW:Caption := oOD:FileName
 oDW:Show()
 ENDIF
 ENDIF

Data Windows
A data window is a special kind of window, in four respects:

■ Its visual behavior depends on how it is created.

■ It can be displayed in a form view, with individual controls, or in a browse
view, as a scrollable spreadsheet-like table.

■ It can be nested within another data window, as a sub-data window.

■ It can be linked to a data server and provides a number of methods for data
management and navigation, as well as other useful features including
automatic data validation and propagation.

Chapter 11: GUI Classes 165

Data Windows

Different Types of Data Windows

Unlike other windows, a data window can take on many personalities based on
the circumstances under which it is instantiated. It automatically adapts itself to
the circumstances and provides suitable behavior.

For example, when you construct a data window as a child window, it combines
the characteristics of a dialog window and a child window. Like a dialog
window, it can be created with a resource defining its controls, and it provides
the automatic keyboard interface of a dialog window, but as a whole, the
window has the behavior of an MDI child window.

A data window can be used as:

■ A child window (typical in MDI applications) or top window (typical in SDI
applications) with data controls

■ A data-aware dialog window that deals with some special data, outside of
the regular flow of the application

■ A sub-data window placed on another data window as a custom control

The data window takes on these different personalities depending on its owner
and instantiation parameters:

Type of Window Circumstances

Child window If the owner is a ShellWindow

Dialog window If the owner is a TopAppWindow,
ChildAppWindow, or DataWindow

Sub-data window If the owner is a DataWindow and a
resource ID is passed as the third
instantiation parameter

Note: Under standard Windows conventions, a shell window is not used to
display data; therefore, a data window is never a shell window.

Form and Browse View

A data window can take on two different view modes, both of which are
illustrated below: form view, which contains individual controls for the data
fields, and browse view, which contains a spreadsheet-like data browser. The data
window can be initially displayed in either mode, and can be switched to the
other mode at any time (using the DataWindow:ViewAs() method).

Any data window supports both appearances, although the developer can, of
course, choose not to provide a way to select one mode or the other.

166 Visual Objects Programmer's Guide

Data Windows

Form View

Browse View

The two view modes provide the same set of facilities: the same data linkage, the
same display options, the same data manipulation methods. From the
perspective of the application, a data window has the same behavior and the
same data properties regardless of view mode.

The data window can automatically create a default layout based on the
characteristics of the linked data server. The automatic self-configuring behavior
is useful when the application is still under development or when the data
window needs to look at databases it has not seen before, such as in the Standard
Program.

Chapter 11: GUI Classes 167

Data Windows

Resource-Driven Instantiation

Just like a dialog window, a data window is normally created based on a
resource, identifying the size and location of all the controls on the data window
and the data window as a whole. Like all windows, a data window has an
owner.

You can construct and activate a data window with statements like this:
oDW := DataWindow{SELF,ResourceID{"CustomerWindow"}}
oDW:Show()

where CustomerWindow is the name of the resource entity defining the window
and each of its controls in terms understood by the Windows dialog manager.

Just as in a dialog window, the controls of a data window are created as objects,
each associated with its own resource ID:
oDCCustName := SingleLineEdit{SELF, ResourceID{CUSTOMERWINDOW_CUSTNAME}}

The code for the CustomerWindow resource entity, which ties the control to the
window, might look something like this:
RESOURCE CustomerWindow DIALOG 3, 3, 185, 159
 STYLE WS_CHILD
 FONT 8, "MS Sans Serif"
 BEGIN
 CONTROL "", CUSTOMERWINDOW_CUSTNAME, "Edit", ;
 ES_AUTOHSCROLL | ES_LEFT | WS_TABSTOP |;
 WS_CHILD | WS_BORDER, 48, 27, 68, 12
 END

Symbolic Names

A data window that is to be linked with a data server requires that each control
be given a symbolic name, which is used as the basis for linking controls to data
fields (that is, the symbolic name of the control must be the same as its associated
data field). You assign a symbolic name to the control by giving it a hyperlabel
that holds the symbolic name and other annotations, such as a caption, a
description, and a help keyword, which are optional. Thus, the complete
creation of an object for the control looks like this:
oDCCustName := SingleLineEdit{SELF,;
 ResourceID{CUSTOMERWINDOW_CUSTNAME}}
oDCCustName:HyperLabel := HyperLabel{#CustName}

168 Visual Objects Programmer's Guide

Data Windows

Subclassing DataWindow

The most useful way to create a window with controls is to define a subclass of
the generic data window and instantiate all the controls in the Init() method. The
most convenient way of producing this kind of code, of course, is to use the
Window Editor, which generates the code for you. This is the kind of code it
generates:
CLASS CustomerWindow INHERIT DataWindow
 PROTECT oDCCustName

METHOD Init(oWindow,iCtlID,oServer)CLASS CustomerWindow
 SELF:PreInit()
 SUPER:Init(oWindow, ResourceID{"CustomerWindow",_GetInst()},iCtlID)
 oDCCustName := SingleLineEdit{SELF, ResourceID{CUSTOMERWINDOW_CUSTNAME, ;
_GetInst()}}
 oDCCustName:HyperLabel := HyperLabel{#CustName}
 SELF:Caption := “Custname”
 SELF:HyperLabel := HyperLabel{#CustomerWindow, “Custname”}
 SELF:PostInit()

Given this subclass definition, the customer window can be directly created and
shown:
oCW := CustomerWindow{SELF}
oCW:Show()

Pre/PostInit()

The Window Editor generates a SELF:PreInit() call before the actual control
creation and a SELF:PostInit() call after the control creation. Default PreInit() and
PostInit() methods are defined in the Window class and are available to all data
windows. The default PreInit() and PostInit() methods are empty and don’t
perform any action.

Method PreInit() CLASS CustomerWindow
 MessageBox(0, ”Before Init”, “”, 0)

Method PostInit() CLASS CustomerWindow
 MessageBox(0, “After Init”, “”, 0)

By specifying PreInit() and PostInit() methods for a generated data window you
can perform action before and after the initialization of the form. The PreInit()
and PostInit() methods are not touched by the Window Editor and therefore
your code will not be overwritten when regenerating the Window.

Access to Values

There is a dilemma in referencing controls such as the customer name: you need
to refer to the control, to disable (gray) it, for example, and you also need to refer
to the value held in the control, the customer name itself.

Chapter 11: GUI Classes 169

Data Windows

Since the control is held by a variable of the window, you could get its value by
referring to oDCCustName:Value, but the control variable is protected and,
therefore, not available outside the class. You could also use the FieldGet() and
FieldPut() methods of the DataWindow class with the field name, but this is not
very elegant. In business logic that lies outside the class, you need a way to
reference the control’s value in a convenient and straightforward manner. You
would like to refer directly to CustName.

Virtual Variables

The recommended technique to accomplish this (also used in the code generated
by the Window Editor) is to have one internal variable with a name prefixed
with oDC (for “object of data control type”) for referring to the control, and an
external variable without a prefix for referring to the value. The value variable is
actually never used. It is a virtual variable implemented with a pair of ACCESS
and ASSIGN methods:
CLASS CustomerWindow INHERIT DataWindow
 PROTECT oDCCustName AS SINGLELINEEDIT
 INSTANCE CustName

ACCESS CustName() CLASS CustomerWindow
 RETURN SELF:FieldGet(#CustName)

ASSIGN CustName(uValue) CLASS CustomerWindow
 SELF:FieldPut(#CustName, uValue)
 RETURN CustName := uValue

This structure allows you to distinguish between the control and its value inside
methods of the class and to refer to the value in a straightforward manner
outside the class:
// Inside methods of the data window

oDCCustName:Disable() // the control
DoSomethingWith(CustName) // the value

// Outside the data window

DoSomethingWith(oDW:CustName) // the value

Automatic Generation of Virtual Variables

Even if no virtual variables (pairs of access and assign methods) have been
created, the data window still permits reference to controls by their symbolic
name, in the same way that data servers present their data fields as virtual
variables.

Providing explicit definitions of the virtual variable—the access and assign
methods—is useful for two reasons: it makes the window self-documenting and
it gives you a convenient way to refer to the data field value outside the class.

170 Visual Objects Programmer's Guide

Data Windows

Dynamic Instantiation

Like a dialog window, it is also possible to create a data window dynamically,
without a resource. In this case the window is created with a size and position
(relative to its parent window) instead of a resource, and the controls are created
dynamically, each with a size and position specified explicitly instead of using a
resource ID.

The data window retains all other aspects of its behavior and can be linked to
data servers just like a statically created data window. Of course, the controls
must still be given the symbolic names used in data linkage. Once the control
exists, there is no difference between the two types of instantiation. However,
resource-based instantiation is preferred: it is a good way to manage the layout
of windows, and it is faster.

Note: Dynamically created controls and statically created, resource-based
controls can be mixed on a window.

Automatic Layout

A data window can also create itself automatically, laying out both its form and
browse view based on the structure of the data server it is linked with. If the
data window has no controls or columns defined, a default layout that matches
the fields of the server is defined when you instantiate the window. This might
occur because the window is a generic DataWindow class, or because the
program switches it to a new view that has not been explicitly defined.

You also have the option of explicitly laying out one view and having the other
view generated automatically. For example, you might choose to replace the
automatically generated form view layout with one that you define with the
Window Editor; you could leave the browse view for this window undefined,
and the system would generate one for you.

When using a data window for which no explicit layout has been specified,
however, you should be aware that generated views will contain controls for all
fields in the database file or table, without regard to fields that have been
excluded from the data server via the data server editors.

Linking a Data Window to a Data Server

A data window is linked to a data server with the DataWindow:Use() method,
which is called with a data server object. Thus, to illustrate the automatic layout
capability of a data window, you could instantiate a generic data server and data
window, and link the two together as follows:
oDB := DBServer{"customer"}
oDW := DataWindow{SELF}

Chapter 11: GUI Classes 171

Data Windows

oDW:Use(oDB)

The window would contain a fixed text and single-line edit control for each field
in CUSTOMER.DBF.

Otherwise, if both the data server and data window have been defined, linking
the two via DataWindow:Use() sets up linkages between the controls on the data
window and the fields of the data server based on common name:
oCW := CustomerWindow{SELF}
oDB := Customer{}
oCW:Use(oDB)
oCW:Show()

Only those controls and data fields that match are linked. Controls that do not
find a match remain unlinked: this is very useful, since it allows the handling of
non-database related controls. Data server fields that do not find a matching
control also remain unlinked. A database may have more fields than are needed
in a particular application, and those can be ignored by simply omitting them
from the data window layout.

Note: Each data window can be linked to only one server at a time. Establishing
a link with the DataWindow:Use() method removes any previously existing link.
To create more complex windows that operate with more than one server, use a
sub-data window as described in the Sub-Data Windows section later in this
chapter.

Display Options

After a data window is linked to a data server, the data window automatically
gains access to the field specifications defined for that data server. This happens,
again, by matching the symbolic name of the control to that of a data field.

Because they are linked, the control is able to pick up the FieldSpec and other
properties of the data field and use them in the data window. For example, a
control automatically displays its data using the FieldSpec:Picture property of
the data field it is linked to. Similarly, the field specification’s
HyperLabel:Description property (or that of the data field itself, if the FieldSpec
does not define a Description) is automatically displayed in the status bar when
the control has focus.

Of course, you can override the field specification by assigning a different one to
the control using its FieldSpec property. This is illustrated in the code generated
by the Window Editor if you change the FieldSpec property to something other
than <Auto>. You can also override the HyperLabel:Description in the same
way, by assigning a description directly to the control’s hyperlabel.

172 Visual Objects Programmer's Guide

Data Windows

Validation

The FieldSpec also defines several field-level validation rules, such as a range of
values that the data field must fall between, whether or not the data field is
required, and a developer-defined validation rule. Each type of validation has its
own hyperlabel to provide helpful information to the user in case the validation
fails (for example, a diagnostic message for the status bar and a help keyword
that you can tie into your online help system).

Field-Level Validation The data window handles these field-level validations automatically, without
any additional programming on your part—all you do is specify the rule and the
diagnostic message, and the data window does the rest. The default mechanism
for performing field-level validations is to validate the contents of a data control
after you leave the control.

Field-level validation is done based on the EditFocusChange event, which is
generated each time the user changes input focus on the control level. Each
control has a PerformValidations() method that simply calls the corresponding
FieldSpec:PerformValidations() and sets the controls HyperLabel with the
FieldSpec:Status. When an EditFocusChange event occurs, PerformValidations()
is called only for the control that is losing focus.

If a control fails validation, the windows Status property reflects the necessary
information to determine which validation failed. The Status:Description is
automatically displayed in the status bar, indicating the diagnostic message
associated with the failed validation, but the user cannot be prevented from
leaving the control.

Tip: Whenever a failed control has focus, the data window’s Status property
will reflect the help keyword of the associated validation rule (that is,
Status:HelpContext). You can use this information to provide a hook into
your online help system. For more information on this subject, see "Using an
Online Help System" later in this chapter. To do this, you could define a
Help Error menu command or push button. The implementation of the
corresponding method might look like this:

METHOD HelpError() CLASS EmployeeWindow

 SELF:HelpDisplay:Show(SELF:Status:HelpContext)

Conditional Controls Tied to field-level validation is another level of validation implemented by the
DataWindow:Prevalidate() method. This method is invoked after each
field-level validation. You can, therefore, use it to perform validations that are
not specific to a particular control but that are applicable regardless of the control
in question.

Chapter 11: GUI Classes 173

Data Windows

DataWindow:Prevalidate() has some built-in behavior that allows you to register
controls that are automatically disabled or enabled—via
DataWindow:DisableConditionalControls() and
DataWindow:EnableConditionalControls()—based on the validation status of the
window. For example, you might have an OK push button that the user can
press to accept the data and close the window. The following code would
register this control so that it was only enabled when the validation status of the
window was good:
METHOD Init() CLASS EmployeeWindow
 SELF:RegisterConditionalControls(oCCOK)
 ...

As always, you can add to or replace the automatic behavior described above
using a customized Prevalidate() in your data window subclass. For example,
you might add behavior to color-code controls that are invalid or extend the
automatic disabling of controls to include menu items. The following example
uses Prevalidate() to disable a Help Error menu command when the window
status is valid and enable it when the window is invalid:
METHOD Prevalidate() METHOD EmployeeWindow
 IF SELF:Status <> NIL // Error
 SELF:Menu:EnableItem(IDM_MENU_HELP_ERROR)
 ELSE
 SELF:Menu:DisableItem(IDM_MENU_HELP_ERROR)
 ENDIF
 SUPER:Prevalidate()
 RETURN NIL

Form-Wide Validation In addition to field-level validation, you can also define form-wide validation
rules for your data window, although you cannot define this level of validation
using any of the IDE editors. Instead, you implement it by defining an event
named ValidateRecord() for your data window subclass.

Form-wide validation rules usually involve cross-field validations (such as “the
bonus can be no greater than half the salary and no greater than 10,000 for grades
six and lower”) that you do not want to perform until, for example, the user
moves to another record. The code for this condition might look something like
this:
METHOD ValidateRecord() CLASS EmployeeWindow
 DO CASE
 CASE (Grade <= 6) .AND. (Bonus > 10000)
 SELF:StatusMessage("Bonus cannot exceed $10,000",MESSAGEERROR)
 RETURN FALSE
 CASE Bonus > (.5 * Salary)
 SELF:StatusMessage("Bonus cannot exceed half the salary",MESSAGEERROR)
 RETURN FALSE
 OTHERWISE
 RETURN TRUE
 ENDCASE

ValidateRecord() is called by DataWindow:StatusOK(), which is called
automatically whenever the user performs any operation that affects the
database as a whole (such as a skip, go to, or commit operation). StatusOK()
does all field-level validations first, before calling ValidateRecord().

174 Visual Objects Programmer's Guide

Data Windows

Note: It is possible to define cross-field validation rules for an individual field,
but this is not the recommended practice. It is not logical to perform this type of
validation each time a field loses focus, because the user may already be on the
way to satisfying the other conditions and would, therefore, be annoyed by an
error message. Therefore, when defining field-level validation rules, avoid
conditions involving other fields that are better handled on the form level.

Validation for Delete One operation that is not automatically tied to form-wide validation is delete
because some applications may not require deleted records to be valid, while
others may. For example, if the application never recalls deleted records or if the
data server does not support recalling deleted records, it makes no sense to waste
time performing a validation before the delete is allowed. On the other hand, if
the application can recall the deleted record, you probably want to make sure the
record is valid, even though it is marked for deletion.

DataWindow provides two different methods, Delete() and DeleteValidated().
Use Delete() if the window does not need to be validated before the delete
operation, and DeleteValidated() if it does. DeleteValidated() automatically calls
DataWindow:StatusOK() to perform field-level and form-wide validations,
allowing the delete operation only if the window passes validation.

Action Methods

The data window provides other data manipulation methods besides Delete()
that correspond to the general capabilities of all data servers: GoTop(), GoTo(),
GoBottom(), Skip(), Append(), and so on. The data window versions of these
methods verify the validation status of the controls on the window. If everything
is valid, the window invokes the corresponding method of the data server.

The data window also provides methods for many standard Windows
operations such as Undo(), OK(), Cancel(), Cut(), Copy(), and Paste().

Because of the way push button and menu commands are processed by name, it
is very simple to produce a data-aware window that invokes any of these
standard action methods without writing any code specific to the window. For
example, if you assign the symbolic name SkipNext to the Edit Next menu
command, choosing the Edit Next will automatically invoke
DataWindow:SkipNext(). An excellent example of this can be seen in the
StandardShellMenu of the Standard Program.

Data Propagation

Another behavior that you achieve when you link a data window and data
server is automatic data propagation between the window and the server.

Chapter 11: GUI Classes 175

Data Windows

Changes to the controls in the data window (whether by the user or by code) are
first validated then propagated down to the data server if they pass validation.

Values are propagated up from the data server to the data window when the
server repositions itself or when another window makes a change. This requires
no special action: after executing a skip operation or assigning a value to a field,
every window connected to the server is automatically updated to reflect the
change.

Concurrency Control

The data window also provides you with several levels of built-in concurrency
control so that you do not necessarily have to perform file and record locks
manually in your code. Instead, you set the window’s
ConcurrencyControl:Property by choosing from one of several constant values,
depending on the behavior you want (refer to the DataWindow class in the
online help system for a complete list of these constants).

Sub-Data Windows

Nesting data windows (that is, placing a data window on another as a sub-data
window) is useful for the following reasons:

� When designing complex windows, it is often useful to define a commonly
used group of controls as a separate window which is designed
independently and which can be reused on other windows as needed. This
is no different from the benefits of component reuse already discussed.
Remember that a window is not just a visual appearance, it also includes the
code that processes commands aimed at the window.

� The common type of window described as a master-detail form, such as the
ubiquitous customer-order display, often requires that the detail part be
presented as a table. This table is not just a visual display of a list control; it
requires complex processing of database operations and, therefore, needs to
be designed as a data-aware window in its own right. This tabular display is
the data browser, or browse view, already mentioned earlier in this section.

� Complex windows, such as the master-detail form illustrated below, need to
operate with two databases at the same time. But this makes things a bit
more complex: should a delete command be interpreted as deleting the
customer, deleting an order, deleting all the orders, or deleting the customer
and all the orders? To keep things simple, a data window can be linked with
only one data server; to create a master-detail form, you design the detail
part as a separate data window, linked to its own server, and place it on the
master part, which has its own window. In this case, there is no uncertainty
about what is going on: each window gets its own delete command and
processes it accordingly.

176 Visual Objects Programmer's Guide

Data Windows

Note that a sub-data window can be displayed in form or browse view, and both
may be useful:

Detail window
in browse view

Detail window
in form view

Chapter 11: GUI Classes 177

Data Windows

Instantiating a Sub-Data Window as a Control

Controls are normally instantiated with two parameters: an owner, which is a
dialog or data window, and a resource ID. (Alternatively, the resource ID can be
replaced with a size and position to dynamically instantiate the control.) A
dialog or data window is normally instantiated with two parameters: an owner
and a resource ID defining the layout of the entire window. This technique of
instantiating data windows and controls has already been illustrated in the
examples in this section.

When using a data window as a sub-data window, it simultaneously takes on the
characteristics of a window and a control. Thus, it needs three parameters: an
owner, a resource ID defining the layout of the components of the sub-data
window, and a resource ID that refers to the sub-data window as a control in the
resource entity of the owner data window.

The code generated by the Window Editor (when you choose the Auto Layout
feature and specify a master-detail relationship) performs this instantiation in
two steps. First, the sub-data, or detail, window is instantiated in the Init()
method of its owner, or master, window with code similar to the following:
oSFCustomerWindow_DETAIL := CustomerWindow_DETAIL{SELF, ;
CUSTOMERWINDOW_CUSTOMERWINDOW_DETAIL}

CUSTOMERWINDOW_CUSTOMERWINDOW_DETAIL is a constant that refers
to the control on the master data window, and oSFCustomerWindow_DETAIL is
a protected instance variable used by the master window class to refer to the
detail window as a control.

Then, in the Init() method of the detail window’s class, the following code
completes the instantiation:
SUPER:Init(oWindow,ResourceID{"CustomerWindow_DETAIL"},iCtlID)

CustomerWindow_DETAIL is the name assigned to both the resource entity and
the class defining the detail window.

Note: When a data window in instantiated as a control, its menu and toolbar are
not available. Instead, it uses the menu and toolbar associated with the data
window in which it is nested.

Relating the Data Servers

Once instantiated, the two underlying data servers must be linked so that
movement in the master window is reflected in the detail window. There are
two methods in the DataWindow class to accomplish this: SetSelectiveRelation()
and SetRelation().

178 Visual Objects Programmer's Guide

Data Windows

With both of these methods, you link the windows based on a key value in the
master data server, causing a lookup in the controlling order of the detail data
server.

The difference between the methods is that SetRelation() does not limit the
selection in the detail window to records with matching keys. It simply does a
lookup and positions the record pointer to the first matching key. You could, for
example, switch focus to the detail window and view records that did not match
the current record in the master window.

SetSelectiveRelation() implements a more intelligent way to handle the link
between a master and detail window, limiting the detail window to displaying
only those key values that match the key value currently displayed in the master
window. This method sets up a subset rule for the detail window so that
methods that move the record pointer, such as GoTop(), GoTo(), GoBottom(),
Skip(), and Seek(), are limited to records matching the relationship.

SetSelectiveRelation() is the method used in the code generated by the Window
Editor. For example, this code appears in the Init() method of the master data
window just after the detail window is instantiated:
SELF:SetSelectiveRelation(oSFCustomerWindow_DETAIL, #CUSTNUM, "CUSTNUM")

Nesting Sub-Data Windows

The master-detail relationship that has been discussed so far is the most common
use of a sub-data window, but it is not the only possible variation. The nested
window structure can be assembled for more complex arrangements:

■ Master and two details: a customer form has one nested form with orders
and another with payments

■ Master-detail-detail: a customer form contains a nested order form which
contains a nested list of items

SetSelectiveRelation() and SetRelation() support both of these arrangements.
You can establish a relation from one master server to two or more detail servers
by including several calls to the method in the master window’s Init() method—
subsequent calls add to the list of relations for the master. You can also establish
a chain of relationships by including the proper method call in the Init() methods
of the master and detail data windows. This last example is rather complex.

Depending on the application and the user, it may or may not be a good idea to
design a window like that—even if it is technically possible, the end user may
not be able to manage the window. But what should you do if the information is
that complex?

Chapter 11: GUI Classes 179

Using an Online Help System

One option is to split the structure up into two windows: instead of one complex
window with two levels of nesting, you might have two windows, one of which
is nested, or even three simple windows. The relationship between the data can
still be maintained, of course, so that moving to a new customer will be
automatically reflected in the order and item windows; this is done the same
way, regardless of whether the three windows are nested or independent.

Because of the way data windows adopt their behavior at the time of
instantiation based on who is their owner, it is very easy to make these changes.
After designing the completely nested, single-window version, locate the place
where each window is instantiated, change the owner, and eliminate the
instantiation parameter identifying the window as a control:
// Instantiate data window as sub-data window
CustomerWindow_DETAIL{SELF,CUSTOMERWINDOW_CUSTOMERWINDOW_DETAIL}

// Instantiate data window as separate window
CustomerWindow_DETAIL{oWindow}

Second Table for Lookup

Some cases that require linkage to two databases do not actually require a
sub-data window. Consider an employee window with a combo box control
showing the employee’s department: when dropping down the combo box you
expect to see a list of departments from the department table. Instead of creating
a sub-data window for the combo box, you can link the combo box control to the
department table. (The Window Editor provides an automatic way to connect a
combo box to a field in a table or a column in an array.) In this case, the second
table is used only for lookup purposes; the control is primarily linked to the
employee table, and only the employee table is updated.

Using an Online Help System
The help system is a very important aspect of any application because it is often
the first thing the end user sees. Users may judge an application on the quality
of its help system—especially if the online help is provided in lieu of printed
documentation.

Developing an online help system is an in-depth process that requires you to
analyze your application very closely. Among other things, you must decide the
level of detail to provide and how to organize the hierarchy of help topics. Once
the system is planned, you face the tasks of writing and appropriately identifying
the help text, then building the help system. The subject of developing an online
help system, however, is beyond the scope of this section. Instead, this section
focuses mainly on how to interact with the actual help (.HLP) file(s) that make
up the online help system.

180 Visual Objects Programmer's Guide

Using an Online Help System

Tip: The Microsoft Windows Help Compiler and Hotspot Editor are
provided as part of your Visual Objects package, along with associated help
databases to explain how to use them. These help databases contain useful
information about developing an online help system and about how to use
the respective systems. Refer to “Installing and Starting Visual Objects” in
the Getting Started guide for more information on how to install these
components.

Specifying Keywords

Even though the actual development of an application’s help system may come
late in the development cycle, you should always have help in mind when
designing the various components of your application.

For this reason, the various IDE tools (such as the Window Editor, the Menu
Editor, and the data server editors) allow you to assign a HelpContext property
to any window, window control, data server, data field, field specification,
menu, or menu command defined in your application. This property, known as
a keyword, is a unique ID that serves as a hook into the application’s help system.

In fact, any object in your system with an associated hyperlabel can have a help
keyword. You simply specify it as the fourth argument when you instantiate the
HyperLabel object, just as in the code generated by the editors. This results in
the creation of the HyperLabel:HelpContext property, which you can access in
your code and which is automatically passed along to the default event handler
for help requests.

Important! The keywords that you use must be coded in your help source files using an
alternative keyword table identified by the uppercase letter “C”. See the
HelpDisplay:Show() method in the online help system for details.

Associating Help Files

Thus, you create a link between objects in the application and keywords in a help
file via the HyperLabel:HelpContext property using the IDE editors. However,
you must also create a link between the application and the help file.

Chapter 11: GUI Classes 181

Using an Online Help System

Actually, the link is between a window (rather than the entire application) and a
help file, and you establish it by assigning a HelpDisplay object to the window’s
HelpDisplay property. For example, to assign the help file, MYAPP.HLP, to the
shell window of an application, you would include the following statement in
the shell window’s Init() method:
SELF:HelpDisplay := HelpDisplay{"myapp.hlp"}

Tip: Using the Window Editor, you can assign the help file name to the
window’s Help File Name property, and the Window Editor will generate
the code necessary to link the help file.

In most applications, this is all that is needed to implement context-sensitive help
for the menu commands, controls, and toolbar buttons in your application. It is
standard practice to have one help file per application, and linking the help file
to the shell window in this manner makes it available to all child windows in the
ownership chain. In other words, by default, a child window uses the help file
linked to its owner.

Using this architecture, however, it is easy to see how any window in the
application can have its own, separate help file. For example, assuming that the
customer data window is owned by the shell window in the previous example,
this statement in the CustomerWindow:Init() method will use CUSTOMER.HLP
as the help file (instead of MYAPP.HLP) when the customer window has focus:
SELF:HelpDisplay := HelpDisplay{"customer.hlp"}

Built-in Context-Sensitive Help

Without any programming in Visual Objects other than associating the help file,
you get context-sensitive help for every control, menu command, and toolbar
button in your application, as well as for various regions of the window. You
just need to make sure that the keywords in the help file and the
HyperLabel:HelpContext property match up and that the appropriate help file is
linked to the window.

Context-Sensitive Help The user can get context-sensitive help in one of two ways. The first way is to
press the Help key (F1) for help on the menu command or control with focus.
For example, to get help on a menu command, the user could highlight the menu
command (without selecting it) and press F1. If no control or menu command
has focus when the user presses F1, the default behavior is to display the
Contents topic defined in the associated HelpDisplay.

182 Visual Objects Programmer's Guide

Using an Online Help System

The second way is by pressing Shift+F1. On a datadialog window, this produces
a special help cursor (consisting of an arrow and a question marked combined).
To get help on a control or toolbar button, the user locates the control or toolbar
button with the help cursor and clicks on it. On shell windows, Shift+F1 behaves
like F1, displaying either the Contents topic or the help topic for the item with
focus.

Help Request Event
Processing

In either case, this is what happens:

1. The user’s request for help generates a HelpRequestEvent
object, which completely describes the context in which the
request occurred.

2. The HelpRequestEvent object is passed to the window’s HelpRequest() event
handler.

3. Window:HelpRequest(), the default event handler, invokes the WinHelp
system via the HelpDisplay:Show() method using the appropriate keyword
as an argument. The code in Visual Objects that automatically launches
WinHelp looks something like the following:
METHOD HelpRequest(oHRE) CLASS Window
 SELF:HelpDisplay:Show(oHRE:HelpContext)

 When the HelpRequestEvent object is created, its HelpContext property is, in
most cases, defined as the HyperLabel:HelpContext property of the item for
which help is being requested.

4. WinHelp finds the keyword in the .HLP file and displays the associated topic
in its window or an error if the keyword cannot be found.

Window Regions In addition to getting help on controls and menu commands using the built-in
behavior of Window:HelpRequest(), the user can also get help on various regions
of the window using Shift+F1. If you are planning to implement this level of
help, use the following keywords in your .HLP file:

Keyword Identifies Window Region

Window_Border Border

Window_Caption Title bar

Window_MaxBox Maximize button

Window_MinBox Minimize button

Window_SysMenuBox System menu button

Window_WindowCanvas Canvas area

Note: These keywords are automatically generated by the
Window:HelpRequest() event. You do not define them using the Window Editor
or by associating a hyperlabel with the window.

Chapter 11: GUI Classes 183

Using an Online Help System

If you click on an unknown area of the screen with the help cursor, the default
event handler displays the Contents topic defined in the associated HelpDisplay.

Important! For data windows, these special help keywords are processed only if the
HelpContext property for the data window is not defined. Otherwise, requesting help for
any of the window regions listed above generates a help request using the keyword
defined in the data window’s HelpContext property.

If the built-in help facilities are not enough to suit your needs, you can always
override or supplement the HelpRequest() event in your Window subclass. The
built-in behavior, however, is fairly standard and comprehensive.

Implementing Additional Help

Two other typical ways to implement help are in response to a menu command
selection (as in the typical Help menu found in almost all Windows applications)
or a push button click (as in a Help button on a complex dialog window). As
discussed earlier in this chapter, both menu command selections and push
button clicks generate command events based on their name. So, you can create
a method for your window class to process the event and put the help processing
logic in there. Using this technique, it is easy to tie the request for help in with
the help file using the HelpDisplay:Show() method.

HelpDisplay:Show(), in addition to supporting the ability to look up specified
keywords in a help file, is able to process some reserved keywords to give you
access to certain standard help features. For example, “HelpIndex” displays the
Contents topic defined in your help file, and “HelpOnHelp” displays the
Contents topic defined in your Windows help file (this is normally
WINHELP.HLP, in which the Contents topic is How to Use Help).

Assuming the menu commands had events named HelpMainIndex and
HelpUsingHelp, you could implement these standard help features as follows:
METHOD HelpMainIndex() CLASS MyShellWindow
 SELF:HelpDisplay:Show("HelpIndex")

METHOD HelpUsingHelp() CLASS MyShellWindow
 SELF:HelpDisplay:Show("HelpOnHelp")

Note: This type of processing can also appear as part of the MenuCommand() or
ButtonClick() event handler methods.

184 Visual Objects Programmer's Guide

Using an Online Help System

Instead of using a method to process the help request, you can choose to display
a dialog window or some other type of window. An excellent example of this
can be found in the Standard Program’s implementation of Help About. This
menu command has an event name of HelpAbout, which is linked to a dialog
window of the same name. The dialog window (designed using the Window
Editor) describes the application in brief and, when the user clicks the OK button,
removes itself from view.

These are good techniques for implementing help topics for entire windows, data
servers, and so on. Although the editors let you define HelpContext properties
for these objects, they are not normally available for context-sensitive help.
However, if you intend to link them to help file topics, having the appropriate
hyperlabels generated defining the keywords makes your job easier. For
example, to link the Help About menu command to a shell window’s keyword,
you would use the following code:
METHOD HelpAbout() CLASS MyShellWindow
 SELF:HelpDisplay:Show(SELF:HyperLabel:HelpContext)

Then, you could redefine this for a data window, say CustomerWindow, to
display the help text associated with its data server:
METHOD HelpAbout() CLASS CustomerWindow
 SELF:HelpDisplay:Show(SELF:Server:HyperLabel:HelpContext)

Chapter 11: GUI Classes 185

Chapter

12 Other Features of the GUI Classes

The previous chapter focused on some of the more typical arrangements and
uses of windows in GUI applications and discussed how to use the GUI classes
and visual editors to accomplish them. There are other features of the GUI
classes that are not directly tied to any of the visual editors. This chapter
discusses several otherwise unrelated uses of the GUI classes that do not fit into
the framework of the previous chapter.

Drawing Objects
There are a number of GUI classes representing shapes that you can draw on a
window or printer canvas. You can find them using the Repository Explorer
because they all inherit from an abstract class named DrawObject.

As an example, consider a drawing program that enables the user to select a
shape and size it using the mouse. The main window and one of the drawing
methods might look like this:
CLASS DrawWindow INHERIT ChildAppWindow
 HIDDEN aShapes AS ARRAY

METHOD ShapeEllipse() CLASS DrawWindow
 AAdd(aShapes, EllipseObject{SELF})
 SELF:Draw(aShapes[ALen(aShapes)])

The window maintains an array of the objects that the user has drawn so far.
When the user clicks Ellipse on the Shape menu, the application invokes the
ShapeEllipse() method. This method adds a new ellipse to the array and then
invokes Window:Draw() to draw the ellipse. In the program, there is also code
to track the user’s mouse moves and drags, so the user can position the ellipse.

Chapter 12: Other Features of the GUI Classes 187

Working with Controls

Keeping Track If the user clicks the mouse, how do you determine which drawing object they
are referring to?

Each drawing object has a virtual variable named BoundingBox that returns the
rectangle that exactly encloses it in the coordinate system of the window’s
canvas. You use the PointInside() method of BoundingBox when you wish to
test if the mouse is stationed over a particular object. If there is an array of
objects, then you must loop through the array until you find an object that
returns a value of TRUE for PointInside().
METHOD MouseButtonDown(oME) CLASS DrawWindow
 LOCAL m, k
 FOR k := 1 UPTO ALen(aShapes)
 IF aShapes[k]:BoundingBox:PointInside(oME:Position)
 m := k
 ENDIF
 NEXT
 // Now, do something to aShapes[m]

This code handles the case where the mouse lies in several drawings. The
variable m ends up referring to the one that was last appended to the array.
Since the array reflects the order in which the user created the drawings, the
algorithm picks the one on top if there is an overlapping pile of them on the
canvas.

The drawing objects in the GUI classes are good enough to support simple block
diagrams in two dimensions. Take a look at the Business Graphics sample
application on the Samples tab page of the Application Gallery for a working
example. For sophisticated business graphics, you will need a real graphics
server. One way to produce business graphics is to send the data to a
spreadsheet using the GUI classes’ DDE feature (described later in this chapter).
Another way is to call the C interface to a commercial graphics server.

Working with Controls
The GUI classes also support a complete range of standard controls which you
can see using the Class Browser to browse the class hierarchy beneath the class
Control.

The largest group of controls derives from TextControl. These controls either
present text, capture it, or both. They all have a virtual variable named
TextValue that you use to set and retrieve the text.

The meaning of TextValue is obvious for many controls. For certain text
controls, such as list boxes and editors, TextValue refers to the entire text content
of the control, not just the part that the user has selected. Other virtual variables,
such as ListBox:CurrentItem, handle these cases. Similarly, there is a virtual
variable called Value that returns the value stored in the control as a USUAL.

188 Visual Objects Programmer's Guide

Transferring Data Using the Clipboard

Transferring Data Using the Clipboard
The ClipBoard class supports raw text, tab-separated fields, and bitmaps.
However, most of the clipboard use does not need the ClipBoard class. If the
user cuts a piece of text from a multiline edit control, for example, the cut text
automatically goes to the clipboard. Similarly, you can program list boxes to
interact with the clipboard or not, as you choose. The only time you really need
to use the ClipBoard class is if you wish to manipulate clipped data explicitly.

The purpose of the ClipBoard class is to enable the application to send and
receive data directly to and from the clipboard, without going through a control,
such as a list box. The ClipBoard class has methods specifically designed for this
purpose, such as Insert() to insert an item in the clipboard.

Implementing Drag-and-Drop
The interpretation of drag-and-drop in the GUI classes is the same as that
adopted by the Win32 API in which the only drag-and-drop server is the
Windows File Manager. When the user drags files from the Windows Explorer
and drops them on a shell window, the shell window acquires the list of file
names in the drag-and-drop load. Other interpretations of the drag-and-drop
metaphor do not exist in the Windows API.

You can, however, implement your own interpretation of drag-and-drop using
the MouseDrag and MouseButtonUp events. The Visual Objects dispatcher
sends the MouseDrag event to a window as soon as the drag starts and then
keeps sending it, updating the mouse position a few times per second. Your
code should look at the first drag position and decide what is being dragged.
When the user finally lets go of the mouse button, you get the MouseButtonUp
event, which you can interpret as a drop.

Additionally, there are various Drag… and Drop… classes, methods, and events
available. Please refer to the online help for detailed information about the
individual classes, methods, and events.

Using Dynamic Data Exchange
Dynamic Data Exchange (DDE) is a powerful Windows service that allows your
Visual Objects applications to exchange data with, and even exert control over,
other Windows applications.

Chapter 12: Other Features of the GUI Classes 189

Using Dynamic Data Exchange

For many reasons, programming DDE at the Windows API level can be quite
complex. As you will see in this section, Visual Objects handles the vast majority
of the technical details for you, allowing you to concentrate instead on the
application itself.

Overview of DDE Basics

The Windows
Event Model

In the Windows environment, Windows itself controls and
coordinates the activities of all running programs. Several
Windows applications can each be doing several things at the
same time. As the user moves focus from one application to
another, Windows sends a flurry of messages to the
applications, keeping them up-to-date about what the user is
doing.

Most of the communication involves applications asking for information or
services from Windows, and Windows sending messages back to the
applications containing information or notifications of user or other events.
When the user clicks a button or makes a menu choice, it is not your application
that is dealing the with user. Windows does all the work and passes events to
the appropriate applications after the fact.

Due to the event-based architecture that connects applications to Windows, it is
possible for Windows to coordinate communication between applications. This
inter-application communication process is known as DDE.

DDE makes it possible for Windows application to pass messages back and forth
in a client/server arrangement, where the client application connects to a server
application and makes requests for information or services.

DDE Basics DDE is conceptually very simple. DDE functionality can be divided into three
general categories:

■ Executing commands

■ Requesting data explicitly

■ Requesting data continuously

Any client application can have one or more of any of these operations active at
the same time. Windows does not impose a practical upper limit on the number
of DDE conversations. However, individual DDE servers may limit the number
of simultaneous conversations they can support.

Command Execution DDE allows the client to request that the server execute various commands. This
is the simplest form of DDE communication because there is little timing
involved—it is a one-way conversation. The client does the talking and the
server performs the actions. The client does not expect any communication back
from the server, other than error notifications (which are very generic).

190 Visual Objects Programmer's Guide

Using Dynamic Data Exchange

“Cold” Data Links If the DDE client wants data back from the server, it gets a bit more complicated.
The client can establish a data link that is only activated when the client explicitly
requests the data. In DDE jargon, this is known as a cold link.

The client notifies the server that it wants a particular kind of data, then waits
around for a message back from the server. It is a one-shot deal. For example, a
client application might ask a server application for a list of the files it has open.
This request is carried out one time. The client can make the request as often as it
likes, but the server will respond only once per request.

“Warm” and “Hot” Data
Links

DDE also makes it possible for the client to establish a link that
is continuously updated whenever the data changes. This is
known as a hot link. Referring back to the previous “list of
open files” example, a hot data link would cause the server to
send the list of files to the client whenever the list changes. The
client does not have to explicitly request the data—once the hot
link is established, it functions automatically.
A warm link is half way between hot and cold. Instead of automatically sending
data whenever it changes, the server will instead advise the client that something
has changed, and it is up to the client to explicitly request that the data be sent.
Warm links are fairly rare and are not supported by Visual Objects.

Servers, Topics,
and Items

DDE communication is divided into three logical parts:
servers, topics, and items.

Servers. Any Windows application can be a DDE client; there is nothing special
required other than a few function calls. In order to be a DDE server, however,
each application must be deliberately programmed to provide DDE services.
Not all applications will respond to DDE communication requests. Microsoft
Excel is an example of a Windows application that provides DDE services. The
Windows NotePad is an example of an application that does not respond to DDE
requests.

Topics. Each DDE server divides the services it offers to clients into categories,
called topics. Unfortunately there are no standards, much less consistency,
among DDE servers; therefore, you must rely on documentation to explain the
topics supported by each application that offers DDE services. A client
establishes communication with a server by requesting a specific topic. Some
servers offer only a single topic while others support several. A topic called
SYSTEM is usually, but not always, supported by DDE servers. Topics are also
frequently the names of files that the DDE server has open at the moment. For
example, a word processing application might offer LETTER.DOC as a topic.

Chapter 12: Other Features of the GUI Classes 191

Using Dynamic Data Exchange

Items. Within a topic, the DDE server further breaks down services into
sub-categories called items. Items take many forms, from macros to components
of documents. For example, an item in a spreadsheet might be a macro called
POST MONTH, or an item in a word processor might be a component called
PAGE HEADING. Like topics, items do not follow any particular pattern or
standard.

Inter-Process Communication (IPC)

Visual Objects fully supports DDE, primarily via a set of classes in the GUI
Classes library that begin with the letters “Ipc.” These classes fall into two broad
categories, Client and Server, which are summarized in the following tables.
Note that these two categories share supporting classes for data and event
management.

Client Classes
Class Name Description

IpcClient Establishes a DDE communication
link with a server application and
offers a variety of methods for
requesting data and services.

IpcClientErrorEvent A package of DDE-related error
information, which is passed to the
IpcClient:ClientError() method.

Server Classes
Class Name Description

IpcServer Establishes the application as a DDE
server and lists the topics to which
the server will respond; offers a
variety of methods for handling
client requests.

IpcDataRequestEvent A package of information about a
data-related request received from a
client.

IpcExecuteRequestEvent A package of information about a
command-related request received
from a client.

192 Visual Objects Programmer's Guide

Using Dynamic Data Exchange

Shared Classes
Class Name Description

IpcTopic A package of information used to
define a topic and item; both the
server and client classes use this
class to list the topics and items of
interest.

IpcDataUpdateEvent A package of information that
carries the data associated with a
topic and item; both the server and
client receive events from this class.

The Client Classes

To attempt communication with a particular DDE server, create an instance of
the IpcClient class. In the following example, an attempt is being made to
connect to a server called SALES:
oIpcSales := IpcClient{"SALES"}

An IpcClientErrorEvent occurs if the requested server is not available. In order
to receive the error notification, you must create an IpcClient subclass and
provide a ClientError() method. (See Error Handling for more information.)

Once successfully connected to a DDE server, the client application has two
options. It can begin executing commands, or it can register the topic and item(s)
of interest and begin requesting data.

Command execution is accomplished with the IpcClient:Execute() method. This
method expects a topic and item along with a command string. For example, the
following illustrates the SALES server receiving a command to execute. The
topic is REPORTS, the item is CUSTOMERS, and the command is PRINT.
oIpcSales:Execute("REPORTS", "CUSTOMERS", "PRINT")

Receiving data is a bit more complex. To register topics and items of interest,
create an instance of the IpcTopic class and add items. The topic object is then
used in subsequent requests for data. In the following example, a MONTHLY
topic, with items JANUARY and FEBRUARY, is established.
oCustomer := IpcTopic{"MONTHLY"}
oCustomer:AddItem("JANUARY")
oCustomer:AddItem("FEBRUARY")

Chapter 12: Other Features of the GUI Classes 193

Using Dynamic Data Exchange

Next you need to tell the SALES server that you want to receive information
about the topic and list of items. You have two options: to receive this
information once, or automatically whenever the information changes. This is
controlled by logical flag, where TRUE means continuous and FALSE means one
time only.
oIpcSales:RequestData(oCustomer, FALSE)

In order to receive data back from the SALES server, you need to supply a
DataUpdate() method. The only way to do this is to create a new class and
inherit from the IpcClient class, as described previously for error handling. (See
Error Handling for more information.)

For purposes of this quick overview, assume the SALES server is an instance of
the class called IpcSales. In the example below, IpcSales is indeed a subclass of
IpcClient. It declares a DataUpdate() method that receives an
IpcDataUpdateEvent object.
CLASS IpcSales INHERIT IpcClient

METHOD DataUpdate(oDataUpdateEvent) CLASS IpcSales

Within the body of the IpcSales:DataUpdate() method, you can extract the
information that is returned from the server as a result of an earlier
oIpcSales:RequestData() event.

In the following example, the oDataUpdateEvent:GetData() method is called to
extract the data string from the object. You can then take a look at the topic and
item properties to determine what you received.
cData := oDataUpdateEvent:GetData()
IF oDataUpdateEvent:Topic == "MONTHLY"
 IF oDataUpdateEvent:Item == "JANUARY"
 // cData contains the January data
 ELSEIF oDataUpdateEvent:Item == "FEBRUARY"
 // cData contains the February data
 ENDIF
ENDIF

This may seem unnecessary, but due to the unpredictability of an event-driven
environment, you cannot be assured of the precise timing of events. The DDE
server might not respond in the exact order of your data requests, or error event
notifications could be sprinkled in the midst of the data update events.

In the following example, the SALES server is notified of a change to the status of
the MARCH item in the MONTHLY topic. The cData string contains the new
data for MARCH.
oIpcSales:ChangeData("MONTHLY", "MARCH", cData)

The IpcClient:ChangeData() method is used most often in situations where the
DDE server is a database management application and client applications are
allowed to make changes to the data.

194 Visual Objects Programmer's Guide

Using Dynamic Data Exchange

Finally, the IpcClient:Destroy() method is (despite the name) the polite way to
terminate a conversation with a DDE server.
oIpcSales:Destroy()

The Server Classes

If you want your Visual Objects application to be a DDE server, you must
register it as such with Windows. This is accomplished by creating an instance
of the IpcServer class and adding a list of topics and items to which the
application will respond. Then, your application sits back and waits for any
information. Actually, it can be busy doing other things while waiting for DDE
requests to service. Your application will receive various event notifications
from DDE clients in much the same way it receives user interface events from the
end user.

Right from the start, you will have to create a subclass from the IpcServer class.
You are responsible for implementing several key methods that will handle
commands and data requests. In the following example, a SalesServer class is
defined. When an instance of the class is created, it constructs the list of topics
and items it supports.
CLASS SalesServer INHERIT IpcServer

METHOD Init() CLASS SalesServer
 SELF:LoadTopics()

METHOD LoadTopics() CLASS SalesServer
 LOCAL oTopic AS IpcTopic
 // Add Reports topic and items to server
 oTopic := IpcTopic{"REPORTS"}
 oTopic:AddItem("CUSTOMERS")
 oTopic:AddItem("VENDORS")
 SELF:AddTopic(oTopic)
 // Add Monthly topic and items to server
 oTopic := IpcTopic{"MONTHLY"}
 oTopic:AddItem("JANUARY")
 oTopic:AddItem("FEBRUARY")
 oTopic:AddItem("MARCH")
 SELF:AddTopic(oTopic)

It is not strictly necessary to construct the list of topics and items during the Init()
process. In fact, one of the slick things about DDE is that you can dynamically
adjust the topics and items to match the needs or capabilities of the operating
environment. However, if there are some stock topics and items that you always
plan on supporting, this is a good time to define them.

Chapter 12: Other Features of the GUI Classes 195

Using Dynamic Data Exchange

This is all you need to do in order to register the SalesServer with Windows.
Any Windows application capable of performing DDE operations can now make
attempt to communicating with this application. All they have to know is the
name of this server (which in the case of Visual Objects is the name of the server
application’s .EXE file), and the list of topics and items to which it will respond.

Our next task is to implement methods for handing command and data requests:
IpcServer:ExecuteRequest() and IpcServer:DataRequest().

With IpcServer:ExecuteRequest(), all you have to do is look at the topic, item,
and command string and decide what action to take. The DDE client does not
expect any communication back from this method, so you can treat it in many
respects like a menu choice. Many DDE servers are arranged around the host
application’s menu structure for this very reason.

The method receives an IpcExecuteRequestEvent object, which contains the
topic, item, and command string sent by the DDE client. In the following
example, the SalesServer is shown to be able to respond to the PRINT and
PREVIEW commands for the REPORT topic (items CUSTOMERS and
VENDORS):
METHOD ExecuteRequest(oEvent) CLASS SalesServer
 LOCAL lPrint AS LOGIC
 LOCAL lPreview AS LOGIC
 lPrint := (oEvent:Command == "PRINT")
 lPreview := (oEvent:Command == "PREVIEW")
 IF oEvent:Topic == "REPORTS"
 IF oEvent:Item == "CUSTOMERS"
 ReportCustomers(lPrint, lPreview)
 ELSEIF oEvent:Item == "VENDORS"
 ReportVendors(lPrint, lPreview)
 ENDIF
 ENDIF

Finally, the IpcServer:Destroy() method is used to remove the DDE server from
the host application.
oSalesServer:Destroy()

Starting a DDE Conversation

The simplest form of DDE conversation is where the DDE client drives the DDE
server via simple commands. The Execute() method of the IpcClient class is used
to send a command string to the DDE server. The general form of this process is
listed below:
oIpcClient := IpcClient{"SERVERNAME"}
oIpcClient:Execute("TOPIC", "ITEM", "COMMAND")

The SERVERNAME, TOPIC, and ITEM are standard DDE terms. Things get a
little fuzzy when it comes to the COMMAND string. There are no standards
whatsoever when it comes to command strings. There are a few conventions
followed by some Windows applications, especially those from Microsoft.

196 Visual Objects Programmer's Guide

Using Dynamic Data Exchange

■ Command strings are usually enclosed in square brackets. This allows you
to place several commands in the same string.
cCommand := "[command1][command2][command3]"

■ Command strings often take the form of function calls, where the name of an
action or service is followed by comma-separated parameters enclosed in
parentheses.
cCommand := "[ServiceName(Param1, Param2)]"

■ Remember that the commands are strings, so data types are not supported.
You almost never have to enclose character string parameters in quotes
(there are random exceptions, of course, just to keep it interesting!). In the
example below, the DATA.DAT file name does not have to be in quotes, the
way it would be in ordinary source code.
cCommand := "[Process(data.dat)]"

 To make the DDE execute commands easier to remember, they are often
named to match the server application’s menu structure. For example, most
Windows applications have a FILE menu, with OPEN, PRINT, CLOSE, and
EXIT choices. The corresponding DDE commands are often named along
these lines. If the application has a dialog associated with the menu choice,
the DDE command usually accepts parameters that match the controls in the
dialog.

 The following examples illustrate a typical set of functions to open a data
file, print it, then close the file (various quotes and brackets have been
omitted to make the syntax more clear):
FileOpen(data.dat)
FilePrint(1,3,PRN,0)
FileClose()

 In the FilePrint() example above, the parameters might represent selecting
one copy (1), the third option in a group (3), selecting PRN from a list of
devices, and not checking a check box (0). It makes sense after you have
worked with a few such commands.

Starting Other Applications

More often than not, your application is responsible for checking to see if the
desired DDE server application is running, and if not, to launch it.

The main App class in your Visual Objects application has a Run() method that
you can use to launch other Windows applications. In the following example, an
application called APPNAME is launched. The nResult code will contain either a
handle to the application, or a Windows error number in the range 0–32 (handle
numbers are always greater than 32).
nResult := oApp:Run("APPNAME")
IF nResult > 32
 // Launched successfully, nResult = handle
ELSE

Chapter 12: Other Features of the GUI Classes 197

Using Dynamic Data Exchange

 // Problem, nResult = error number
ENDIF

Typical error numbers include: 0–Out of memory; 2–File not found; 3–Path not
found. If you do not include a full directory path with the application name,
Windows works its way through the following steps as it searches for
APPNAME:

■ Current directory

■ Windows directory

■ Windows system directory

■ Directories in the order specified in the PATH environment variable

■ Directories mapped in a network

Note: In addition to the name of the application, you may also include
command line arguments in the string passed to the App:Run() method.

Error Handling

In most DDE conversations, there are many things that can go wrong. Visual
Objects handles the numerous low-level timing details, as described earlier.
However, there is still plenty to worry about. In order to handle DDE-related
errors, you have to take a deeper plunge into the Visual Objects class
architecture.

The IpcClient class has a ClientError() method that gets called whenever a
DDE-related error occurs. The IpcClient:ClientError() method does not actually
do any error handling. This is known as a deferred method, because Visual
Objects assumes you will define a ClientError() method in your subclass.

In the following example, an IpcClient subclass called MyClientClass defines a
ClientError() method. Note that the method receives an IpcClientErrorEvent
object. In this example, the programmer decided that “item not found” errors
can be dealt with elsewhere while all others should halt the communication
process:
CLASS MyClientClass INHERIT IpcClient

METHOD ClientError(oErrorEvent) CLASS MyClientClass
 /*
 Check the DDE error type, "item not found" is OK
 but any other error is a major problem.
 */
 LOCAL lContinue AS LOGIC
 IF oErrorEvent:ErrorType == IPCITEMNOTFOUND
 lContinue := TRUE
 ELSE
 lContinue := FALSE
 DisplayErrorMessage("Fatal DDE error.")
 ENDIF
 RETURN lContinue

198 Visual Objects Programmer's Guide

Avoiding the Hourglass

The ClientError() method should return a logical value indicating whether or not
the DDE communication should continue (TRUE = continue, FALSE = stop).

The IpcClientErrorEvent object’s main purpose in life is to deliver a property
called ErrorType, described in the table below:

Message Meaning

IPCITEMNOTFOUND The server does not have an item of
that name.

IPCOUTOFMEMORY The system is out of memory.

IPCSERVERNOTFOUND The indicated server is not found.

IPCTOPICNOTFOUND The server does not have a topic of
that name.

OLE Automation can be used as an alternative. This makes the communication
with the client much easier since you do not have to take care of starting the
other program.

Avoiding the Hourglass
Sometimes, the user asks you to perform some lengthy action, which requires no
additional user input, so an hourglass displays until the operation is complete.
Visual Objects allows you to avoid the hourglass by doing background
processing during this time when the user is thinking.

You accomplish this by passing a special argument to the App:Exec() method,
but to call this method you need the name of the owner App object. The
ApplicationExec() function provides a convenient way of calling the App:Exec()
method from any method, as demonstrated in this example:
CLASS SolarWindow INHERIT TopAppWindow
 HIDDEN lStop
 HIDDEN oColor

METHOD Start() CLASS App
 SolarWindow{SELF}
 SELF:Exec()

METHOD Darken() CLASS SolarWindow
 LOCAL oOldBrush AS Brush

 oColor := Color{COLORWHITE}
 DO WHILE !lStop
 ApplicationExec(EXECWHILEEVENT)

 oOldBrush := SELF:Background
 SELF:Background := Brush{oColor}

Chapter 12: Other Features of the GUI Classes 199

Avoiding the Hourglass

 IF oOldBrush <> NULL_OBJECT
 oOldBrush:Destroy()
 ENDIF

 --oColor:Red
 --oColor:Green
 --oColor:Blue
 SELF:CanvasErase()
 ENDDO

METHOD Init(oOwner) CLASS SolarWindow
 SUPER:Init(oOwner)
 SELF:Caption := "Click mouse when dark enough"
 SELF:Show()
 SELF:Darken()

METHOD MouseButtonDown() CLASS SolarWindow
 lStop := TRUE

You could use any event handler. The ApplicationExec() will run until there are
no more events in the queue. Then it will drop through to the next instruction.
At that point, you know there are no events waiting for service, so you can afford
to do some processing.

If you want to do something lengthy, you should call ApplicationExec() with the
EXECWHILEEVENT argument at frequent intervals during the task. Effectively,
this means polling the event loop to see if there is anything to do. If an event
arrives, the Visual Objects dispatcher queues it. As soon as you call
ApplicationExec(), it begins to dispatch events in the normal way. When there is
nothing to be done in the background, you call ApplicationExec() with no
argument, in which case it just waits patiently for an event.

Custom Events

If you wish to add a single new event type, you can do so by supplying your
own Dispatch() method. The Event object that the Visual Objects dispatcher
supplies to Dispatch() is a generic event, so you will need to know which
Windows message type you want to promote to an event.

Assume, for example, that it is a WM_TIMER message and you want to make an
event type named StrobeEvent. You detect the message type by examining the
Message access of the event object. This returns an integer returning the message
ID.

Once you have detected the right message, you just subclass Event:
CLASS StrobeEvent INHERIT Event

METHOD Init(oEvt AS Event) CLASS StrobeEvent
 SUPER:Init(oEvt)

200 Visual Objects Programmer's Guide

Avoiding the Hourglass

Then you construct the event and send it to its handler:
METHOD Dispatch(oEvent) CLASS TimerWindow
 local oSE as StrobeEvent
 IF oEvent:Message == WM_TIMER
 oSE := StrobeEvent{oEvent:}
 SELF:Ticker(oSE)
 RETURN TRUE
 ELSE
 RETURN SUPER:Dispatch(oEvent)
 ENDIF

If you want to make many events, you can create them in the same way. Your
Dispatch() method would have a CASE construct to determine the Windows
message type, construct the event, and send it to the correct handler. On return
from the handler, Dispatch() must return TRUE, by convention.

If you are only interested in a single message type, you could put the handler
code in Dispatch() and not bother to create an event. The technique of creating a
separate event that is handled in the Dispatch() method, however, is more in
keeping with the architectural principles set out in Chapter 4, “Standard
Components-Classes, Objects, and Libraries,” of this guide. It also allows you to
add specialized functionality into your new Event subclass.

Chapter 12: Other Features of the GUI Classes 201

Chapter

13 Printing

There are two principal ways to print in a Visual Objects application:

■ Using the ReportQueue class to run the Visual Objects Report Editor

■ Using printing capabilities of the GUI Classes library

The technique(s) you use will depend on your needs and style of programming.
To print reports in your application, you will use the ReportQueue class. To give
users the capability to print data entry forms, you will use the printing facilities
in the GUI Classes library. This chapter describes both techniques.

Reports
The Visual Objects Report Editor is integrated to allow you to create state-of-the-
art reports from directly within the IDE. This chapter explains how to print,
preview, and save reports that you design with the Report Editor. Creating and
designing reports, on the other hand, is not the subject of this chapter—these
topics are covered in the “Using the Report Editor” chapter in the IDE User
Guide.

ReportQueue Class

To print a report from a program using the ReportQueue class, following these
basic steps:

1. Instantiate a ReportQueue object.

 With this step, establish an ownership relationship between an application
window and the ReportQueue object for error reporting and other
communication.

2. Connect to a data source.

 Use the ConnectToDB() method to connect to a specific data source.

Chapter 13: Printing 203

Reports

3. Print, preview, edit or save the report to a file.

 The Print(), Preview(), Edit() and SaveToFile() methods work with a report
file. With the Preview() method, you can pass up to ten parameters to the
report.

4. Close a report.

 After you are finished working with a particular report, you should Close()
it.

Printing a Report

The following example illustrates how to print a single report without
parameters. The user selects a report file name from a dialog box, and the
program prints the report:
CLASS MyShellWindow INHERIT ShellWindow
 HIDDEN oRQ AS ReportQueue
 ...

METHOD Start() CLASS App
 LOCAL oW
 oW := MyShellWindow{}
 oW:Show()
 SELF:Exec()

METHOD Init() CLASS MyShellWindow
 LOCAL oD as OpenDialog
 LOCAL cReportFile AS STRING
 SUPER:Init()

 oRQ := ReportQueue{SELF, “Report Editor”}
 oD := OpenDialog{SELF, "*.RET"}
 oD:Show()
 cReportFile := oD:FileName
 oD:Axit()
 IF cReportFile <> NULL_STRING
 oRQ:Open(cReportFile)
 oRQ:Print()
 oRQ:Close()
 ENDIF

204 Visual Objects Programmer's Guide

Reports

Generated Code The source code generated when you create a report using the Report Editor is as
follows:
CLASS Employee INHERIT ReportQueue

INSTANCE Employee_file := “C:\CAVO25\Employee.RET” AS STRING
METHOD Init(oOwner) CLASS Employee
 SUPER:Init(oOwner, “Report Editor”)

// The following statement connects to a
// data source. Remove the data source
// name for data source prompt.
 SELF:ConnectToDB(“CA xBase”)
 SELF:Open(Employee_file)

// The following statement allows the user to
// preview the report.
 SELF:Preview()
// Use the following statement to print the report.
// SELF:Print()
// Use the following statement to edit the report.
// SELF:Edit()

This code subclasses the ReportQueue class using a class name that is the same
as the report entity (in this example, Employee). The Init() method contains code
so that the when you instantiate the Employee class, the report is automatically
displayed in preview mode. The Init() method can be easily modified to print or
edit the report as indicated in the comments.

Customizing the Appearance of the Report Writer

The ReportQueue class has several methods to customize the appearance of the
Report Editor while your program uses it, including the ability to hide the
window, toggle the window between an icon and full screen, and change the size
and location of the window. The easiest way to customize the report window in
your programs is to create a new class that inherits from ReportQueue and
change the methods of the new class to meet your needs.

In the example below, when a report is previewed, it is automatically
maximized:
CLASS HideReportQueue INHERIT ReportQueue

METHOD Init(oOwner, cServer) CLASS HideReportQueue
 SUPER:Init(oOwner, cServer) // Start server

METHOD Preview(aParams) CLASS HideReportQueue
 SUPER:Preview(aParams)
 SELF:Show(SHOWZOOMED)

Chapter 13: Printing 205

The GUI Classes

Other ReportQueue Methods

The ReportQueue class has several methods that are not mentioned in this
chapter, including ACCESS methods designed to give you information about the
status of reports. In addition to these, there is a method of the AppWindow
class, ReportNotification(), designed specifically for communicating report status
between the ReportQueue object and its owner window. See the ReportQueue
Class in the online help system for more information about these and other
methods of the ReportQueue class.

The GUI Classes
The GUI Classes library provides a full range of print facilities to allow your
application to select a printer, set its options, print text and graphics, and handle
exceptions as they occur.

The Printer Class

Because it derives from the Window class, the Printer class allows you to treat
the printer like the canvas of a window. This inheritance relationship enables
you to draw diagrams and text on the printer using all the drawing features of
the Window class. For example, the drawing objects described in Chapter 12,
“Other Features of the GUI Classes,” work on the printer, and you can print
using the TextPrint() method at points specified in printer coordinates.

For most business reports, you will find it easier to use the ReportQueue class
described earlier in this chapter. The ReportQueue class prints via the Report
Editor which provides many of the features you expect of a word processor. The
Printer class, by contrast, works in terms of the dots that the printer prints. For
example, the method calls:
MoveTo(Point{50, 50})
LineTo(Point{100, 100})

would draw a diagonal line on a window. You specify the start and end points
in canvas coordinates. On a printer, these calls would also draw a diagonal line,
but the coordinates are in terms of dots. Therefore, a high-density printer (for
example, 1200 dpi) draws a shorter line than a low-density printer (for example,
300 dpi).

Thus, the Printer class is intended for very low-level operations.

206 Visual Objects Programmer's Guide

The GUI Classes

Starting the Print Job

To begin a print job, you must first construct a Printer object:
oPrinter := Printer{}

Then, after using the IsValid() method to test for a valid printer object, you
specify a range of pages to print using the Start() method:
IF oPrinter:IsValid()
 oPrinter:Start(Range{5, 15})
ENDIF

You can print multiple ranges simply by calling Start() a number of times.

If you do not specify a range, the printer will continue to ask the program for
new pages until you return FALSE from the PrinterExpose() method (discussed
below). The page numbers have no significance except that when the print
queue is ready to accept a new page, Visual Objects sends a PrinterExpose event
to the Printer object, which has a property called PageNo that you can use to
keep track of which page you are currently handling.

When you are finished printing, destroy the printer object as follows:
oPrinter:Destroy()

Handling PrinterExpose Events

Apart from creating and destroying the Printer object and calling Start() at least
once, the only thing you need to do is write the PrinterExpose() event handler for
the PrinterExpose event. This event and its handler are closely analogous to the
Expose event that a window gets when its canvas area has just become exposed.
The only difference is that you get exactly one event per page.

The PrinterExposeEvent class (which derives from the Event class) encapsulates
PrinterExpose events generated during a print job. Besides the PageNo property
mentioned earlier, it has an ExposedArea property to determine the size of the
page to be printed, returning the rectangle for a full page.

You signal Visual Objects that you are finished printing a range of pages by
returning FALSE from the PrinterExpose() handler.

Chapter 13: Printing 207

Changing the Default Printer and Settings

Handling PrinterError Events

If there is a problem with the print job, Visual Objects sends a PrinterError event
to the PrinterError() event handler.

The PrinterErrorEvent class (which derives from the Event class) encapsulates
PrinterError events generated during a print job. Through its property,
ErrorType, it indicates the type of error that occurred (for example, insufficient
memory or no disk space).

The sending of a PrinterError event does not automatically terminate the print
job (unless a fatal error is encountered), but instead prompts the user to abort or
retry printing.

Modern printer drivers cope with common problems like the printer going off
line or running out of paper, so there is seldom a need for you to write any code
for the PrinterError() event handler.

Changing the Default Printer and Settings
Regardless of which printing technique you use, all print jobs are directed to the
default Windows or Windows NT printer.

Report Editor When working with Visual Objects reports using the Report Editor, the user
controls the printer with the File Print Setup menu command. This menu
command presents a standard dialog box from which the user can select and
reconfigure any available printer.

GUI Classes When printing with the Printer class, you can override the default printer using
the PrintingDevice class. For example, you might specify:
oPrinter := PrintingDevice{"Postscript printer, PSCRIPT, LPT1"}

The PrintingDevice:Setup() method allows you to reconfigure the printer settings
using a standard dialog box.

208 Visual Objects Programmer's Guide

Print Jobs and the Printers Folder

Print Jobs and the Printers Folder
All printing in a Visual Objects application is handled via the Windows Print
Manager.

Report Editor Each ReportQueue Print() method (and Preview() method in which the user
elects to print) is treated as a separate print job.

GUI Classes When printing using the Printer class, each instance of the class represents a
single print job. The program connects to the Print Manager when you call the
Start() method and breaks the connection when you destroy the Printer object.

Chapter 13: Printing 209

Chapter

14 Error and Exception Handling

Exception handling is an important and difficult consideration in any
application—but never more so than in GUI applications running in
multi-tasking environments. GUI applications are difficult to manage because
the flow of control is complicated, because the entire technical framework is
rather fragile, and because there may be multiple applications running at the
same time, increasing the risk of something going wrong.

CA-Clipper introduced structured exception handling with replaceable error
handling routines and nested program structures with integral recovery routines.
Visual Objects builds on this technology, removing some limits and integrating it
closely into the function and class libraries for database and GUI support.

This chapter discusses the requirements for making an application robust and
limiting the impact of exception conditions, and the reasons why traditional
thinking needs to be extended to accommodate the complex structures of
modern applications. It then describes the solution for exception handling in
Visual Objects from two independent perspectives: how the technical
underpinnings of the exception handling system work, and how the library
functions and classes utilize this technology.

The built-in functions, classes, and methods of Visual Objects provide default
exception handling and do a thorough job of protecting the application from
programming errors, database corruption, file access conflicts, and resource
limitations. The everyday developer can ignore the issue, secure in the
knowledge that the built-in recovery mechanisms are robust enough for most
circumstances. But any developer who is interested in extending and
customizing the exception handling system needs to understand its principles of
operation.

Chapter 14: Error and Exception Handling 211

Exception Handling in GUI Applications

Exception Handling in GUI Applications
Before beginning this discussion, it is important that you understand the
difference between an exception condition and an error. The distinction is subtle
but important: an exception condition is something unusual that deserves to be
handled outside the regular control flow of the program, while an error is
something that has gone wrong. An error is an exception that has not been
handled correctly.

At a low level, an error condition, such as divide by zero, out of memory, or
resource not found, can be raised. A low-level error handler converts this into an
exception condition that is propagated and resolved in an orderly manner. Your
objective should be to prepare for all exceptions and, by handling them correctly,
never allow them to turn into errors that are propagated up into the body of the
application.

In traditional, DOS-level Xbase programming the main source of error conditions
was the database or other I/O systems. Thus, traditional techniques for
exception handling focused on dealing with such error conditions. However, in
GUI environments, and especially under Windows, the GUI part is more likely to
cause trouble than the database. The environment is quite fragile, and error
conditions can easily propagate to harm other applications or even bring down
the entire operating system.

In particular, event handling under Windows is quite sensitive. Note that a
Windows application has no life except in event handlers: all activity in the
application occurs in response to an event passed on from the operating system.
Therefore, error conditions in the application code can easily cause serious
trouble: if an event is not responded to correctly, the entire Windows structure
can be subverted, jamming the message queue and causing the system to freeze.
A conscientious developer does not want to be responsible for such calamities.

Objectives

Developers writing directly to the Windows Software Development Kit (SDK),
whether using Visual Objects or a lower-level programming language like C,
must be very careful with the management of error conditions and event
handling. However, when using the GUI Classes library that defines concepts
and actions on a higher level of abstraction, the system automatically installs
extensive protection layers that reduce the risk that an application error, or other
errors such as database sharing conflicts, will crash the operating system.

212 Visual Objects Programmer's Guide

Exception Handling in GUI Applications

The GUI Classes library’s error handler uses the standard Visual Objects error
and exception handling system very meticulously with the aim of meeting these
objectives:

■ Make the application robust, limiting the propagation of errors lest they
bring down the GUI environment or the operating system.

■ Place the handling of the errors in the correct place, ensuring that the entity
chartered with responding to an error condition has enough information and
authority to take whatever action is necessary.

■ Display meaningful information whenever the end user is asked to make a
decision about how to handle the error.

The GUI Classes library is cited throughout this chapter as a model example of
an error and exception handling system built within the Visual Objects
framework. These are objectives that you may also want to strive for when
designing an error and exception handling system in other class libraries.

The Right Level

The essence of robust exception handling lies in assigning it to the right
component. A low-level function does not have enough information to make a
reasonable decision nor does it have the authority to abort a major component—
such an inversion of authority can wreak havoc with the fragile threads of
control in a GUI system. On the other hand, raising the exception level too high
is not useful either: at the highest level the application does not know what kind
of actions are possible and what structures need to be repaired after the error.

Nor is it reasonable to abdicate responsibility, handing technical problems off to
the ultimate authority, the end user. And if you have to involve the user, the
message should be expressed in a meaningful way. “FUNCTION _P2OBJECT:
General Protection Fault, Ignore, or Abort?” is not a very helpful question—how
is a user supposed to know whether the error can be ignored? If an exception is
raised because of a record locking conflict during a Delete Record operation, the
message should read “Failure During Delete Operation, Record is locked by
another user; Try Again, Ignore, or Exit Program?” In old-style programming, a
certain amount of roughness was tolerated, but under Windows you talk politely
to the user.

Chapter 14: Error and Exception Handling 213

Exception Handling in GUI Applications

Structured Exception Handling

A structured exception handling system allows you to define a code structure
that registers a piece of exception handling logic, allowing it to be identified and
chartered with handling an exception at the appropriate level.

The SEQUENCE construct is specifically designed for structured exception
handling. Described in detail later in this chapter, it lets any program entity,
such as a function:
FUNCTION DeleteRecord()
 BEGIN SEQUENCE
 DBDelete()
 InfoMessage("Record deleted")
 RECOVER USING oError
 ErrorMessage(oError:ErrorMessage)
 END SEQUENCE

or a method of a class:
METHOD DeleteRecord() CLASS DataWindow
 BEGIN SEQUENCE
 oDBServer:Delete()
 InfoMessage("Record deleted")
 RECOVER USING oError
 ErrorMessage(oError:ErrorMessage)
 END SEQUENCE

be provided with an integral exception handler. It is possible to insert several
SEQUENCE constructs within one entity. This allows you to associate individual
recovery strategies with different action sequences, providing tailor-made
handling of the exceptions that can occur in various circumstances.

Problem Escalation

If the RECOVER clause cannot handle the problem, it is reasonable to escalate
the problem to the next higher level:
METHOD DeleteRecord() CLASS DataWindow
 BEGIN SEQUENCE
 oDBServer:Delete()
 InfoMessage("Record deleted")
 RECOVER USING oError
 IF oError:Severity = ES_WARNING
 WarningMessage(oError:ErrorMessage)
 ELSE
 EscalateException(oError)
 ENDIF
 END SEQUENCE

214 Visual Objects Programmer's Guide

Exception Handling in GUI Applications

But this begs the question: what does “EscalateException” mean? To whom do
you escalate? This is the essence of proper management of exception handling,
and the solutions provided here are aimed at finding the proper authority for
every exception.

Frame-Based Exception Handling

Several SEQUENCE constructs can be nested. In particular, when entities (such
as methods and functions) call each other in a chain, it is common that each
entity provides its own exception handler.

This kind of structure, increasingly common in professional development
systems today, is often referred to as a frame-based exception handling system. As
the different entities call each other, each places a call-frame on the stack; when a
low-level function discovers a problem it cannot handle on its own and raises an
exception, the system searches up the call stack until it finds the closest exception
handler.

In a classical, procedural application the call stack represents increasing levels of
information and authority: going up the call stack you will eventually find
somebody capable of handling the error. Thus, you can escalate simply by
issuing a BREAK statement. However, this traditional frame-based exception
handling scheme is not well suited to the internal structure of an event-driven
GUI application.

Structure of Event-Driven GUI Applications

In an event-driven system, the call stack is often quite short and uninteresting.
The application’s higher levels do not call the lower functions directly—they
yield control to the GUI framework, which, in turn, dispatches events to the
various action routines (the event handlers).

Thus, going up from a low-level database function, for example, you will indeed
find the routine that originated the action. However, if that routine fails to
handle the exception and wants to escalate up the call stack, all you find is the
event dispatcher, which does not know anything about the logic of the
application.

It is true that if the exception situation cannot be resolved satisfactorily, you must
escalate to the event dispatcher if only to allow it to repair the message queue.
Frame-based exception handling remains useful from a technical perspective, in
that it prevents an exception from turning into an error that brings down the
system.

Chapter 14: Error and Exception Handling 215

Exception Handling in GUI Applications

However, from the perspective of application logic, it is quite useless. You must
locate the appropriate authority elsewhere, based on the logical relationships of
the application rather than the technical relationship represented by the call stack.

Escalating to the event dispatcher is a last resort, a request for damage control
after the exception has turned into an unmanaged error.

App

ShellWindow

ChildWindows

owns Child Forms

Windows

Event

Dispatcher

has Methods

invokes

Database classes,

methods, and functions

Object-Oriented Exception Handling

In an object-oriented system, it often makes sense to define a general escalation
exception handler for an object. While the first line of defense for a method is the
RECOVER clause of its SEQUENCE construct, when a method wants help
dealing with a difficult problem it is reasonable that it should first escalate to the
local exception handler of the object.

Note, however, that this relationship is not reflected in the call stack. The
relationship between a method and its object is fundamental and is a good way
to organize standardized exception handling for an object. It is different from
traditional frame-based exception handling.

216 Visual Objects Programmer's Guide

Exception Handling in GUI Applications

Ownership-Based Escalation

In the simple example of the Delete() method above, many errors are non-critical
and can be handled adequately by the Delete() method itself. In this context,
non-critical does not mean that the exception is not important: if the record
cannot be deleted, you may have a serious business problem. Instead, it means
that the exception is not structurally critical to the life of the application, and its
effects can easily be contained and prevented from damaging other information.
In the simple example above, you merely informed the end user of the conflict
and went about your business.

Structurally critical exceptions, however, must be handled more gingerly. For
example, consider some of the conditions that can render a data window
altogether useless: the database is missing or corrupted, the database has been
changed and no longer matches the data window, or the resource that defines the
layout is missing. In these cases, the data window is not salvageable, but who
should take responsibility for humanely destroying it?

The data window was created and instructed to perform certain tasks. Even if it
fails at this task, it does not have the authority to unilaterally destroy itself
because it does not know what higher-level structures depend on it (more
formally, this would be an encapsulation error). The entity that created the data
window, its owner, is best suited to destroy it and contain the damage that might
be caused by the error. Thus, the proper traffic flow in the handling of this
exception looks like this:

1. The method is notified of the exception.

2. The method handles the exception, if possible.

3. If not, the method escalates the exception up to the owner of the window.

4. The owner decides to terminate the subordinate, sending it a Close message.

5. The subordinate responds to the Close message in an orderly manner,
terminating its subordinates and then itself.

6. The owner cleans up any relationships left dangling by the subordinate.

Of course, if the exception was really serious (such as a catastrophic shortage of
resources) this orderly shutdown may not be possible and attempting it can
generate another exception. In that case, the exception handlers can give up and
escalate to the event dispatcher and the application framework, shutting down
the application.

Chapter 14: Error and Exception Handling 217

Exception Handling in GUI Applications

This logic is the default exception handling provided in the GUI and RDD class
libraries. As always, the developer can customize the standard behavior, giving
individual data window subclasses the specific behavior that suits the
application needs. Both the decision of when to escalate an exception and when
to handle it locally, and the specific actions that need to be taken to recover, can
be tailored to the specific needs of the application. At any time, a simple
emergency escalation is only a BREAK away.

Cleaning Up

As noted above, when one object escalates an exception to another it is important
for the owner to shut down the subordinate in an orderly manner. This includes
properly terminating the subordinate (which can be done using a Close()
method) and possibly performing some additional clean up tasks. The
subordinate object can do some clean up of its own at this point before shutting
itself down. But, what if the recovery from a particular exception is handled by
breaking instead of escalating? The RECOVER area may need to do some
cleaning up in these cases.

RECOVER Area If your application creates resources that are beyond the ken of the garbage
collector, such as opening files or databases, directly manipulating work areas,
allocating memory, or grabbing Windows resources (for example, windows,
menus, icons, strings), you have to remember to restore these in the RECOVER
area. For example, inside the Init() method of the DBServer class the system
selects a new work area and restores the current work area after itself. This must
be done in the RECOVER section as well:
LOCAL wCurrentWorkArea AS WORD

...

// Remember old work area
wCurrentWorkArea := VODBGetSelect()
BEGIN SEQUENCE
 // Get a new work area
 DBUseArea(TRUE, ...)
 wWorkArea := VODBGetSelect()

 ...

 // Restore work area
 VODBSetSelect(wCurrentWorkArea)
RECOVER USING oError
 // Restore work area
 VODBSetSelect(wCurrentWorkArea)
 BREAK oError
END SEQUENCE

If you use the standard Visual Object classes, you do not have to worry about
this because the classes are built to take care of these problems automatically, as
illustrated above for the DBServer class. However, system-level programmers
who are building subsystems like these should be aware of the consideration.

218 Visual Objects Programmer's Guide

Exception Handling in GUI Applications

Axit() Method You can also have clean-up code for the deallocation of certain resources as part
of an Axit() method that is automatically invoked by the garbage collector (and
possibly manually invoked by the object’s owner just prior to shut down) when
an object is destroyed. See the Axit() Method discussion in Chapter 25, “Objects,
Classes, and Methods” later in this guide for more details on allocation and
deallocation of resources.

Low-Level Exception Handling

Many exception conditions are raised at the lowest levels of the program. Some,
such as addressing violations and zero divides, are raised by the operating
system; the Visual Objects runtime system intercepts such events and propagates
them into its internal exception system. Others, such as database locking
conflicts are detected by the database support library, whether an Xbase RDD or
the ODBC system, and reported back into the internal exception system.

In many cases, handling of such exceptions can be attempted at the lowest level.
For example, after a lock failure the system might reasonably attempt a few
retries before giving up.

Thus, the life cycle of an exception begins with the original condition, raised by
the operating system or a low-level support routine, being fed to the low-level
exception handler together with information about the original circumstances of
the exception. The low-level exception handler may decide to attempt to handle
the exception and recover, or it may raise an exception condition and send it up
to the structured exception management system discussed above.

Note that when using the GUI classes, the default low-level exception handler
does not prompt the end user for Abort or Cancel permission. A low-level
exception handler does not have enough information to give the end user
meaningful information, and it does not have the authority to abort anything
(except in the case of catastrophic errors).

Installable Exception
Handlers

At all levels, Visual Objects allows the installation of exception
handlers, through the SEQUENCE construct, the Error
handling methods, and the ErrorBlock() registration facility.
The flexibility and power of the Visual Objects object
management system also allows the extension of these systems,
and the GUI Classes library’s structured exception handling
indeed uses these facilities to leverage off the default exception
handlers.

Chapter 14: Error and Exception Handling 219

Language Mechanisms

Exception Handling Architecture: A Summary

These various approaches have different benefits, and work well together. The
relationship is quite simple and logical, and proceeds in several steps:

1. The low-level exception handler intercepts an error condition raised by the
operating system or a runtime support routine. If the error can be handled
on this level, it will be. A record lock failure, for example, can be handled by
several retries before giving up.

2. If not, the exception escalates to the frame-based array of registered
exception handlers. Each exception handler can attempt to handle the
problem or escalate it to a higher authority. If any exception handler can
solve the problem, it will. If the application is organized purely
hierarchically and procedurally, eventually you reach the top of the chain.

3. If the application is object-oriented, a frame-based exception handler along
the chain will escalate to the exception event handler associated with the
object.

4. If the object fails to resolve the exception, it will escalate to its owner, and so
on, up the ownership chain. Eventually, you reach the highest level of
authority in the ownership chain, the application.

5. If at any time in the object-oriented resolution process a catastrophic error
occurs or the exception event handlers fail for any other reason, the
exception is thrown back to the frame-based chain as a last resort. This will
lead to a technical resolution, but not necessarily to a resolution of the
situation from a business viewpoint.

6. In any case, the exception is prevented from propagating up and bringing
down the operating environment.

Language Mechanisms
Some of the language mechanisms for error and exception handling have been
mentioned in the previous discussion but without much detail. This section
describes the specific language constructs and data structures designed to build
error and exception handling systems.

In Visual Objects, there are two mechanisms for processing exceptions, the
SEQUENCE construct and a posted code block (the error block). With these
mechanisms as tools, you can build different approaches to exception handling.

The mechanisms differ in the location of exception handling code and how it is
called. In the SEQUENCE construct, the code is inline (part of the RAM image of
the loaded application) and is called by issuing a BREAK statement. In the error
block, it is stored in memory (in the code block) and is triggered automatically or
by executing the Eval() function.

220 Visual Objects Programmer's Guide

Language Mechanisms

In general, use SEQUENCE for handling exceptions (such as database does not
match data window, resource file not available, or database does not exist) and
the error block for handling generic, low-level errors (such as device not ready,
disk full, or stack underflow) that usually deal with the computer and could arise
across applications.

The SEQUENCE Construct

BEGIN SEQUENCE is a control structure not that different from DO WHILE. In
the simplest case, this structure:
BEGIN SEQUENCE
 <Statements>
 IF lExceptionFlag
 BREAK
 ENDIF
 <Statements>
END SEQUENCE

is essentially identical to:
DO WHILE TRUE
 <Statements>
 IF lExceptionFlag
 EXIT
 ENDIF
 <Statements>
ENDDO

In both cases, control enters the structure and, under normal circumstances,
continues through the body and exits at the end. If the BREAK statement (or
EXIT in the DO WHILE case) is executed, control jumps out of the structure.

BEGIN SEQUENCE

<Statements>

Func1(...)

<Statements>

END SEQUENCE

FUNCTION Func1(x)

<Statements>

IF ...

BREAK

<Statements>

RETURN

ENDIF

However, there is one important distinction: the WHILE structure is a syntactic
construct that is handled by the compiler and must, therefore, be contained all
within one entity, but the SEQUENCE structure is a semantic construct that is
handled by the runtime system and is allowed to span entities.

Specifically, not only the DO WHILE and ENDDO statements, but also the EXIT
statement, must be in the same entity. Thus, if code within a DO WHILE loop
calls a function, that function cannot EXIT the loop.

Chapter 14: Error and Exception Handling 221

Language Mechanisms

Both BEGIN SEQUENCE and END SEQUENCE must also be in the same entity;
however, because the SEQUENCE construct is handled at runtime, BREAK can
be anywhere. The code within the SEQUENCE construct can call a function that
calls another function, and so on. Then, if deep down in the call tree you
discover a problem, you can execute the BREAK statement to jump all the way
out to the end of the sequence. The function with the BREAK statement and all
intervening functions are terminated, all local and private variables are removed,
everything is collapsed, and you end up at the END SEQUENCE statement.

BEGIN SEQUENCE

<Statements>

Func1(...)

<Statements>

END SEQUENCE

FUNCTION Func1(x)

RETURN

FUNCTION Func2(x)

<Statements>

IF ...

BREAK

<Statements>

RETURN

ENDIF

<Statements>

Func2(...)

<Statements>

Aside from errors, there can be other exception conditions in which an
application wants to terminate processing across several scopes, and the
SEQUENCE construct makes this convenient. Without such a runtime construct,
the intervening routines would all have to check and propagate return codes,
which is cumbersome and also burdens the intervening routines with code that is
rarely executed.

RECOVER

In the standard structure, BREAK causes a jump to the END SEQUENCE
statement. However, by inserting a RECOVER statement into the structure, you
can intercept the BREAK and do some special processing:
BEGIN SEQUENCE
 <Statements>
 IF lExceptionFlag
 BREAK
 ENDIF
 <Statements>
RECOVER
 <Statements>
END SEQUENCE

222 Visual Objects Programmer's Guide

Language Mechanisms

Here the BREAK causes the statements after the RECOVER to be executed. In
the case of normal processing (without a BREAK), these statements would not be
processed.

BEGIN SEQUENCE

<Statements>

Func1(...)

<Statements>

END SEQUENCE

FUNCTION Func1(x)

<Statements>

IF ...

BREAK

<Statements>

RETURN

ENDIF

RECOVER

<Statements>

The statements after RECOVER are used to handle the situation that caused the
BREAK. This is where you put your exception handling code.

Nested SEQUENCE Constructs

You can nest SEQUENCE constructs to accomplish whatever level of exception
handling you require in your application. If the RECOVER code determines that
it cannot handle a particular situation or if another error occurs, it can issue
another BREAK. In this case, control jumps out to the next nested construct—to
the RECOVER or END SEQUENCE statement, depending on how it is
constructed.

BEGIN SEQUENCE

<Statements>

Func1(...)

<Statements>

END SEQUENCE

FUNCTION Func2(x)

<Statements>

IF ...

BREAK

<Statements>

RETURN

ENDIF

FUNCTION Func1(x)

BEGIN SEQUENCE

<Statements>

Func2(...)

<Statements>

RECOVER

BREAK

END SEQUENCE

...

Chapter 14: Error and Exception Handling 223

Language Mechanisms

A common practice is to use a CASE construct within the RECOVER code to test
for exception conditions and deal with each one appropriately. By carefully
coding each CASE that can be handled at the current level, you can delegate to
the next level all exceptions that cannot be handled at the current level by
putting the BREAK statement as the OTHERWISE case:
BEGIN SEQUENCE
 <Statements>
 IF lExceptionFlag
 BREAK
 ENDIF
 <Statements>
RECOVER
 DO CASE
 CASE <ExceptionOne>
 <Statements>
 CASE <ExceptionTwo>
 <Statements>
 CASE <ExceptionThree>
 <Statements>
 ...
 OTHERWISE
 BREAK
 ENDCASE
END SEQUENCE

Using this technique, it is easy to handle all exceptions at the right level.

BREAK Value and RECOVER USING Variable

Since the transfer of control from the BREAK statement to the RECOVER
statement can be very far, it is difficult to communicate information about what
motivated the break. In the case of errors and other exception situations, for
example, it is important that the logic responding to the situation can find out
exactly what happened, since different situations require different responses.

The BREAK statement allows the specification of a value to be transferred to the
RECOVER statement via the USING clause. The USING clause expects an
untyped, USUAL value, so it can be used to transfer anything; however, in the
case of error handling, the value that is passed is, by convention, an Error object:
LOCAL oError
BEGIN SEQUENCE
 <Statements>
 IF lExceptionFlag
 oError := Error{}
 BREAK oError
 ENDIF
 <Statements>
RECOVER USING oError
 // Inspect oError and determine action
END SEQUENCE

The variable that is used to receive the error information object, oError, must be
declared as a LOCAL untyped (USUAL) variable.

224 Visual Objects Programmer's Guide

Language Mechanisms

Abuse of the SEQUENCE Construct

As is obvious from the above discussion, there is nothing inherent in the
SEQUENCE construct that limits its use to error situations. However, the
construct should not be abused as a cross-entity go to statement. It is otherwise
very confusing for a developer looking at some code to understand why the
straightforward control flow is not followed:
FUNCTION Abuse1()
 Abuse2(100)

FUNCTION Abuse2(x)
 Abuse3()
 ? x

When this is executed, it appears from the code that Abuse2() will always print
the value of its parameter, in this case 100, but if Abuse3() does a BREAK to a
SEQUENCE construct outside of the code shown, the print statement will not be
executed. This is terribly confusing and should only occur in rare and troubled
circumstances.

The Error Object

As mentioned earlier, the Error object is typically created within a SEQUENCE
construct in response to some exception condition. It is then passed to the
RECOVER USING statement which inspects the object and decides what to do.

The Error class is specifically designed with several instance variables that are
used to describe the situation that generated the exception (see the online help
system for information about the Error class and its instance variables). Thus,
before you BREAK to the RECOVER code, you would instantiate an Error object
and initialize as many of its instance variables as necessary to convey the
problem:
BEGIN SEQUENCE
 <Statements>
 IF lExceptionFlag
 oError := Error{}
 // Initialize oError instance variables
 BREAK oError
 ENDIF
 <Statements>
RECOVER USING oError
 // Inspect oError contents and determine action
END SEQUENCE

The role of the Error object is that of go-between for the code in which the
exception is raised (where the BREAK statement is) and the exception-handling
code (where the RECOVER statement is). Although it starts out passing
information from the BREAK code to the RECOVER code, the Error object can
also serve as a two-way dialog if the RECOVER code decides, for example, to
retry the operation.

Chapter 14: Error and Exception Handling 225

Language Mechanisms

Error objects are also the means of communication in low-level error handling
with the error block. Visual Objects creates and sends an Error object to the
default error handler when an error condition is raised. See The Error Block
section later in this chapter for more information on this subject.

Subclassing the Error
Object

It is sometimes useful to subclass the Error class in order to
provide special error handling for a particular class of objects:
CLASS MyError INHERIT Error
 EXPORT MyReturnCode AS WORD
 EXPORT MyState AS STRING
 EXPORT ErrorMessage AS STRING

Subclassing provides a simple vehicle for an error handler to determine if it
wants to deal with the error or not. Instead of checking for specific return codes,
it can decide what to do based on the class of the Error object:
FUNCTION MyErrorHandler(oError)
 // This error handling function processes your
 // errors only and passes all others back up.

 IF IsInstanceOf(oError, #MyError)
 // Handle this error
 ELSE
 RETURN Eval(cbOldErrorBlock, oError)
 ENDIF

Various Visual Objects subsystems subclass the Error class in just this manner.
These are, however, declared as STATIC and are, therefore, not available for
general usage and do not show up in the IDE.

The Error Block

In Visual Objects, there is a code block (called an error block) that is automatically
called whenever a library function detects an error condition. There is a default
error handler built into the system, but any application or library can register a
new one by invoking the ErrorBlock() function. (This was hinted at but not
explained in the example above.)

In most cases (including the default case), the code block simply calls a function
(the error handler) that does the real work, since a code block is limited in the
complexity of the code structures it supports. Of course, it is possible to do other
types of processing within the error block itself, but the setup in which the error
block calls the error handler is the one most often used.

226 Visual Objects Programmer's Guide

Language Mechanisms

To allow an application entity to clean up after itself and restore the original
error block, ErrorBlock() follows the standard convention of returning the
current error block before registering the new one. Thus, a function that wants to
register an error block temporarily might be coded like this:
FUNCTION Func1(x)
 LOCAL cbOldErrorBlock AS CODEBLOCK

 // Register a new error handler,
 // remembering the old one
 cbOldErrorBlock := ErrorBlock({|oError| MyErrorHandler(oError)})

 // Do something that might fail
 <Statements>

 // Restore old error handler
 ErrorBlock(cbOldErrorBlock)

FUNCTION MyErrorHandler(oError)
 // This is the actual error handling function to
 // which control is redirected by the error
 // handling code block.
 // It is passed the Error object and should
 // respond appropriately.

The error block is automatically invoked when a system-level error is detected.
An Error object (built by the system) containing information about the error is
passed as a parameter to the error block which, in turn, passes it along to the
error handling function.

Of course, you can also invoke the error block for errors detected within your
application by calling ErrorBlock() without a parameter:
Eval(ErrorBlock(), oError)

This, however, is not the usual or, in most cases, the recommended practice. You
will most often handle exceptions at the application level using the SEQUENCE
construct and use the error block for handling low-level errors.

Using a Hierarchy of Error Handlers

An error handling routine could inspect the Error object it is passed, decide if
this is an error that it is capable of handling, and otherwise pass it on to the
default error handler. (Actually, it passes the error back to the previous error
handler—there is no way of knowing if it was the default or was installed by a
library or another application.)

Chapter 14: Error and Exception Handling 227

Language Mechanisms

In order to do this, you must make the previous error handler available to the
new error handler so, instead of declaring it as a LOCAL variable you declare it
as GLOBAL:
GLOBAL cbOldErrorBlock AS CODEBLOCK

FUNCTION Func1(x)
 // Register a new error handler,
 // remembering the old one
 cbOldErrorBlock := ErrorBlock({|oError| MyErrorHandler(oError)})
 // Do something that might fail
 <Statements>
 // Restore old error handler
 ErrorBlock(cbOldErrorBlock)
 RETURN SomeValue

FUNCTION MyErrorHandler(oError)
 // This is the actual error handling function to
 // which control is redirected by the error
 // handling code block. It is passed the Error
 // object and should respond appropriately.
 IF oError:GenCode = MySpecialCode
 // Handle special case error
 ELSE
 // Pass all others back
 RETURN Eval(cbOldErrorBlock, oError)
 ENDIF

As long as every installed error handler does this, you will have a correctly
installed hierarchy or stack of error handlers. Each one can handle the errors it
wants to handle and pass the others back. Eventually, the default error handler
processes anything that has leaked through the entire chain of error handlers.

Installing Error Handlers in Libraries

It was mentioned earlier that you could register an error block in a library, but it
is not obvious how you would go about this. A library is a group of resources,
usually functions or class definitions, that is linked into an application. The
application, in turn, simply uses the resources it needs from the library. Thus, it
would seem that you would have to inform the users of your library to put some
code in their Start() routine to register your error handler, an undesirable
situation for you and your library users.

228 Visual Objects Programmer's Guide

Language Mechanisms

To avoid this situation, create a special library procedure using the _INIT2
keyword to register your error handler. Procedures defined in this manner are
automatically executed by the system at startup:
GLOBAL cbOldErrorBlock AS CODEBLOCK

PROCEDURE First_Proc() _INIT2
 cbOldErrorBlock := ErrorBlock({|oError| LibErrorHandler(oError)})

FUNCTION LibErrorHandler(oError)
 // This is the actual error handling function to
 // which control is redirected by the error
 // handling code block.
 // It is passed the Error object and should
 // respond appropriately.
 IF oError:GenCode = MySpecialCode
 // Handle special case error
 ELSE
 // Pass all others back
 RETURN Eval(cbOldErrorBlock, oError)
 ENDIF

In fact, this is exactly how the default error handler is installed in the System
Library with the ErrorSys() procedure.

Return Values

If you decide to write and install your own error handler, there are some rules
about what the error handler should return:

■ If the function that raised the error condition sets CanRetry to TRUE,
indicating that it is prepared to try again, then the error handler should
respond with a logical indicating whether the retry should be attempted.

■ If the code that raised the error condition sets CanSubstitute and provides a
default value, the error handler should normally return this default value.

If you want to study the source code for the default error handler to get some
ideas, see the file ERRORSYS.PRG located in your Visual Objects \SAMPLES
directory.

Chapter 14: Error and Exception Handling 229

Chapter

15 File Handling

Many of the applications that you write will be centered around the use of one or
more database and ancillary files. You may also have occasion to deal with
creating and reading text files as well as low-level binary files. s chapter deals
with the issue of handling files in your applications.

Naming Conventions
Visual Objects takes advantage of the Windows or Windows NT file handling
features that allow you to use long file names, universal naming convention
(UNC) names and support for mixed case matching.

Long File Names Support for long file names has been extended to 255 characters from the default
DOS 8.3 limitation. If configured correctly, Windows NT Server also supports
the use of long file names.

UNC Names UNC is a standard naming convention that allows you to reference network
servers and shared directories. Visual Objects support for UNC names allows
you to refer to network servers without having to map to a drive letter. The
syntax for UNC is as follows:

\\server\sys[\path]

Mixed Case When doing a file search, Visual Objects first tries to match the case of the file
name exactly. If this fails, a search will also be performed for case insensitive
matches for the file name.

The Defaults
Anytime you create or open a file, you have to be concerned about its disk drive
and directory location. In particular, you need to understand the defaults used
by the system to determine where files are created and located and how to
change and override these defaults.

 Thi

Chapter 15: File Handling 231

The Defaults

� If you do nothing special, the following rules, established by Windows, will
be used for unqualified file names (that is, file names without explicit path
specifications):

– The application will create and search for files using the current drive
and directory. At application startup, this will be the working, or startup,
directory as specified in the Properties dialog box using the Window’s
startup window (the default is the directory containing the application’s
main .EXE file).

– If attempting to locate a file that cannot be found in the current drive and
directory, the application will search the DOS PATH setting.

� If you use SetDefault() to explicitly specify a default drive and directory, the
application will locate and create unqualified file names using this new
location, completely ignoring the Windows rules defined above.

In either of these two situations, you can specify additional places to locate a file,
called a search path, using SetPath(). If you do this and the file is not found, the
application will search each additional directory in the search path before giving
up with a file not found condition. SetPath(), however, has no effect on where
new files are created.

These rules apply to most files, including database files, index files, label and
report form files, and text files. There are, however, some exceptions:

� Memo files and OLE Document files are always created (and must remain) in
the same location as their corresponding database files.

� The low-level file operations discussed later in this chapter and certain other
operations (all explicitly documented in the appropriate reference guide)
ignore the SetDefault(), SetPath(), and DOS PATH settings.

� The search rules for the Windows help files are determined by Windows
rather than your application. For unqualified file names, the underlying
application (for example, WINHELP.EXE) searches for files using the current
drive and directory, then searches the DOS PATH—both SetDefault() and
SetPath() are ignored.

� Visual Objects Report Editor files hard code the path for associated database
and index files in the .RET file. You can change the path using the Report
Editor’s Edit Query menu command.

232 Visual Objects Programmer's Guide

Runtime Configuration

Runtime Configuration
To override these default search rules, you can specify a path as part of the file
name:
DBServer{"c:\data\customer data\customer"}

However, you want to avoid having code that is dependent on a particular
configuration because installation and maintenance can become problematic. In
the worst case, you could have fully qualified file names hard coded throughout
your application, and you would need a different set of source code for each
installation configuration (or, even worse, to dictate a particular configuration to
all of your clients).

A better solution would be to use unqualified file names in your source code
wherever possible and allow the end user to configure the default (for example,
using an initialization file or environment variable).

Environment Variables

The following example illustrates how you might set the default drive and
directory using an environment variable:
METHOD Start() CLASS App
 ...
 SetDefault(GetEnv("VODIR"))
 ...

Then, as part of your installation procedure you would place a line similar to the
following in the user’s AUTOEXEC.BAT file:
SET VODIR = c:\data\cust\

Initialization Files

The use of initialization (.INI) files is supported for backward compatibility with
Windows 3.1. You are encouraged to use the system registry, a central
repository used to store the configuration information for Windows or
Windows NT. For more information about the registry, see Chapter 17,
“Operating Environment” in this guide.

Chapter 15: File Handling 233

Runtime Configuration

Using Windows Defaults

If you rely on Windows to determine the default drive and directory (that is, you
do not use SetDefault() in your application), be aware that the end user of the
application can change the current drive and/or directory anytime the
application presents a file open dialog box by simply choosing a new directory.
Therefore, this might not be the best strategy because it forces you to store the
defaults before each file open dialog box is displayed and restore them
afterwards.

SetDefault(), on the other hand, provides an explicit default setting that is
guaranteed throughout the lifetime of the application. It is not subject to the
whims of the user and the operating environment. Thus, you may want to
consider retrieving the Windows defaults in the application’s Start() routine and
using them as the SetDefault() and SetPath() arguments. That way, you can have
a user-configurable default that is controlled within the Window’s startup
window but not subject to change while the application is running.

The Visual Objects language provides a complete set of functions for
manipulating the current Windows drive and directory, two of which are
illustrated below:
METHOD Start() CLASS APP
 ...
 SetDefault(DiskName() + ":\" + CurDir())
 SetPath(GetEnv("PATH"))
 ...

Most functions designed to manipulate the Windows default drive and directory
begin with “Dir” or “Disk” and can, therefore, be easily located in the online help
system.

Generated Source Code

When you generate source code that deals with file names from within the IDE,
the basic technique is to store the path or full path as an instance variable that is
used to refer to the file. This technique makes the code easy to adapt using the
techniques described in this section. Here are some examples of how you can
modify the generated code to force file searching in the path designated by
SetDefault().

DBServer Editor The DBServer Editor takes into account the issue of file locations by storing the
path name as an instance variable and using this instance variable name
throughout the remaining code that it generates. For example:
CLASS Sales INHERIT DBServer
 INSTANCE cDBFPath := "c:\cavo27\" AS STRING

234 Visual Objects Programmer's Guide

Simply set the instance variable to NULL_STRING to use the SetDefault()
directory instead of using the explicit path name.

The FileSpec Class

Report Editor The code generated by the Report Editor hard codes the full path name as an
instance variable that is used to open the report file:
CLASS Cust INHERIT ReportQueue
 INSTANCE CUST_FILE := "c:\cavo27\cust.ret" AS STRING

METHOD Init() CLASS Cust
 SUPER:Init(oOwner, “Report Editor”)
 SELF:ConnectToDB(“CA xBase”)
 SELF:Preview(CUST_FILE)

 ...

It was mentioned earlier that SetDefault() does not apply when searching for
report files, but there is another function, GetDefault(), that returns the current
SetDefault() setting as a string. Using this function, you can make this code more
flexible:
CLASS Cust INHERIT ReportQueue
 INSTANCE CUST_FILE := "cust.ret" AS STRING

METHOD Init() CLASS Cust
 SUPER:Init(oOwner, "Report Editor")
 SELF:ConnectToDB(“CA xBase”)
 SELF:Preview(GetDefault() + CUST_FILE)
 ...

The FileSpec Class
The purpose of the FileSpec class is to help manage file names and directories. It
contains the identification of a disk file (its drive, path, file name, and extension),
as well as several useful methods.

Note: The FileSpec class is used to collect the information about a file that you
will subsequently open in your application. Instantiating an object of the
FileSpec class does not attempt to open the file or verify its existence in any way
and, therefore, does not use the SetDefault() or SetPath() settings for unqualified
file names as discussed earlier.

In a practical example, you might collect file definitions and directories in one
place in your application, defining a FileSpec object for each file:
oFSCust := FileSpec{"c:\data\cust\customer.dbf"}
oFSCustIdx := FileSpec{"c:\data\cust\custnum.ntx"}
oFSOrders := FileSpec{"c:\data\cust\orders.dbf"}

Chapter 15: File Handling 235

The FileSpec Class

Elsewhere in the application, you could use these file specification objects to
create data servers or open databases for data windows. (You may use a
FileSpec object in place of a file name with any of the DBServer and DataWindow
methods):
oDBCust := DBServer{oFSCust}
oDBCust:SetIndex(oFSCustIdx)
oDWOrder:Use(oFSOrders)

Programming like this, however, would not take you beyond the maintenance
and installation problems described earlier.

The Default Directory

A better alternative is to use the Find() method, which provides a particularly
useful way of defining and storing path information. You can use it to determine
the location of a known file in the application, and base your application’s
default on that location. For example, the following code places the FileSpec
object of a known file, SOMEFILE.DBF, in a global variable called oFSConfig:
GLOBAL oFSConfig AS OBJECT

METHOD Start() CLASS App
 ...
 oFSConfig := FileSpec{"somefile.dbf"}
 IF !oFSConfig:Find()
 <BREAK or ask user to specify location>
 ENDIF
 ...

For this code to work (assuming no SetDefault() or SetPath() has been issued by
the application), SOMEFILE.DBF should be located in the current Windows
directory. Then, the components of oFSConfig can be used with SetDefault() to
make your application’s default the same as the Windows default. For example:
GLOBAL oFSConfig AS OBJECT

METHOD Start() CLASS App
 ...
 oFSConfig := FileSpec{"somefile.dbf"}
 IF !oFSConfig:Find()
 <BREAK or ask user to specify location>
 ELSE
 SetDefault(oFSConfig:Drive + oFSConfig:Path)
 ENDIF
 ...

236 Visual Objects Programmer's Guide

The FileSpec Class

Alternatively, you could omit using SetDefault() as a global application setting
and use the virtual variables oFSConfig:Drive and oFSConfig:Path to explicitly
construct other FileSpec objects in the application. Either way, there is no need
to include any explicit directory information in the application code or an
initialization file. Installation of the application requires only that the files
associated with the application be copied to some suitable place that is specified
as the startup directory in the Windows startup window.

The FileSpec class, however, can do much more than simply store the path name.
For example, it provides several techniques for manipulating the file, such as
Copy, Delete, and Rename with any FileSpec object. You can also obtain
information beyond the drive and path name, including the date and time stamp
and the file size and attributes.

String Manipulation

It also helps avoid the need for string manipulation to construct path names in
situations where the application wants to specify drive, directory, and file name
separately:
oFSCust := FilesSpec{} // Contains no info yet!
oFSCust:Drive := "\\server\sys" // UNC name
oFSCust:Path := "\data\customer\"
oFSCust:FileName := "customer data" //long file name
oFSCust:Extension := "dbf"

This is similar to the code generated by the DBServer Editor, except that the path
name for the file is stored as an instance variable that is used to assign the Path
variable:
CLASS Customer
INSTANCE cDBFPath := "c:\data\customer\" AS STRING
...
METHOD Init() CLASS Customer
 oFileSpec := FileSpec{"customer data.dbf"}
 oFileSpec:Path := cDBFPath
 SUPER:Init(oFileSpec,,,)
 ...
 oFileSpec := FileSpec{"custnum.ntx"}
 oFileSpec:Path := cDBFPath
 SELF:SetIndex(oFileSpec)

Chapter 15: File Handling 237

Low-Level File Handling

Low-Level File Handling
Visual Objects has a set of functions for low-level handling of binary files, all of
which begin with the letter “F” (for example, FOpen(), FRead(), FWrite(), and
FClose()). These functions are designed to provide operating system level access
to files and, therefore, fall outside of the realm of file handling as discussed so far
in this chapter.

In particular, the low-level file functions that allow you to specify a file name
ignore the SetDefault(), SetPath(), and DOS PATH settings, always using the
current Windows default drive and directory for unqualified file names. To
override this default, you must qualify the file name in the function call:
LOCAL ptrHandle := FOpen("d:\osfiles\binfile")

If you know that the binary file is located in the SetDefault() path, you can add
the default directory to the file name using the GetDefault() function:
LOCAL ptrHandle := FOpen(GetDefault() + "binfile")

Once the file is open, you manipulate it using a file handle. To read from the file
opened above, for example, you would use ptrHandle as an argument instead of
the actual file name:
FRead(ptrHandle, @cReadBuff, 128)

238 Visual Objects Programmer's Guide

Chapter

16 Hyperlabels

A hyperlabel is a descriptive object that attaches to another object, and almost
every object in the system has one. It contains summary information about its
host object, sort of like an adhesive label that you affix to a machine or a vehicle.
(The hyper part comes from the fact that the GUI classes use it to drive the
hypertext help system.)

This chapter describes how the information in an object’s hyperlabel is used by
the system at runtime.

Purposeful Components
As the user learns to drive your application, they inevitably have many questions
about the meaning of certain controls and about the model you are using to
represent the real world they know. The purpose of hyperlabels is to introduce
consistency to the way the user gets information when needed.

If you use the hyperlabel system to its best advantage, you will give each menu
item, each control, each window, each database field, and each exception its own
hyperlabel.

Hyperlabel Properties

The hyperlabel has four properties, implemented as virtual variables.

Symbolic Name Caption Description Help Context

HyperLabel

Chapter 16: Hyperlabels 239

Interaction with Resources

240 Visual Objects Programmer's Guide

the resource ID might be ORDERSNEXT. That is because the names of the
constants must be unique, while the symbolic name is local to the subclass of
DataWindow.

Symbolic Name The first is a symbolic name, that the user never sees. The purpose of the symbolic
name is to connect the object (to which the hyperlabel is affixed) into the
automatic behavior of GUI classes. For example, if you attach a hyperlabel to a
menu item, the symbolic name is the name of the method that Visual Objects
dispatches when the user clicks that menu item. If you attach a hyperlabel to a
control, Visual Objects uses the symbolic name to override the default mapping
of control names to field names. Simply put, the symbolic name enables some
significant automatic behavior, inside the application.

The other three properties describe the host object to the user, in one word, one
line, and one screen, respectively.

Caption The Caption is the one-word name that the user recognizes. For a menu item, the
caption is the text of the menu item itself. For a push button, it is the text inside
the push button.

Description The Description tells the user the purpose of the hyperlabel’s host object—control
or menu item, say—in a one-line comment. Whenever the user positions the
mouse on the control or menu item, the Visual Objects dispatcher automatically
displays the Description on the status bar. What the user wants to know at that
moment is “What is the purpose of this control?” Think of the Description as a
prompt to the user giving the purpose of the control. If you give every single
object in your user interface a purpose, the user quickly gets the idea that the
application is well thought out, clear, and purposeful.

HelpContext The HelpContext provides a route to the topic in the hypertext system that
provides context-sensitive help on the hyperlabel’s host object. In the case of
Windows, this is the WinHelp system, and the HelpContext is a unique
keyword. (Refer to Using an online help system in Chapter 11, “GUI Classes,”
for more information on implementing context-sensitive help in your
application.)

Interaction with Resources
The symbolic name in the hyperlabel doubles as the name of the resource that
the hyperlabel’s host object links to. If you attach a hyperlabel to a DataWindow,
the symbolic name is the same as the name given in the RESOURCE statement
that depicts the DataWindow. If you laid out the data window using the
Window Editor, the editor generates hyperlabels for you and automatically
associates them with the resources that it generates at the same time.

If the hyperlabel attaches to a control, then the symbolic name and the constant
that represents the control’s resource ID in Windows share some of the same text.
For example, the symbolic name might be NEXT, while the constant representing

Use by the Status Bar

The most common use of the symbolic name is to specify a method that Visual
Objects dispatches when the user activates the hyperlabel’s host object. The
Visual Objects code looks something like this:
METHOD MenuCommand(oMCE) CLASS DataWindow
 Send(SELF, oMCE:HyperLabel:NameSym)

Use by the Status Bar
When the user traverses an item with the mouse, Visual Objects displays the
item’s purpose on the status bar. The code for a menu item, looks like this:
METHOD MenuSelect(oMSE) CLASS ShellWindow
 SELF:StatusBar:Transient := oMSE:HyperLabel:Description

Internationalization
There should be only four sources of natural language visible to the end user—
databases, reports, resources, and the hyperlabel’s Description and Caption
properties—thereby limiting the text you must translate in order to
internationalize an application.

To translate an application, start by creating a new copy of the application in
your repository and new copies of the ancillary files (for example, database,
index, report, and help database files) associated with the application. You could
either give the ancillary files new names or simply copy them to a new directory
using the same names. You would, of course, have to deal with this
appropriately, by either changing the applications default search path or
changing the file names in the appropriate places in the source code. See
Chapter 15, “File Handling,” in this guide for more information. After preparing
the new application and files, you can begin the translation process.

Source Code The only information defined in source code that is visible to the user is the
Caption and Description associated with each object’s hyperlabel and the
information in the resource entity that defines the object to the Windows
resource compiler. Therefore, these are the only things in the source code that
you must translate.

Source code that is generated by the various editors in the IDE uses the Caption
and Description properties that you enter to generate the hyperlabels and the
resources defining the object . Therefore, the easiest way to translate generated
source code is to use the appropriate editor. This insures that making a single
change is propagated throughout the generated source code.

Chapter 16: Hyperlabels 241

Use by Exceptions

Databases If the application starts out with existing databases containing data that is visible
to the end user, the data should be translated. However, if the application only
uses the data internally, translation is unnecessary. Similarly, if the application
relies on an existing database at the customer’s site or if the application starts
with an empty database, no translation is necessary. It is never necessary to
translate the database structure (for example, the field names), as these are used
by the application only and are not visible to the end user.

Reports Any reports included with the application should also be translated. These
changes are limited to the actual report file and are made using the Report
Editor.

Help Databases The text of the help database must be translated, and you must recapture any
bitmaps that have changed as a result of the application being translated. Note,
however, that the keywords and other internal information (for example, jump
links) should not be translated because they are not visible to the user. Leaving
the keywords intact is essential, in fact, because the built-in help mechanism in
Visual Objects depends on them.

Use by Exceptions
When the standard components of Visual Objects escalate exceptions, they
construct an object of the Error class. The Error object includes a hyperlabel that
describes the exception that occurred. The Caption, Description, and
HelpContext contain the same kind of information as they would for a control or
menu item. For example, the HelpContext enables the user to get help on the
kind of exception that occurred.

The system uses the hyperlabel if none of the exception handlers in the
ownership chain was able to deal with the exception. The symbolic name is the
name of a method of the App class that represents the last ditch attempt to
handle that type of exception. In most cases it is NIL, but you can provide last
ditch exception handlers even for tough exceptions such as index corruption.

242 Visual Objects Programmer's Guide

Chapter

17 Operating Environment

The purpose of this chapter is to discuss various issues that will affect the
delivery of applications developed using Visual Objects. The issues discussed
are things that you might not consider during the development phase of your
application but will want to think about before making the final delivery to your
end users.

Shared Libraries and DLLs
In Visual Objects, there are two ways to share code among applications: shared
libraries and dynamic link libraries (DLLs). Each one has its own advantages
and circumstances under which it is ideally used, which is the subject of this
section.

Shared Libraries

If you have developed DOS applications, you are probably already familiar with
.LIB files, which are similar (although not identical) to shared libraries in Visual
Objects. Shared libraries provide a convenient way to store code that is used by
more than one application. Instead of putting the code directly in each
application that uses it, you put it in its own application (identified with an
application type of Library) that you include in the search path of every
application that needs access to it.

You create a shared library in much the same way as an application, but shared
libraries differ from applications in that they do not have a Start() entity and you
cannot, therefore, run a shared library as a stand-alone application or generate an
executable file from one.

When you create an executable file for an application that depends on one or
more shared libraries, the compiled code from each library is statically linked
into the resulting .EXE file, similar to the way in which a DOS application has
.LIB file code linked into it.

Chapter 17: Operating Environment 243

Shared Libraries and DLLs

244 Visual Objects Programmer's Guide

application, using DLLs also speeds up the build process.

Shared libraries reduce the amount of code you have to maintain, thereby
making application development easier. But, they are not an ideal way to
distribute library code to end users because they necessitate the distribution of
your source code. They are primarily intended for generating stand-alone
applications that you want to distribute as executable files.

At any point during the development cycle, you can change a shared library’s
Application Type to DLL if you find that a DLL better suits your needs; however,
there are some differences that may affect your decision. Reading the following
sections will help you decide if a DLL is more in keeping with your needs than a
shared library.

Dynamic Link Libraries

You may not be familiar with DLLs if you have never developed a Windows
application. These libraries reside as disk files that contain fully linked code. A
DLL can be thought of as a special kind of binary executable that cannot be called
directly but only by .EXE files or other DLLs. DLLs have several advantages
over shared libraries.

Library Distribution First, DLLs are maintained in files that are distinct and independent from any
executable file. This makes them ideal for distribution to other developers as
extension libraries. The only source code you need to distribute is an
Application Export Format (.AEF) file with the _DLL statements that define the
interface, or public protocol, for the DLL’s exported routines.

More Efficient Use of
Memory

DLLs also allow your applications to run using less memory in
certain circumstances. For example, if several applications that
share a DLL are running simultaneously, the DLL only needs to
be loaded into memory once.

Visual Objects applications are a good example of this benefit. Every application
that you create has, as one of its properties, the ability to include runtime support
in the .EXE. If you choose this option, the Visual Objects runtime support will be
statically linked into the application, and Windows will allocate memory for the
runtime support when the application is running. You can see, then, that
running several Visual Objects applications that were generated using this option
would use more memory than necessary.

If, instead, you do not include runtime support in the .EXE, applications get their
runtime support from a DLL (see How to Distribute Your Application later in
this chapter for more information). Thus, memory for the runtime support will
be allocated only once, no matter how many applications are running. And,
since the DLL code does not have to be linked each time you build your

Shared Libraries and DLLs

Chapter 17: Operating Environment 245

Version Independence Applications using a DLL do not require a specific version of the DLL. As long
as the interface of the DLL does not change, it may be replaced with a more
recent version, giving you dramatically enhanced flexibility in maintaining your
applications. Suppose you deliver several Visual Objects applications that use
the runtime support DLL. When an updated version of this DLL is released, you
do not have to rebuild all your applications. Simply replace the old DLL with the
new one, and every application will benefit from the updated DLL.

Language Flexibility Since each DLL has a clearly defined interface, an application may use DLLs
written in different languages. Thus, you can use any DLL available in the
marketplace, regardless of how it was created. The Visual Objects language
provides you with the necessary data types, such as structures and pointers, so
that you are not limited in any way. The Visual Objects system itself is a good
example of combining DLLs written in different languages. It combines DLLs
written in Visual Objects, C, C++, and Assembly language.

Distributed
Development

The clearly defined interface also makes distributed
development easier. After the interfaces for the different
subsystems are well defined, every developer may work
independently, publishing a DLL from time to time that is
integrated into the system at large. In fact, the DLL
architecture helped a lot to separate tasks in the development
of Visual Objects, a very large-scale development project
distributed across many different countries.

Using Visual Objects, you can design and build DLLs for use with other
applications and use existing DLLs in your own applications.

Using DLLs

To access a routine in an existing DLL file, you simply declare the routine to the
compiler (either in the application itself or in one of the shared libraries included
in its search path). The basic information needed is the name of the routine and
the name of its DLL. Besides that, the compiler also needs to know how to call
the routine and how to handle its return value.

You declare DLL routines using the _DLL statement (see the online help system
for details) illustrated in the example below. This example declares the Windows
API function MessageBeep(), which allows you to play the message tones
defined in the control panel. Using the Windows SDK documentation to
determine the interface for this function (that is, the data types of its arguments
and return value and its calling convention), its declaration can be written as
follows:
_DLL FUNCTION MessageBeep(uType AS DWORD) AS LOGIC PASCAL:USER32.MessageBeep

Shared Libraries and DLLs

246 Visual Objects Programmer's Guide

the DLL in the search path of any application that uses it. This causes the
applications to draw from the compiled code for the DLL as it is defined in
the repository, without making any connection to a .DLL file.

Tip: All of the Windows API functions and constants are declared in either
WIN32 API or the System Library and are available to your application
automatically. Thus, this example declaration is for illustration purposes
only. Viewing the source code in these libraries (or any other library defined
by the system) will give you numerous examples of _DLL declaration
statements.

Once declared, you call the DLL function as you would any other function,
making sure to respect the data types of the declared parameters and return
value:
FUNCTION ErrOut(cMsg)
 ? cMsg
 MessageBeep(0)

Note: DLL routines may also be declared and accessed from other DLLs, but
there are some limitations based on the type of DLL you are working with. See
Creating DLLs for more information.

At runtime, any DLL needed by your application is dynamically linked at
application startup, with appropriate error messages for missing DLLs and
references that cannot be resolved.

Creating DLLs

In addition to using existing DLLs, you can also create your own DLLs in Visual
Objects in almost exactly the same way that you create applications. The main
difference is that you specify DLL as the Application Type so that the system will
know to create a .DLL instead of an .EXE file. Other than that, applications and
DLLs are maintained in the same manner.

Guidelines There are a few guidelines that govern DLLs created using Visual Objects:

� Do not include a Start() entity in a DLL.

� Although not required, it is a good idea to place all entities in one module to
minimize the number of far data segments (one for each module containing
local static data) that must be managed by the DLL.

� Global variables that must be available to an application should be declared
either in the application itself or in a separate, shared library. Globals
declared in a DLL are not available to the application.

� During the development and testing phases of a DLL, it is not necessary to
generate an actual .DLL file. Instead, while it is under development, include

Shared Libraries and DLLs

� DLLs must not contain debug information when being linked.

 Then, when the DLL has been tested and is stable, generate the .DLL file by
clicking the Generate Executable button when the DLL has focus. Doing so
will generate two files: the .DLL file and an .AEF file defining the public
protocol for the generated DLL.

 Note: Visual Objects has a DLL debugging feature. While the typical
method for debugging DLL code in the past has been to treat the DLL code
as a library and include it in the search path of a Visual Objects application,
this cannot be done if the host application is a non-Visual Objects
application. In such cases (for example, a Web browser running an ActiveX
control), you have to use the new DLL debugging feature, which works with
the actual binary .DLL file. For more detailed information about DLL
debugging, see the online help.

 If you then import this .AEF file, it will be created as a shared library (rather
than a DLL) in the repository. This library is your link to the actual .DLL file
because it contains the _DLL declarations that point to the .DLL file by name.
(It also contains other declarations found in the DLL, such as DEFINE,
STRUCTURE, and CLASS declarations).

 Thus, to cause your applications to access the .DLL file (instead of the DLL in
the repository), you must replace the DLL in all search paths with the newly
created library associated with the .AEF file.

� When distributing an application that uses a DLL that you have created or
when distributing a DLL as an extension library, be sure to include both the
.DLL file and the definition of its public protocol (for Visual Objects
applications, this is contained in the .AEF file mentioned above).

Tip: To keep track of different versions of the DLLs you create, you can use
a VERSIONINFO resource.

If you create DLLs which are intended for use with non-Visual Objects
applications, you cannot export any features that are specific to Visual Objects.

If you want to use a DLL with a non-Visual Objects generated .EXE, you must
adhere to the following rules:

� A public protocol that can include functions, procedures, and methods
(including access and assign methods)

� Exported routines (those not declared as STATIC) must be declared using the
STRICT, PASCAL, or CALLBACK calling convention

Chapter 17: Operating Environment 247

� The parameters and return value of an exported routine must not be typed as
ARRAY, OBJECT, STRING, CODEBLOCK, FLOAT, or USUAL

Utilizing the Registry

Static Data Concerning the management of STATIC and GLOBAL data, Visual Objects DLLs
follow the WIN32 behavior, where every process accessing a DLL gets its own
set of data. Processes cannot overwrite each others data in a DLL and data
cannot be shared between processes using DLLs.

Using a DLL You can use a DLL generated by Visual Objects with any system that allows you
to use a standard DLL. There is nothing unusual or special that will limit your
usage.

Exactly how you will use the DLL, however, depends on the system itself. For
example, to use a DLL in a C system, you need to create the C prototype
declarations for its exported routines. Then you have to create an import library
for the Visual Objects DLL and specify this import library when linking your
C application. For details on creating import libraries for WIN32 DLLs, refer to
the Microsoft WIN32 SDK.

Utilizing the Registry
Well-behaved Windows and Windows NT applications make use of the system
registry to determine certain runtime settings. The initial settings which are
usually stored in the registry when the application is installed are often dynamic.

Visual Objects is no exception. For example, the name of the standard .UDC file
and path names for the locations of various file types and are defined. The
default settings for the development environment are also stored in the registry
under the key:
HKEY_CURRENT_USER\\Software\\ComputerAssociates\\
CA-Visual Objects 2.7

Visual Objects Registry
Entries

The system registry is organized in a tree structure of ordered
pairs of keys and their associated values. The Visual Objects
runtime library contains functions (e.g., SetRTRegString) that
allow you to add and query subkey and the values of that key.
The runtime settings for Visual Objects are stored under:

HKEY_CURRENT_USER\\Software\\ComputerAssociates\\
CA-Visual Objects Applications

For information on specific Visual Objects registry keys, refer to the “Visual
Objects Registry Entries” appendix of the IDE User Guide.

248 Visual Objects Programmer's Guide

Accessing the Registry from an Application

Accessing the Registry from an Application
For most of the development process, you will probably be using the dynamic
execution feature of the IDE to run, test, and debug your application. However,
once it is ready to use, you will want to build an .EXE file for distribution to your
end users.

The Visual Objects Install Maker will create an install version including an install
program to copy the necessary files to the end user’s hard disk, managing
user-configurable aspects of the application (see Utilizing the Registry section
earlier in this chapter), and placing the program icon in the Start menu. For
details about creating the install version, refer to the “Using the Install Maker”
appendix of the IDE User Guide. This section provides specific information on
how to create an executable version of your application and exactly what files
you need to distribute so that the end user can run your application.

Managing Projects
In Visual Objects , the repository presented by the Repository Explorer consists
of two separate parts, the system repository and the user repository, also called
project. The system repository comes with Visual Objects and is setup as part of
the install process. It contains the system provided standard libraries. The
system repository is completely read-only and therefore it never changes. There
is no need to backup the system repository when backing up your data, since it
can always be reinstalled from the installation CD-ROM. The system repository
resides in the SYSTEM directory in your installation root directory.

Default Project

During the installation, one project called Default Project is created in the DATA
directory of your installation root directory. Since this project is empty
(containing no applications, although there are a few system files in the project
directory) you will see only the system libraries, when you start Visual Objects
for the first time. As long as you work with only one project, the Repository
Explorer gives the impression that you are working with one logical repository.

Chapter 17: Operating Environment 249

Managing Projects

Multiple Projects

The idea behind using several projects, is to make it easier for you to organize
your work and to share your work with others. You might also consider setting
up different projects for different applications you are working on and maybe
one project for experiments. Each project is supposed to reside in its own
directory. To create a new project, you choose New Project from the File menu
when the root item is selected in a Repository Explorer. You will be prompted
for the project name and the project directory. The directory does not have to
exist. Visual Objects will create it. After a successful project creation, the
Repository Explorer will show two project branches in the left pane. All projects
include the system libraries, but in actuality refer to the same files. The system
libraries are shared between all projects.

Sharing Project Components

Although your active projects appear in the same explorer window, they are
completely separate. It is not possible to have a connection from an application
in one project to an application in another project. In particular, libraries in a
project cannot be used by applications in another project. You also cannot have
any editor open for entities in different projects. If you change your active
project by clicking on an application in another project, all editors currently open
will close down.

Drag and drop of application components is also only possible within one
project. To transfer application components from one project to another, use Cut
and Paste in the Repository Explorer.

Projects are completely self-contained. To back up a specific project, you simply
have to back up the directory containing the project.

Important! Projects cannot be exchanged between different versions of Visual Objects.
When switching to another version of Visual Objects, you have to export the contents of
your projects as AEF files and import them into the new version.

The Project Catalog

All your active projects are managed through a project catalog. This catalog is
maintained in the PROJECTS directory within your installation root directory. A
project can only belong to one project catalog at a time. This means that if you
have a project visible in a Repository Explorer, it is in your project catalog and
nobody else can access it.

250 Visual Objects Programmer's Guide

How to Distribute Your Application

Add/Delete Project

To give others access to a specific project, you have to remove it from your
project catalog. This is done by right-clicking on the desired project and
choosing Delete from Catalog in the pop-up menu. Deleting a project from your
catalog leaves all existing files intact.

Once you have deleted a project, somebody else can access the project and add it
to their project catalog. Similarly, you can add projects created by others to your
catalog, if the project is no longer in use by anyone else. To add a project to your
catalog, choose Add Project from the file menu and specify the desired project
name in the project location of the dialog box shown.

The capability of adding or removing projects from your catalog can also be used
as an alternative to importing or exporting AEF files to exchange applications.
Once a project has been removed from your catalog, you can put it on disk or
send it somewhere else. The receiver simply has to add the project to his own
catalog.

Important! This method of exchanging applications only works with the same version
of Visual Objects. To transfer data from across versions, AEF files have to be used.

The following piece of information might prove useful for recovery operations.
If you use your project catalog in the PROJECTS directory of the root installation
directory, the projects in that catalog still appear in use by Visual Objects. To
remove the lock placed on the project, delete the _PROJECT.VO file in the project
directory. Do not delete the _PROJECT.VO file without serious consideration!

How to Distribute Your Application
For most of the development process, you will probably be using the dynamic
execution feature of the IDE to run, test, and debug your application. However,
once it is ready to use, you will want to build an .EXE file for distribution to your
end users.

The Visual Objects Install Maker will create an install version including an install
program to copy the necessary files to the end user’s hard disk, managing
user-configurable aspects of the application (see the Utilizing the Registry section
earlier in this chapter), and placing the program icon in the Start menu. For
details on creating the install version, refer to the “Using the Install Maker”
appendix of the IDE User Guide. This section gives you specific information on
how to create an executable version of your application and exactly what files
you need to distribute so that the end user can run your application.

Chapter 17: Operating Environment 251

How to Distribute Your Application

Generating the .DLL and .EXE Files

Prepare the DLLs The first step is to prepare all user-defined DLLs associated with the application,
which is actually a four-step process:

1. Highlight the DLL and verify that its Application Properties are correct. In
particular, make sure the path and file name are as you intend and that the
Enable Debug check box is not selected.

2. Generate the .DLL file by clicking on the MakeEXE toolbar button. This will
generate a corresponding .AEF file defining the interface for the DLL.

3. Import the .AEF file generated in step 2 as a shared library, making sure to
build it.

 Note: If the DLL is your end product, you can stop here. All you need to
distribute are the .DLL and .AEF files. You should probably document for
your end users which other files it depends on so that they will have this
information when they distribute applications that use your DLL. See Other
Files to Distribute in this chapter for details.

4. Replace the original DLL in the application’s search path with the library
imported in step 3.

Make the .EXE File The next step is to highlight the application and verify that its path and file name
are correct using the Application Properties dialog box. You may also want to
uncheck the Enable Debug check box to minimize the size of the resulting .EXE
file.

Then, you can generate the .EXE file by clicking on the MakeEXE toolbar button
and then run the application from Windows to make sure all is well.

Note: The dependency management of the repository also includes the
generated .EXE. When you touch the application from the repository, the .EXE
becomes invalid and will be deleted. Make sure to create or a copy of the .EXE if
you want to keep it and continue developing. If the .EXE already exists and you
press the link button, the link will not take place.

252 Visual Objects Programmer's Guide

How to Distribute Your Application

Other Files to Distribute

System-Defined Files Obviously, you must distribute to your end users the .EXE file and all .DLL files
that you generate, but there are other files that you must also include, depending
on the particulars of your application (for example, which system-defined
libraries it uses). The following table summarizes the files needed under various
circumstances:

Circumstance Files to Distribute

All applications except those including runtime
support in the .EXE file

CAVORT20.DLL
CAVONT20.DLL

Applications using RDD Classes library

CAVO2RDD.DLL
CAVODBF.RDD

Applications using NTX Driver DBFNTX.RDD

Applications using MDX Driver DBFMDX.RDD

Applications using CDX Driver DBFCDX.RDD
_DBFCDX.RDD

Applications using BLOB Files DBFBLOB.RDD

Applications using Memo Files DBFMEMO.RDD

Applications using delimeted Files DELIM.RDD

Applications using SDF File SDF.RDD

Applications using GUI Classes library CAVO2GUI.DLL
CATO3CNT.DLL
CATO3DAT.DLL
CATO3MSK.DLL
CATO3NBR.DLL
CATO3TIM.DLL
CATO3SBR.DLL
CATO3SPL.DLL
MSVCRT2O.DLL

Applications using SQL Classes library
 (Any ODBC driver that you are
 using must also be installed.)

CAVO2SQL.DLL

Applications using System Classes library CAVO2SYS.DLL

Applications using Terminal Lite CAVO2TRM.DLL

Applications using OLE Classes CAVO2OLE.DLL
CAVOOLE.DLL

Chapter 17: Operating Environment 253

Applications using Q&E Files IVC3.DLL

How to Distribute Your Application

Circumstance Files to Distribute

Applications using Q&E Utilities C3UTL13.DLL
C3TRN13.DLL

Applications using Report Classes library

 (Any ODBC driver that you are
 using must also be installed.)

CABL3.DLL
CABL3DB1.DLL
CABLE.HLP
CAVO2REP.DLL
CAIM3BMP.DLL
CAIM3DBM.DLL
CAIM3GIF.DLL
CAIM3IO.DLL
CAQR3CQM.DLL
CAQR3DBA.DLL
CAQR3DBC.DLL
CAQR3EDT.DLL
CAQR3MEM.DLL
CAQR3QQ.DLL
CAQR3RCC.DLL
CAQR3RES.DLL
CAQR3RET.DLL
CAQR3SPL.DLL
CAQR3WBM.DLL
CAQR3WQM.DLL
CAQR3WRM.DLL
CAQR3WUT.DLL
CAQRLABL.DAT
CATO3TBR.DLL
CAQRWRET.HLP

Install Maker Files CAIN4SHL.DLL
CAINDREG.DLL
CALM_W32.DLL
CATOCFGE.EXE
INSTALL.ISC
SETUP.EXE
UIPRECAL.EXE

Distribution of the files listed in this table is unlimited and free of charge. You
cannot, however, distribute any of the other files provided as part of the Visual
Objects package.

254 Visual Objects Programmer's Guide

How to Distribute Your Application

Database and Ancillary
Files

You must also distribute any database (.DBF), memo (.DBT or
other, depending on the RDD), and index (.NTX or other,
depending on the RDD) that are required by your application.
Make sure that you remove any test data from the files before
distribution (for example, using the ZAP command).

All Report Writer (.RET) files, Xbase report (.FRM) and label (.LBL) files, help
(.HLP) files, and any other files (for example, .TXT) used by the application must
also be distributed.

Location of Files

You can install your application’s .EXE file anywhere you want, and in most
cases you will want to add this path to the DOS PATH list as defined in the
user’s AUTOEXEC.BAT file.

Although Windows will search for DLLs in a number of locations (see the _DLL
statement in the online help system for details), the easiest configuration is to
install them in the same directory as the main .EXE file. This suggestion also
applies to the .RDD files mentioned in the table above, as well as any .HLP files
that are associated with the application. You may, however, choose to install
certain DLLs (those that may be used by applications other than Visual Objects)
in the main Windows directory or its SYSTEM subdirectory. You can use the
locations chosen by the Visual Objects installation as a guideline.

The database and ancillary files can be installed wherever you like, but the
application must be set up to know how to locate them. See Chapter 15, “File
Handling,” in this guide for more information on the rules for locating and
creating files.

Chapter 17: Operating Environment 255

Chapter

18 Third-Party Components

This part of the Programmer’s Guide has been about components. Every
developer is faced from time to time with a burning need for a component they
do not have. Then they have the difficult decision of whether to design,
document, code, and test the component themselves or look elsewhere for it.

This chapter attempts to provide some assistance for people faced with a
“develop or buy” decision. The first section looks at the detailed factors that
influence the decision, and the following section looks at the long-term benefits
of supporting a third-party components industry. Experience shows that
although you obviously have total control over components you develop,
maintaining them over the long term is a costly and specialized activity.

Selecting Components
Most of the factors that influence your decision to buy a third-party component
library center around whether it really helps the task you wish to accomplish.
This chapter, however, cannot tell you whether a particular component is
suitable for your needs. Instead, it looks at architectural factors.

Such factors appear secondary in the short term; however, as you build or buy
many components over time, it is their conformance to architectural standards
that determines how well they work together. Your productivity in the long
term depends critically on your choice of components.

Guidelines

The following guidelines will help you both when selecting a third-party library
and when designing your own component libraries.

Chapter 18: Third-Party Components 257

Third-Party Market

258 Visual Objects Programmer's Guide

work together.

First, you should review the architecture set out in Chapter 4, “Standard
Components-Classes, Objects, and Libraries,” and see how well the components
that you are considering follow those principles. As an example, if the dynamic
relationships between objects become too complex, you will not be able to debug
applications, and you will never be sure that an object is collectable by the
garbage collector. One of the functions of the architecture is to keep the dynamic
structure simple.

Second, you should review the benefits that the GUI classes deliver. These are
set out in Chapter 11, “GUI Classes,” in this guide. Try to figure out if the new
component library does as well in its application domain as the GUI Classes
library does in the GUI domain.

Components as Capsules

Components should be delivered as capsules. In the Windows environment, this
means that they should be DLLs. It is all right to deliver components in source
code form, so long as they can operate as DLLs. If a third party delivers
components as source code, this strongly affects their ability to handle technical
support. If you change the source code, this makes it harder to support. Many
companies solve this problem by handing off technical support to the developers
who use the component. Therefore, source code is a mixed blessing. It enables
you to be self-supporting, but it also requires you to be self-supporting.

Hypertext

Perhaps the most important aspect of any component is the quality of its
hypertext. Do these components support the automatic hypertext system
provided by the GUI classes? If they do not, it will be much harder for you to
provide help and support to your users.

Third-Party Market
Over time, the effectiveness of the Visual Objects technology will hinge on the
speed and accuracy with which you can select and employ appropriate and
labor-saving components. Computer Associates encourages the interchange of
components.

Computer Associates would like developers to conform to the Visual Objects
architecture, as described in the previous section. The reason for this is to help
people to learn each new component quickly and to help the components to

Third-Party Market

As time goes by, the component business is going to grow into a significant part
of the software tools business. It is in everyone’s interest to contribute to this
effort. If you have developed components that other people could use—let them
know. If you require components that no one has yet developed—make your
requirement known. Everyone will benefit if we trade high-quality components.

Third parties will develop libraries that extend the standard components. The
libraries consist of binary code in a shared DLL, plus the class and method
prototypes (the signature lines of the class and method declarations). The
library’s prototype is delivered as an .AEF file.

Chapter 19, "How the Visual Objects Two-level Preprocessor Works " later in
this guide, describes some guidelines for evaluating and selecting third-party
components that best complement the Visual Objects standard components. The
Visual Objects development environment is designed to help you manage and
benefit from a wealth of components supplied by both Computer Associates and
third parties.

It is also worth pointing out that if someone makes a business out of developing
component libraries, they are likely to become very good at it over time. If a
library sells well, it can sustain a certain level of training business and a level of
awareness and public discussion of its benefits and direction. It makes very
good sense to encourage this kind of specialization. The only economy of scale
in the software industry occurs through reusing components—there is never any
advantage to reinventing the wheel.

Chapter 18: Third-Party Components 259

Chapter

19
How the Visual Objects Two-Level
Preprocessor Works

Visual Objects has a two-level preprocessor which consists of a CA-Clipper
compatible preprocessor and the Visual Objects preprocessor. Having both
preprocessors offers added benefits to the compilation phase of building an
application. You can determine whether both or just the Visual Objects
preprocessor is invoked.

This chapter explains how the two level preprocessor works and provides the
preprocessor directives necessary to define commands and pseudofunctions.

Compilation
Before the compilation phase takes place, the preprocessor scans CH files
attached to the current application and then each individual entity from top to
bottom for certain directives and translates them into regular Visual Objects
source code that can be compiled.

You can include up to 16 CA-Clipper-compatible .CH files. If one or more .CH
files are included on the Clipper Headers tab page of the Application Options
dialog box, entities will be preprocessed first by the CA-Clipper preprocessor,
which does pure textual replacement. The preprocessed output will then be
processed by the Visual Objects preprocessor and then compiled. .

Similarly, an application library can use up to 16 .UDC files. You attach .UDC
files to an application or library on the UDCs tab page of the Application Options
dialog box.

Note that a .UDC file attached to a library is not automatically visible to an
application that includes the library in its search path. You must explicitly attach
the .UDC file to the application.

Chapter 19: How the Visual Objects Two-Level Preprocessor Works 261

Header Files

262 Visual Objects Programmer's Guide

directive without abbreviations.

If an application uses .CH files, all the CA-Clipper directives such as #xtranslate
and #include can be used inside an entity’s code. If an application does not use
.CH files, the CA-Clipper preprocessor will not run during compilation therefore
having no effect on performance. If an application uses .CH files, all conditional
compilation (#ifdef, #ifndef) will be done by the CA-Clipper preprocessor and
not seen by the Visual Objects preprocessor. The CA-Clipper preprocessor does
not know about the defines in the repository since it uses the #defines in the
header files.

Header Files
Header files, also referred to as include files, contain preprocessor directives and
command definitions. Header files have no default extension and are specified
using the Clipper Headers tab in the Application Options dialog box or by using
the #include preprocessor directive in another .CH file.

How the CA-Clipper Compatible Preprocessor Works
Before compilation takes place, the preprocessor scans the source file from top to
bottom for certain directives and translates them into regular Visual Objects
source code that can be compiled. The output of the preprocessor is then used as
input to the compiler.

The following table summarizes the preprocessor directives:

Directive Meaning

#command Specify a user-defined command or translation
directive.

#define Define a manifest constant or pseudofunction.

#ifdef Compile a section of code if an identifier is
defined.

#ifndef Compile a section of code if an identifier is
undefined.

#include Include a file into the current source file.

#undef Remove a #define definition.

#xcommand Specify a user-defined command or translation

#command | #translate directive

#command | #translate directive
Specify a user-defined command or translation directive.

Syntax

#command <matchPattern> => <resultPattern>
#translate <matchPattern> => <resultPattern>

Arguments

<matchPattern> is the pattern the input text should match.

<resultPattern> is the text produced if a portion of input text matches the
<matchPattern>.

The => symbol between <matchPattern> and <resultPattern> is, along with
#command or #translate, a literal part of the syntax that must be specified in a
#command or #translate directive. The symbol consists of an equal sign
followed by a greater than symbol with no intervening spaces. Do not confuse
the symbol with the >= or the <= comparison operators in the Visual Objects
language.

Description

#command and #translate are translation directives that define commands and
pseudofunctions. Each directive specifies a translation rule. The rule consists of
two portions: a match pattern and a result pattern. The match pattern matches a
command specified in the code entity and saves portions of the command text
(usually command arguments) for the result pattern to use. The result pattern
then defines what will be written to the result text and how it will be written
using the saved portions of the matching input text.

#command and #translate are similar, but differ in the circumstance under
which their match patterns match input text. A #command directive matches
only if the input text is a complete statement, while #translate matches input text
that is not a complete statement. #command defines a complete command and
#translate defines clauses and pseudofunctions that may not form a complete
statement. In general, use #command for most definitions and #translate for
special cases.

Chapter 19: How the Visual Objects Two-Level Preprocessor Works 263

#command | #translate directive

264 Visual Objects Programmer's Guide

components, which the preprocessor tries to match against input text in a specific
way:

#command and #translate are similar to but more powerful than the #define
directive. #define, generally, defines identifiers that control conditional
compilation and manifest constants for commonly used constant values such as
INKEY() codes.

#command and #translate directives have the same scope as the #define
directive. The definition is valid only for the current code entity file unless
defined in one of the header files included through the Clipper Headers tab in
the Application Options dialog box. If defined elsewhere, the definition is valid
from the line where it is specified to the end of the entity. Unlike #define, a
#translate or #command definition cannot be explicitly undefined. The #undef
directive has no effect on a #command or #translate definition.

As the preprocessor encounters each source line preprocessor, it scans for
definitions in the following order of precedence: #define, #translate, and
#command. When there is a match, the substitution is made to the result text
and the entire line is reprocessed until there are no matches for any of the three
types of definitions. #command and #translate rules are processed in stack-
order (i.e., last in-first out, with the most recently specified rule processed first).

In general, a command definition provides a way to specify an English language
statement that is, in fact, a complicated expression or function call, thereby
improving the readability of source code. You can use a command in place of an
expression or function call to impose order of keywords, required arguments,
combinations of arguments that must be specified together, and mutually
exclusive arguments at compile time rather than at runtime. This can be
important since procedures and user-defined functions can now be called with
any number of arguments, forcing any argument checking to occur at runtime.
With command definitions, the preprocessor handles some of this.

When defining a command, there are several prerequisites to properly specifying
the command definition. Many preprocessor commands require more than one
#command directive because mutually exclusive clauses contain a keyword or
argument.

This also occurs when a result pattern contains different expressions, functions,
or parameter structures for different clauses specified for the same command.
Each formulation of the command is translated into a different expression.
Because directives are processed in stack order, when defining more than one
rule for a command, place the most general case first, followed by the more
specific ones. This ensures that the proper rule will match the command
specified in the entity.

Match Pattern The <matchPattern> portion of a translation directive is the pattern the input text
must match. A match pattern is made from one or more of the following

#command | #translate directive

Chapter 19: How the Visual Objects Two-Level Preprocessor Works 265

Often, lists are written as literal arrays by enclosing the result marker in curly
({ }) braces.

Literal values are actual characters that appear in the match pattern. These
characters must appear in the input text, exactly as specified to activate the
translation directive.

Words are keywords and valid identifiers that are compared according to the
dBASE convention (case-insensitive, first four letters mandatory, etc.). The
match pattern must start with a Word.

#xcommand and #xtranslate can recognize keywords of more than four
significant letters.

Match markers are label and optional symbols delimited by angle brackets (<>)
that provide a substitute (idMarker) to be used in the <resultPattern> and
identify the clause for which it is a substitute. Marker names are identifiers and
must, therefore, follow the Visual Objects identifier naming conventions. In
short, the name must start with an alphabetic or underscore character, which
may be followed by alphanumeric or underscore characters.

This table describes all match marker forms:

Match Marker Name

<idMarker> Regular match marker

<idMarker,...> List match marker

<idMarker:word list> Restricted match marker

<*idMarker*> Wild match marker

<(idMarker)> Extended Expression match marker

Regular match marker: Matches the next legal expression in the input text. The
regular match marker, a simple label, is the most general and, therefore, the most
likely match marker to use for a command argument. Because of its generality, it
is used with the regular result marker, all of the stringify result markers, and the
blockify result marker.

List match marker: Matches a comma-separated list of legal expressions. If no
input text matches the match marker, the specified marker name contains
nothing. You must take care in making list specifications because extra commas
will cause unpredictable and unexpected results.

The list match marker defines command clauses that have lists as arguments.
Typically these are FIELDS clauses or expression lists used by database
commands. When there is a match for a list match marker, the list is usually
written to the result text using either the normal or smart stringify result marker.

#command | #translate directive

266 Visual Objects Programmer's Guide

will produce if a piece of input text matches the <matchPattern>. <resultPattern>
is made from one or more of the following components:

Restricted match marker: Matches input text to one of the words in a
comma-separated list. If the input text does not match at least one of the words,
the match fails and the marker name contains nothing.

A restricted match marker is generally used with the logify result marker to
write a logical value into the result text. If there is a match for the restricted
match marker, the corresponding logify result marker writes true (.T.) to the
result text; otherwise, it writes false (.F.). This is particularly useful when
defining optional clauses that consist of a command keyword with no
accompanying argument.

Wild match marker: Matches any input text from the current position to the end
of a statement. Wild match markers generally match input that may not be a
legal expression, gather the input text to the end of the statement, and write it to
the result text using one of the stringify result markers.

Extended expression match marker: Matches a regular or extended expression,
including a file name or path specification. It is used with the smart stringify
result marker to ensure that extended expressions will not get stringified, while
normal, unquoted string file specifications will.

Optional match clauses are portions of the match pattern enclosed in square
brackets ([]). They specify a portion of the match pattern that may be absent
from the input text. An optional clause may contain any of the components
allowed within a <matchPattern>, including other optional clauses.

Optional match clauses may appear anywhere and in any order in the match
pattern and still match input text. Each match clause may appear only once in
the input text. There are two types of optional match clauses: one is a keyword
followed by match marker, and the other is a keyword by itself. These two types
of optional match clauses can match all of the traditional command clauses
typical of the Xbase command set.

Optional match clauses are defined with a regular or list match marker to match
input text if the clause consists of an argument or a keyword followed by an
argument. If the optional match clause consists of a keyword by itself, it is
matched with a restricted match marker.

In any match pattern, you may not specify adjacent optional match clauses
consisting solely of match markers, without generating a compiler error. You
may repeat an optional clause any number of times in the input text, as long as it
is not adjacent to any other optional clause. To write a repeated match clause to
the result text, use repeating result clauses in the <resultPattern> definition.

Result Pattern The <resultPattern> portion of a translation directive is the text the preprocessor

#command | #translate directive

Literal tokens are actual characters that are written directly to the result text.

Words are Visual Objects keywords and identifiers that are written directly to the
result text.

Result markers: refer directly to a match marker name. Input text matched by
the match marker is written to the result text via the result marker.

This table lists the Result marker forms:

Result Marker Name

<idMarker> Regular result marker

#<idMarker> Dumb stringify result marker

<“idMarker”> Normal stringify result marker

<(idMarker)> Smart stringify result marker

<{idMarker}> Blockify result marker

<.idMarker.> Logify result marker

Regular result marker: Writes the matched input text to the result text, or nothing
if no input text is matched. Use this, the most general result marker, unless you
have special requirements. You can use it with any of the match markers, but it
almost always is used with the regular match marker.

Dumb stringify result marker: Stringifies the matched input text and writes it to
the result text. If no input text is matched, it writes a null string (""). If the
matched input text is a list matched by a list match marker, this result marker
stringifies the entire list and writes it to the result text.

This result marker writes output to result text where a string is always required.
This is generally the case for commands where a command or clause argument is
specified as a literal value but the result text must always be written as a string
even if the argument is not specified.

Normal stringify result marker: Stringifies the matched input text and writes it to
the result text. If no input text is matched, it writes nothing to the result text. If
the matched input text is a list matched by a list match marker, this result marker
stringifies each element in the list and writes it to the result text.

The normal stringify result marker is most often used with the blockify result
marker to compile an expression while saving a text image of the expression.

Chapter 19: How the Visual Objects Two-Level Preprocessor Works 267

#command | #translate directive

Smart stringify result marker: Stringifies matched input text only if source text is
enclosed in parentheses. If no input text matched, it writes nothing to the result
text. If the matched input text is a list matched by a list match marker, this result
marker stringifies each element in the list (using the same stringify rule) and
writes it to the result text.

The smart stringify result marker is designed specifically to support extended
expressions for commands other than SETs with <xlToggle> arguments.
Extended expressions are command syntax elements that can be specified as
literal text or as an expression if enclosed in parentheses. The <xcDatabase>
argument of the USE command is a typical example. For instance, if the matched
input for the <xcDatabase> argument is the word Customer, it is written to the
result text as the string “Customer,” but the expression (cPath + cDatafile) would
be written to the result text unchanged (i.e., without quotes).

Blockify result marker: Writes matched input text as a code block without any
arguments to the result text. For example, the input text x + 3 would be written
to the result text as {|| x + 3}. If no input text is matched, it writes nothing to the
result text. If the matched input text is a list matched by a list match marker, this
result marker blockifies each element in the list.

The blockify result marker used with the regular and list match markers matches
various kinds of expressions and writes them as code blocks to the result text.
Remember that a code block is a piece of compiled code to execute sometime
later. This is important when defining commands that evaluate expressions
more than once per invocation. When defining a command, you can use code
blocks to pass an expression to a function and procedure as data rather than as
the result of an evaluation. This allows the target routine to evaluate the
expression whenever necessary.

Logify result marker: Writes true (.T.) to the result text if any input text is
matched; otherwise, it writes false (.F.) to the result text. This result marker does
not write the input text itself to the result text.

The logify result marker is generally used with the restricted match marker to
write true (.T.) to the result text if an optional clause is specified with no
argument; otherwise, it writes false (.F.).

Repeating result clauses are portions of the <resultPattern> enclosed by square
brackets ([]). The text within a repeating clause is written to the result text as
many times as it has input text for any or all result markers within the clause. If
there is no matching input text, the repeating clause is not written to the result
text. Repeating clauses, however, cannot be nested. If you need to nest
repeating clauses, you probably need an additional #command rule for the
current command.

268 Visual Objects Programmer's Guide

#command | #translate directive

Repeating clauses are the result pattern part of the #command facility that create
optional clauses which have arguments. You can match input text with any
match marker other than the restricted match marker and write to the result text
with any of the corresponding result markers.

Notes

Less than operator: If you specify the less than operator (<) in the <resultPattern>
expression, you must precede it with the escape character (\).

Multistatement lines: You can specify more than one statement as a part of the
result pattern by separating each statement with a semicolon. If you specify
adjacent statements on two separate lines, the first statement must be followed
by two semicolons.

Examples

These examples encompass many of the basic techniques you can use when
defining commands with the #command and #translate directives. Note that the
functions mentioned below are fictitious functions specified for illustration only.

� This example defines the @...BOX command using regular match markers
with regular result markers:
#command @ <top>, <left>, <bottom>, <right> BOX <boxstring>;
=>;
CmdBox(<top>, <left>, <bottom>, <right>,<boxstring>)

■ This example uses a list match marker with a regular result marker to define
the ? command:
#command ? [<list,...>] => QOUT(<list>)

■ This example uses a restricted match marker with a logify result marker to
implement an optional clause for a command definition. In this example, if
the ADDITIVE clause is specified, the logify result marker writes true (.T.) to
the result text; otherwise, it writes false (.F.):
#command RESTORE FROM <file> [<add: ADDITIVE>];

=>;
CmdRestore(<(file)>, <.add.>)

■ This example uses a list match marker with a smart stringify result marker to
write to the result text the list of fields specified as the argument of a FIELDS
clause. In this example, the field list is written as an array with each field
name as an element of the array:

Chapter 19: How the Visual Objects Two-Level Preprocessor Works 269

#command COPY TO <file> [FIELDS <fields,...>];

=>;
CmdCopyAll(<(file)>, { <(fields)> })

#command | #translate directive

■ These examples use the wild match marker to define a command that writes
nothing to the result text. Do this when attempting to compile unmodified
code developed in another dialect:
#command SET ECHO <*text*> =>

#command SET TALK <*text*> =>

■ These examples use wild match markers with dumb stringify result markers
to match command arguments specified as literals, then write them to the
result text as strings in all cases:
#command SET PATH TO <*path*> => ;

SET(_SET_PATH, #<path>)
#command SET COLOR TO <*spec*> => SETCOLOR(#<spec>)

■ These examples use a normal result marker with the blockify result marker
to both compile an expression and save the text version of it for later use:
#command SET FILTER TO <xpr>;

=>;
CmdSetFilter(<{xpr}>, <"xpr">)

#command INDEX ON <key> TO <file>;
=>;

CmdCreateIndex(<(file)>, <"key">, <{key}>)

■ This example demonstrates how the smart stringify result marker
implements a portion of the USE command for those arguments that can be
specified as extended expressions:
#command USE <db> [ALIAS <a>];

=>;
CmdOpenDbf(<(db)>, <(a)>)

■ This example illustrates the importance of the blockify result marker for
defining a database command. Here, the FOR and WHILE conditions
matched in the input text are written to the result text as code blocks:
#command COUNT [TO <var>];

[FOR <for>] [WHILE <while>];
[NEXT <next>] [RECORD <rec>] [<rest:REST>] [ALL];
=>;
<var> := 0,;
DBEVAL({|| <var>++}, <{for}>, <{while}>,;
<next>, <rec>, <.rest.>)

■ In this example the USE command again demonstrates the types of optional
clauses with keywords in the match pattern. One clause is a keyword
followed by a command argument, and the second is solely a keyword:
#command USE <db> [<new: NEW>] [ALIAS <a>] ;

[INDEX <index,...>][<ex: EXCLUSIVE>] ;
[<sh: SHARED>] [<ro: READONLY>];
=>;

270 Visual Objects Programmer's Guide

CmdOpenDbf(<(db)>, <(a)>, <.new.>,;
 IF(<.sh.> .OR. <.ex.>, !<.ex.>, NIL),;
 <.ro.>, {<(index)>})

#define directive

■ This example uses the STORE command definition to illustrate the
relationship between an optional match clause and a repeating result clause:
#command STORE <value> TO <var1> [, <varN>];
=>;

<var1> := [<varN> :=] <value>

■ This example uses #translate to define a pseudofunction:
#translate AllTrim(<cString>);

 => ;

LTRIM(RTRIM(<cString>))

#define directive
Define a manifest constant or pseudofunction.

Syntax

#define <idConstant> [<resultText>]

#define <idFunction>([<arg list>]) [<exp>]

Arguments

<idConstant> is the name of an identifier to define.

<resultText> is the optional replacement text to substitute whenever a valid
<idConstant> is encountered.

<idFunction> is a pseudofunction definition with an optional argument list (<arg
list>). If you include <arg list>, it is delimited by parentheses (()) immediately
following <idFunction>.

<exp> is the replacement expression to substitute when the pseudofunction is
encountered. Enclose this expression in parentheses to guarantee precedence of
evaluation when the pseudofunction is expanded.

Note: #define identifiers are case-sensitive, where #command and #translate
identifiers are not.

Chapter 19: How the Visual Objects Two-Level Preprocessor Works 271

#define directive

Description

The #define directive defines an identifier and, optionally, associates a text
replacement string. If specified, replacement text operates much like the search
and replace operation of a text editor. As each source line from a program file is
processed by the preprocessor, the line is scanned for identifiers. If a currently
defined identifier is encountered, the replacement text is substituted in its place.

Defined identifiers can contain any combination of alphabetic and numeric
characters, including underscores. Defined identifiers, however, differ from
other identifiers by being case-sensitive. As a convention, defined identifiers are
specified in uppercase to distinguish them from other identifiers used within a
program. Additionally, identifiers are specified with a one or two letter prefix to
group similar identifiers together and guarantee uniqueness.

When specified, each definition must occur on a line by itself. Unlike statements,
more than one directive cannot be specified on the same source line. You may
continue a definition on a subsequent line by employing a semicolon (;). Each
#define directive is specified followed by one or more white space characters
(spaces or tabs), a unique identifier, and optional replacement text. Definitions
can be nested, allowing one identifier to define another.

A defined identifier has lexical scope like a static local variable. The definition is
valid only for the current code entity file unless defined in one of the header files
included through the Clipper Headers tab in the Application Options dialog box.
If defined elsewhere, the definition is valid from the line where it is specified to
the end of the entity. A #define can be explicitly undefined.

You can redefine or undefine existing identifiers. To redefine an identifier,
specify a new #define directive with the identifier and the new replacement text
as its arguments. The current definition is then overwritten with the new
definition, and a compiler warning is issued in case the redefinition is
inadvertent. To undefine an identifier, specify an #undef directive with the
identifier as its argument. #define directives have three basic purposes:

■ To define a control identifier for #ifdef and #ifndef

■ To define a manifest constant—an identifier defined to represent a constant
value

■ To define a compiler pseudofunction

The following discussion expands these three purposes of the #define directive
in your program.

272 Visual Objects Programmer's Guide

#define directive

Preprocessor Identifiers The most basic #define directive defines an identifier with no replacement text.
You can use this type of identifier when you need to test for the existence of an
identifier with either the #ifdef or #ifndef directives. This is useful to either
exclude or include code for conditional compilation.

Manifest Constants The second form of the #define directive assigns a name to a constant value.
This form of identifier is referred to as a manifest constant. For example, you can
define a manifest constant for the INKEY() code associated with a key press:
#define K_ESC 27
IF LASTKEY() = K_ESC

.

. <statements>

.
ENDIF

Whenever the preprocessor encounters a manifest constant while scanning a
source line, it replaces it with the specified replacement text.

Although you can accomplish this by defining a variable, there are several
advantages to using a manifest constant: the compiler generates faster and more
compact code for constants than for variables; and variables have memory
overhead where manifest constants have no runtime overhead, thus saving
memory and increasing execution speed. Furthermore, using a variable to
represent a constant value is conceptually inconsistent. A variable by nature
changes and a constant does not.

Use a manifest constant instead of a constant for several reasons. First, it
increases readability. In the example above, the manifest constant indicates more
clearly the key being represented than does the INKEY() code itself. Second,
manifest constants localize the definition of constant values, thereby making
changes easier to make, and increasing reliability. Third, and a side effect of the
second reason, is that manifest constants isolate implementation or environment
specifics when they are represented by constant values.

To further isolate the effects of change, manifest constants and other identifiers
can be grouped together into header files allowing you to share identifiers
between entities, applications, and groups of programmers. Using this
methodology, definitions can be standardized for use throughout a development
organization. Merge header files into the current application by specifying them
in the Clipper Headers tab in the Application Options dialog box.

Compiler Pseudo-
functions

In addition to defining constants as values, the #define
directive can also define pseudofunctions that are resolved at
compile time. A pseudofunction definition is an identifier
immediately followed by an argument list, delimited by
parentheses, and the replacement expression. For example:

Chapter 19: How the Visual Objects Two-Level Preprocessor Works 273

#define AREA(nLength, nWidth) (nLength * nWidth)

#define SETVAR(x, y) (x := y)

#define MAX(x, y) (IF(x > y, x, y))

#define directive

Pseudofunctions differ from manifest constants by supporting arguments.
Whenever the preprocessor scans a source line and encounters a function call
that matches the pseudofunction definition, it substitutes the function call with
the replacement expression. The arguments of the function call are transported
into the replacement expression by the names specified in the argument list of
the identifier definition. When the replacement expression is substituted for the
pseudofunction, names in the replacement expression are replaced with
argument text. For example, the following invocations,
? AREA(10, 12)
SETVAR(nValue, 10)
? MAX(10, 9)

are replaced by :
? (10 * 12)
nValue := 10
? (IF(10 > 9, 10, 9)

It is important when defining pseudofunctions, that you enclose the result
expression in parentheses to enforce the proper order of evaluation. This is
particularly important for numeric expressions. In pseudofunctions, you must
specify all arguments. If the arguments are not specified, the function call is not
expanded as a pseudofunction and exits the preprocessor to the compiler as
encountered.

Pseudofunctions do not entail the overhead of a function call and are, therefore,
slightly faster. Pseudofunctions, however, are more difficult to debug within the
debugger, have a scope different from declared functions and procedures, do not
allow skipped arguments, and are case-sensitive.

You can avoid some of these deficiencies by defining a pseudofunction using the
#translate directive. #translate pseudofunctions are not case-sensitive, allow
optional arguments, and obey the dBASE four-letter rule. See the #translate
directive reference in this chapter for more information.

Examples

■ In this example a manifest constant conditionally controls the compilation of
debugging code:
#define DEBUG
.
. <statements>
.
#ifdef DEBUG

Assert(FILE("System.dbf"))
#endif

274 Visual Objects Programmer's Guide

#ifdef directive

Chapter 19: How the Visual Objects Two-Level Preprocessor Works 275

defined. The <identifier> can be defined using the #define directive.

■ This example defines a manifest constant and substitutes it for an INKEY()
value:
#define K_ESC 27
.
. <statements>
.

IF INKEY() != K_ESC
DoIt()

ELSE
StopIt()

ENDIF

■ This example defines pseudofunctions for the MAX() and ALLTRIM()
functions:
#define MAX(arg1, arg2) (IF(arg1 > arg2, ;

arg1, arg2))
#define ALLTRIM(cString) (RTRIM(LTRIM(cString)))
.
. <statements>
.
? MAX(1, 2)
? ALLTRIM(" Hello ")

#ifdef directive
Compile a section of code if an identifier is defined.

Syntax

#ifdef <identifier>
 <statements>...
[#else]
 <statements>...
#endif

Arguments

<identifier> is the name of a definition whose existence is being verified.

Description

#ifdef...#endif lets you perform a conditional compilation. It does this by
identifying a section of source code to be compiled if the specified <identifier> is

#ifndef directive

The #else directive specifies the code to compile if <identifier> is undefined. The
#endif terminates the conditional compilation block.

Conditional compilation is particularly useful when maintaining many different
versions of the same program. For example, the demo code and full system code
could be included in the same program file and controlled by a single #define
statement.

Examples

■ This code fragment is a general skeleton for conditional compilation with
#ifdef:
#define DEMO
.
. <statements>
.
#ifdef DEMO

<demo specific statements>
#endif

■ This example defines a manifest constant to one value if it does not exist and
redefines it to another if it exists:
#ifdef M_MARGIN

#undef M_MARGIN
#define M_MARGIN 15

#else
#define M_MARGIN 10

#endif

#ifndef directive
Compile a section of code if an identifier is undefined.

Syntax

#ifndef <identifier>
 <statements>...
[#else]
 <statements>...
#endif

Arguments

276 Visual Objects Programmer's Guide

<identifier> is the name of a definition whose absence is being verified.

#include directive

Description

#ifndef...#endif lets you perform conditional compilation by identifying a section
of source code to compile if the specified <identifier> is undefined.

The #else directive specifies the code to compile if <identifier> is defined. The
#endif terminates the conditional compilation block.

Examples

■ This code fragment is a general skeleton for conditional compilation with
#ifndef:
#define DEBUG
.
. <statements>
.
#ifndef DEBUG

<optimized version of code>
#else

<debugging version of code>
#endif

#include directive
Include a file into the current header file or entity.

Syntax

#include "<headerFileSpec>"

Arguments

<headerFileSpec> specifies the name of another source file to include in the
current source file. As indicated in the syntax, the name must be enclosed in
double quotation marks.

<headerFileSpec> may contain an explicit path and file name as well as a file
extension. If, however, no path is specified, the preprocessor searches the
following places:

■ Directories specified in the INCLUDE environment variable

Chapter 19: How the Visual Objects Two-Level Preprocessor Works 277

#include directives may be nested up to 15 levels deep—that is, a file that has
been included may contain #include directives, up to 15 levels.

#undef directive

Description

#include inserts the contents of the specified file in place of the #include
directive in the header file or entity. By convention, the file inserted is referred to
as a header file. Header files should contain only preprocessor directives and
external declarations. By convention CA-Clipper header files have a .CH
extension.

Header files overcome the one major drawback of defining constants or inline
functions—the #define directive only affects the file in which it is contained. To
have the directives globally available to an application, they should be written to
a header file and that header file should either be included on the Clipper
Headers tab page of the Application Options dialog box, or #included in another
header file that is included in the application’s properties.

Another advantage of using the #include directive is that all the #define
statements are contained in one file. If any modifications to these statements are
necessary, only the #include file need be altered; the program itself remains
untouched.

#undef directive
Remove a #define macro definition.

Syntax

#undef <identifier>

Arguments

<identifier> is the name of the manifest constant or pseudofunction to remove.

Description

#undef removes an identifier defined with the #define directive. After an
#undef, the specified identifier becomes undefined. Use #undef to remove an
identifier before you redefine it with #define, preventing the compiler warning
that occurs when an existing identifier is redefined. Also, use #undef to make
conditional compilation specific to certain sections of a program.

278 Visual Objects Programmer's Guide

#xcommand | #xtranslate directive

Examples

■ To define and then undefine a manifest constant and a pseudofunction:
#define K_ESC 27
#define MAX(x, y) IF(x > y, x, y)
.
. <statements>
.
#undef K_ESC
#undef MAX

■ To use #undef to undefine an identifier before redefining it:
#define DEBUG
.
. <statements>
.#undef DEBUG
#define DEBUG .T.

■ To undefine an identifier if it exists, and otherwise define it for later portions
of the program file:
#ifdef TEST

#undef TEST
#else

#define TEST
#endif

#xcommand | #xtranslate directive
Specify a user-defined command or translation directive.

Syntax

#xcommand <matchPattern> => <resultPattern>
#xtranslate <matchPattern> => <resultPattern>

Arguments

<matchPattern> is the pattern to match in the input text.

<resultPattern> is the text produced if a piece of input text matches the
<matchPattern>.

Chapter 19: How the Visual Objects Two-Level Preprocessor Works 279

How the Visual Objects Preprocessor Works

Description

The #xcommand and #xtranslate directives work like #command and #translate
except that they overcome the dBASE keyword length limitation. They are
significant beyond the first four letters, limited only by available memory. All
other rules apply.

How the Visual Objects Preprocessor Works
In Visual Objects, all commands are defined in a text file that is linked into your
application or library and processed via the User Defined Command (UDC)
system during the compilation process.

The standard commands are defined in a file called STD.UDC which is used by
default, but you can create additional .UDC files and attach them to your
application or library as needed.

Having command syntax and semantics defined in this manner provides a
flexible system that can be extended in many ways, including the ability to
define your own commands. This chapter tells you how to define commands
and use the UDC system to make them available to your application.

Why Commands?

Most of the commands in the standard Visual Objects command set can be
reduced to a single expression (usually a function call). Some take more than
that, but commands can always be reduced to equivalent expressions, so why
have them? There are a couple of reasons:

1. Visual Objects is a new product with lots of history, and a big part of that
history is based in the use of commands for database processing.
Commands have been part of the Xbase language since its inception.

2. Command syntax is often easier to read and remember than a functional
equivalent, especially when there are many parameters involved.

The second reason may also compel you to employ the UDC system to provide a
command-like interface for some of your more complicated functions. Functions
that require many arguments are often difficult to use and understand since it is
only the position of the argument in the argument list (and perhaps its name)
that gives it meaning. By replacing such a function with a UDC, you can attach
keywords to the parameters and list them in any order you want, making your
code not only easier to write but also easier to read.

280 Visual Objects Programmer's Guide

How the Visual Objects Preprocessor Works

Chapter 19: How the Visual Objects Two-Level Preprocessor Works 281

translation rules in a text file that you attach to your application.

Creating a .UDC File

Unlike other parts of your application which are maintained in the repository
without the need for external files, UDCs must be maintained in external text
files. To create a .UDC file (using your favorite editor or the source code editor
in the IDE), simply type in the translation rules (see the Translation Rules section
below) for the commands you want to define and save the text file with a .UDC
extension.

To help maintain .UDC files, the IDE has a Tools UDC Tester command that lets
you test a translation rule before writing it to a .UDC file. For more information
on using these IDE features, see the IDE User Guide.

Order Significance

UDC translation rules are processed in sequential order, which may affect the
order in which you place them in the .UDC file.

For example, in STD.UDC, the DELETE command is broken into two translations
rules: one for deleting the current record and the other for deleting multiple
records. (The reason for having separate rules is that the two cases translate into
different function calls.)

In this case, the version to delete a single record is the simpler of the two and
appears before the more complicated case. Otherwise, the UDC system would
translate a single record DELETE as a multiple record DELETE without options.

Attaching a .UDC File

An application library can use up to 16 .UDC files. You attach .UDC files to an
application or library in the Application Options dialog box, similar to the way
you add libraries to the search path. (See the IDE User Guide for more
information.)

Note that a .UDC file attached to a library is not automatically visible to an
application that includes the library in its search path. You must explicitly attach
the UDC file to the application.

Compilation

You define a UDC using one or more translation rules that you specify in the form
of a match pattern and a result pattern. As stated earlier, you store these UDC

Translation Rules

282 Visual Objects Programmer's Guide

must start with a token.

When you compile an application that contains commands, the compiler
searches all attached .UDC files in sequential order until it finds a translation rule
for which the command input text matches the match pattern. When the
compiler finds a matching translation rule, it makes the appropriate substitution
according to the result pattern and produces result text which is compiled as part
of the application.

If you specify a command for which the compiler can find no matching
translation rule, the result is a compiler error.

Translation Rules
As with other components of the Visual Objects language, UDC translation rules
have their own syntax and semantics that you must adhere to and understand.
This section serves as the reference for defining UDC translation rules and is
structured similarly to the alphabetical command and statement entries in this
guide. It describes how to structure match patterns and result patterns to
achieve the results you want from the compiler.

Syntax <MatchPattern> => <ResultPattern>

Arguments

<MatchPattern> The pattern the input text must match to trigger the translation rule. The match
pattern specifies the syntax of the command.

<ResultPattern> The text produced when the translation rule is triggered. The result pattern
specifies the semantics of the command.

Note: The => symbol between <MatchPattern> and <ResultPattern> is a literal
part of the syntax. The symbol consists of an equal sign followed by a greater
than symbol with no intervening spaces. Do not confuse this symbol with the >=
or the <= comparison operators in the Visual Objects language.

Match Pattern The <MatchPattern> portion of a translation rule defines the pattern that a
command must match in order to trigger the translation rule. A match pattern
consists of tokens and match markers that the compiler tries to match against
input text in a specific way.

Tokens Tokens are keywords and other characters, such as commas and parentheses,
that appear in the match pattern. Keywords are compared according to Xbase
conventions (case-insensitive and first four letters mandatory), and other
characters must appear in the input text exactly as specified. All match patterns

Translation Rules

Important! When matching keywords that have more than four letters, the minimum
that must be specified is four letters. If there are conflicting rules defined for the
application (for example, SET PROCLINE and SET PROCNAME in STD.UDC), you
should specify enough letters to uniquely identify each keyword; otherwise, the first rule
that matches the abbreviation will be triggered. The possibility of more than one .UDC
file per application increases the likelihood of a conflict; therefore, it is better to spell out
each command completely rather than rely on abbreviations.

Match Markers Match markers are delimited by angle brackets (<>). They define the
circumstances under which text is considered to match and create an identifier to
hold the input text for use within the result pattern.

Match Marker Name

<idMarker> Regular match marker

<idMarker,...> List match marker

<idMarker:WordList> Restricted match marker

<*idMarker*> Wild match marker

</idMarker/> File match marker

Regular match marker, <idMarker>: Matches the next legal expression or literal
identifier in the input text. The regular match marker is the most general and,
therefore, the most likely match marker to use for a command argument.
Because of its generality, you can use it with the regular result marker, all of the
stringify result markers, and the blockify result marker.

List match marker, <idMarker,...>: Matches a comma-separated list of legal
expressions. If no input text matches the match marker, the specified marker
name contains nothing; otherwise, it contains the list.

Use the list match marker to define command clauses that have argument lists
(for example, FIELDS clauses). When there is a match for a list match marker,
you can write the list to the result text using the normal or smart stringify result
marker. You can turn the list into an array by enclosing the result marker in
curly braces ({ }).

Restricted match marker, <idMarker:WordList>: Matches input text to one of the
words in a comma-separated list. If the input text does not match at least one of
the words, the marker name contains nothing; otherwise, it contains the matched
word.

Chapter 19: How the Visual Objects Two-Level Preprocessor Works 283

Translation Rules

You can use the restricted match marker with the logify result marker to write a
logical value into the result text. If there is a match for the restricted match
marker, the corresponding logify result marker writes TRUE to the result text;
otherwise it writes FALSE. This is particularly useful when defining optional
clauses that consist of a command keyword with no accompanying argument.
STD.UDC implements the REST clause of database commands using this form.

Wild match marker, <*idMarker*>: Matches any input text from the current
position to the end of a statement. Wild match markers generally match input
that may not be a legal expression, such as NOTE <*x*> in STD.UDC.

Choices are either to ignore the text (by not writing it to the result text) or to
write it using one of the stringify result markers.

File match marker, </idMarker/>: Matches a file name expressed either as a literal
identifier or a string expression. If the input text is not a file name, the marker
name contains nothing; otherwise, it contains the file name. You will almost
always use the smart stringify result marker to write the file name to the result
text.

Optional Clauses Optional clauses are portions of the match pattern enclosed in square brackets
([]) that can be absent from the input text. An optional clause can contain any of
the components allowed within a match pattern, including other optional
clauses.

Optional clauses can appear anywhere and in any order in the match pattern.
When the input text is matched, the order is not significant, but each optional
clause can appear only once.

There are two types of optional clauses in the Visual Objects command set: one is
a keyword by itself, and the other is a keyword followed by one or more
arguments. Lone keywords are usually represented using a restricted match
marker and a corresponding logify result marker:
... [<ro:READONLY>] ... => ... <.ro.> ...

A keyword followed by arguments can be represented using any match
marker/result marker combination:
... [FIELDS <list,...>] ... => ... { <(list)> } ...

Repeating Clauses Repeating clauses are portions of the match pattern that are optional, but can be
repeated. Sometimes, a command or clause can have a list of arguments, all of
which are optional except the first (for example, USE...INDEX and STORE).
These clauses are usually in the form of a keyword followed by a list in which
the items can be repeated any number of times. You specify these as a single
optional clause and use a repeating result clause in the result pattern:

284 Visual Objects Programmer's Guide

STORE <value> TO <var1> [, <varN>] => ;
<var1> := [<varN> :=] <value>

Translation Rules

Chapter 19: How the Visual Objects Two-Level Preprocessor Works 285

token types for regular symbols and symbols used as function names. The
function result marker is most often used with the regular match marker.

When you specify an optional clause like this, adjacent to something that is not
optional, the clause can be repeated any number of times (or not at all) in the
input text. The repeating result clause (indicated by square brackets in the result
pattern) repeats the result text as many times as needed to match the input text.

The USE command in STD.UDC provides several examples of optional and
repeating clauses.

Result Pattern The <ResultPattern> portion of a translation rule defines what the compiler will
produce when the translation rule is triggered. Similar to match patterns, result
patterns consist of tokens and result markers.

Tokens Tokens are characters that are written to the result text, as is. Anything that
appears outside the angle brackets of a result marker, excluding the square
bracket symbols ([]), is considered to be a literal token. Examples of literal
tokens are function names, commas, parentheses, operators, and literal values.

Important! Command invocations are not allowed as literal tokens in a result pattern.
In other words, you cannot define one UDC in terms of another UDC.

Result Markers Result markers refer directly to a match marker identifier. Input text matched by
the match marker is written to the result text via the result marker.

Result Marker Name

<idMarker> Regular result marker

<%idMarker%> Function result marker

<#idMarker#> Dumb stringify result marker

<$idMarker$> Normal stringify result marker

<(idMarker)> Smart stringify result marker

<{idMarker}> Blockify result marker

<.idMarker.> Logify result marker

Regular result marker, <idMarker>: Writes the matched input text (or nothing if
no input text matches) to the result text, as is. Use this, the most general result
marker, unless you have special requirements. You can use it with any of the
match markers, but its most common use is with the regular match marker.

Function result marker, <%idMarker%>: Writes the matched input text (or nothing
if no input text matches) to the result text as a function call. Use this result
marker whenever you want to translate input text into a function call—using a
regular result marker will not work because the UDC system generates different

Translation Rules

286 Visual Objects Programmer's Guide

example, a, b, c becomes {| | a}, {| | b}, {| | c}). If no input text matches,
nothing is written to the result text.

Dumb stringify result marker, <#idMarker#>: Stringifies the matched input text
(encloses it in string delimiters) and writes it to the result text. The manner in
which lists are stringified depends on the match marker. When used with a list
match marker (<idMarker,...>), lists are stringified one element at a time (for
example, a, b, c becomes "a", "b", "c"). If no input text matches, the result is a
NULL_STRING.

Use this result marker when a string is required. This is generally the case for
commands where a clause or argument is specified as a literal value and the
result text must be written as a string, even if the argument is not specified (like
SET PATH in STD.UDC).

Normal stringify result marker, <$idMarker$>: Stringifies the matched input text
and writes it to the result text. When used with a list match marker
(<idMarker,...>), lists are stringified one element at a time (for example, a, b, c
becomes "a", "b", "c"). If no input text matches, no result text is written.

You will often use the normal stringify and blockify result markers together to
compile an expression while saving a text image of it. (See SET FILTER in
STD.UDC.)

Smart stringify result marker, <(idMarker)>: If the matched input text is not
enclosed in parentheses, this result marker stringifies it before writing it to the
result text; otherwise, matched input text is written to the result text as is. When
used with a list match marker (<idMarker,...>), lists are stringified one element at
a time (for example, a, b, c becomes "a", "b", "c"). If no input text matches,
nothing is written to the result text.

The smart stringify result marker is designed specifically to support extended
expressions. USE is a typical example:
USE Customer

becomes:
DBUseArea(.F.,,"Customer",...)

while:
USE (cPath + cDatafile)

becomes:
DBUseArea(.F.,, (cPath + cDatafile),...)

Blockify result marker, <{idMarker}>: Blockifies matched input text (encloses it in
code block delimiters) and writes it to the result text. For example, the input text
x + 3 would be written to the result text as {| | x + 3}. When used with a list
match marker (<idMarker,...>), lists are blockified one element at a time (for

Translation Rules

Use the blockify result marker with regular and list match markers to turn
expressions into code blocks. In STD.UDC, the blockify result marker defines
database commands where an expression is evaluated for each record (such as
FOR and WHILE conditions).

Logify result marker, <.idMarker.>: This result marker writes TRUE to the result
text if the match marker contains a value and FALSE otherwise—it does not
write the actual input text to the result.

The logify result marker is generally used with the restricted match marker to
specify the presence or absence of a keyword as a logical value. This formulation
is used in STD.UDC to define the READONLY and NEW clauses of the USE
command, while slightly more complicated logic is used to define the SHARED
and EXCLUSIVE clauses.

Repeating Clauses Repeating clauses are portions of the result pattern enclosed in square brackets
([]). The text within a repeating clause is written to the result text as many times
as it has input text for any or all result markers within the clause. If there is no
matching input text, the repeating clause is not written to the result text.

Repeating clauses cannot be nested. If you find the need to nest repeating
clauses, try breaking the command into two or more translation rules.

You will most often use repeating result clauses with optional match clauses that
have arguments. You can match input text with any match marker other than
the restricted match marker and write to the result text with any of the
corresponding result markers. Typical examples of this facility are the
definitions for STORE and REPLACE in STD.UDC.

Notes Less than operator: If you specify the less than operator (<) in the result pattern,
you must precede it with the escape character (\).

Comments: With the exception of the NOTE command (which is itself defined in
STD.UDC), all source code comment indicators are allowed in UDC files. (See
Chapter 20, “Overview of Language Elements,” in this guide for a table.)

Line continuation: Use a single semicolon to continue a translation rule onto a
new line.

Chapter 19: How the Visual Objects Two-Level Preprocessor Works 287

Translation Rules

Multistatement lines: If the result pattern contains more than one statement, each
statement must be separated from the next by two consecutive semicolons,
regardless of whether the next statement is on a new line. In other words, a
double semicolon generates a semicolon in the result text:
SET MESSAGE TO <n> [<cent:CENTER, CENTRE>] => ;

SetMessage(<n>) ;; ;
SetMCenter(<.cent.>)

CLOSE ALTERNATE => ;
SetAltFile("");; SetAlternate(.F.)

In cases where the statement is part of a repeating result clause, the double
semicolon should be inside the square brackets:
REPLACE <f1> WITH <v1> [, <fN> WITH <vN>] => ;

_FIELD-><f1> := <v1> ;
[;; _FIELD-><fN> := <vN>]

Examples These examples, taken from STD.UDC, illustrate many of the basic techniques
you can use when defining commands.

This example defines the @...BOX command using regular match markers with
regular result markers:

Translation Rule @ <t>, <l>, , <r> BOX <str> [COLOR <color>] => ;

DispBox(<t>, <l>, , <r>, <str> [, <color>])

Input Text @ 1, 1, 15,75 BOX B_SINGLE_DOUBLE

Result Text DispBox(1, 1, 15, 75, B_SINGLE_DOUBLE)

The following example uses a restricted match marker with a logify result
marker to implement an optional clause for a command definition. In this
example, if the ADDITIVE clause is specified, the logify result marker writes .T.
(TRUE) to the result text; otherwise, it writes .F. (FALSE):

Translation Rule RESTORE [FROM </file/>] [<add:ADDITIVE>] => ;

_MRestore(<(file)>, <.add.>)

Input Text RESTORE FROM myfile ADDITIVE

RESTORE FROM (cPath + cFile)

Result Text _MRestore("myfile", .T.)

_MRestore((cPath + cFile), .F.)

This next example (abbreviated from the STD.UDC version) uses a list match
marker with a smart stringify result marker to implement a standard FIELDS
clause. In this example, the field list is written as an array of strings:

288 Visual Objects Programmer's Guide

Translation Rules

Translation Rule COPY [TO </dest/>] [FIELDS <list,...>] => ;

DBCopy(<(dest)>, { <(list)> })

Input Text COPY TO destfile FIELDS Name, Address

Result Text DBCopy("destfile", {"Name", "Address"})

The following example uses a wild match marker with a dumb stringify result
marker to match a command argument specified as a literal, then write it to the
result text as a string:

Translation Rule SET PATH TO <*path*> => SetPath(<#path#>)

Input Text SET PATH TO C:\, C:\DATA, D:\MOREDATA

Result Text SetPath("C:\, C:\DATA, D:\MOREDATA")

This next example uses a regular match marker with blockify and normal
stringify result markers to compile an expression and save the text version of it
for later use with VODBFilter():

Translation Rule SET FILTER TO <xpr> => ;

DBSetFilter(<{xpr}>, <xpr>)

Input Text SET FILTER TO Name = 'Smith'

Result Text DBSetFilter({|| Name = 'Smith'}, "Name = 'Smith'")

The following example demonstrates how the smart stringify result marker
implements the RENAME command for file names specified as extended
expressions:

Translation Rule RENAME </oldFile/> TO </newFile/> => ;

FRename(<(oldFile)>, <(newFile)>)

Input Text RENAME cust.dbf TO customer.dbf

RENAME (cFileOld) TO (cFileNew)

Result Text FRename("cust.dbf", "customer.dbf")

FRename((cFileOld), (cFileNew))

This next example illustrates the importance of the blockify result marker for
defining database commands. Here, the FOR and WHILE conditions matched in
the input text are written to the result text as code blocks:

Chapter 19: How the Visual Objects Two-Level Preprocessor Works 289

Translation Rules

Translation Rule COUNT [TO <var>] [FOR <fo>] [WHILE <wh>] ;

[NEXT <nx>] [RECORD <rec>] ;
[<rs:REST>] [ALL] => ;
<var> := 0 ;;
;
DBEval({|| <var> := <var> + 1}, <{fo}>, ;

<{wh}>, <nx>, <rec>, <.rs.>)

Input Text COUNT TO nCount FOR Name = "Smith"

Result Text nCount := 0

DBEval({|| nCount := nCount + 1}, ;
{|| Name = "Smith"},,,,.F.)

The following example uses the STORE command definition to illustrate the
relationship between an optional match clause and a repeating result clause:

Translation Rule STORE <value> TO <var1> [, <varN>] => ;

<var1> := [<varN> :=] <value>

Input Text STORE 10 TO nOne, nTwo, nThree

Result Text nOne := nTwo := nThree := 10

290 Visual Objects Programmer's Guide

Chapter

20 Overview of Language Elements

This chapter introduces you to the basic language elements that go together to
make up a program. It provides enough detail to help you understand sample
program code that you read and introduces you to some terminology that you
will be seeing throughout this and other guides in the documentation set.

Detailed information on many of the topics introduced here can be found in
other chapters of this guide. For example, there is a chapter that discusses
variable declaration in much greater detail (“Variables, Constants, and
Declarations”) and one that elaborates on using operators, identifiers, and literal
values to build expressions (“Operators and Expressions”). Refer to the index or
the table of contents to find the information you want.

The Parts of a Program
All Visual Objects applications consist of a series of statements that are defined in
one or more modules. The types of statements that you will find are:

■ Entity declarations

■ Variable declarations

■ Instance variable declarations

■ Control structures

■ Method invocations and instance variable access

■ Function invocations

■ Command invocations

■ Object instantiation statements

■ Assignment statements

■ Comment lines

Language Elements Within these components, you will find:

Chapter 20: Overview of Language Elements 291

■ Keywords, such as command and argument names

■ Identifiers, such as entity, variable, and field names

An Example Program

■ Operators, such as +, :=, {}, and .NOT.

■ Literal values, such as "Frank Louis", 123.456, and 1993.12.30

■ Expressions (combinations of identifiers, operators, and literal values), such
as x + 1000, Substr(Name, 1, 10)

An Example Program
The following example program is used to illustrate the various types of
statements and point out the language elements within the statements:
GLOBAL cDoneMessage := "Finished!"

FUNCTION Start()
 // This is the startup routine for the app
 NoMen()
 CLEAR SCREEN
 ? "This application is " + cDoneMessage

FUNCTION NoMen()
 LOCAL oDBEmp AS DBServer
 oDBEmp := DBServer{"employee"}
 oDBEmp:SetIndex("empno")
 DO WHILE .NOT. oDBEmp:EOF
 IF oDBEmp:Sex == "M"
 oDBEmp:Delete()
 ELSE
 oDBEmp:Salary += 500
 ENDIF
 oDBEmp:Skip()
 ENDDO

Entity Declarations

An entity is the smallest named unit of the repository, a special purpose database
used to manage all of your Visual Objects applications and libraries, as well as
the system-defined libraries. There are three entity declaration statements in the
sample program:
GLOBAL cDoneMessage := "finished!"

FUNCTION Start()

FUNCTION NoMen()

GLOBAL and FUNCTION are predefined keywords, reserved words that have
special meaning to the compiler.

cDoneMessage, Start, and NoMen are identifiers for the entities being declared.

292 Visual Objects Programmer's Guide

An Example Program

Note: Identifiers must begin with a letter of the alphabet (A-Z or a-z—identifier
names are not case-sensitive) or an underscore and can contain only letters,
numbers, and the underscore character. Names are fully significant and must
not conflict with reserved words. (The reserved words are listed in Appendix B
of this guide).

Besides GLOBAL and FUNCTION, the other entity declaration statement
keywords in the language are:

ACCESS PROCEDURE

ASSIGN RESOURCE

CLASS STRUCTURE

DEFINE TEXTBLOCK

METHOD

All entity definitions start with one of these declaration statements and end with
the next such statement. Some entity declaration statements (such as DEFINE
and GLOBAL) completely define the named entity, while others (such as CLASS,
METHOD, FUNCTION, and PROCEDURE) serve as an indicator that further
definition of the entity follows.

Important! Every application must have one entity name Start() that is a function,
procedure, or method of the App class. The Start() routine is the first one executed when
the application is executed. Start() cannot declare any parameters and, under normal
circumstances, should not return a value. If you want to use strong typing in the
declaration statement, you must specify AS USUAL PASCAL.

Variable Declarations

Variable declarations are statements that inform the compiler of the identifiers
used by an entity for variables and fields. In the example:
LOCAL oDBEmp AS DBServer

is a variable declaration statement that declares the lifetime and visibility of the
identifier oDBEmp and indicates its data type with the keyword AS and the class
name identifier DBServer.

Chapter 20: Overview of Language Elements 293

An Example Program

294 Visual Objects Programmer's Guide

■

■ Transfer (BEGIN SEQUENCE...END SEQUENCE).

Other variable declaration keywords are:

FIELD
LOCAL
MEMVAR
STATIC [LOCAL]

Variable declaration statements must fall within an ACCESS, ASSIGN,
FUNCTION, METHOD, or PROCEDURE entity definition, preceding all other
statements in the definition.

Instance Variable Declarations

Instance variable declarations are statements that inform the compiler of the
names and visibility of the instance variables associated with a particular class.
They optionally inform the compiler of data types and initial values. Although
not used in the example, possible instance variable declaration keywords are:

EXPORT [INSTANCE]
HIDDEN [INSTANCE]
INSTANCE
PROTECT [INSTANCE]

These statements are always part of a CLASS entity definition.

Control Structures

Control structures, or constructs, are used to alter the flow of control in a
program. The following IF...ENDIF construct is illustrated in the example:
IF oDBEmp:Sex == "M"
 oDBEmp:Delete()
ELSE
 oDBEmp:Salary += 500
ENDIF

IF is the keyword that starts the construct, and ENDIF is the keyword that ends
it. ELSE is a special keyword that is valid only within the context of an
IF...ENDIF construct. All control structures follow this same basic pattern.

Control structures fall into four categories:

■ Conditional compilation (#ifdef...#endif and #ifndef...#endif)

■ Conditional (IF...ENDIF and DO CASE...ENDCASE)

 Looping (DO WHILE...ENDDO and FOR...NEXT)

An Example Program

With one exception, the entire construct must fall completely within an entity
definition. The exception is the BREAK keyword belonging to the BEGIN
SEQUENCE...END SEQUENCE construct: although the BEGIN
SEQUENCE...END SEQUENCE construct must occur within one entity, BREAK
may be placed within any entity in the application.

Nesting The example shows an IF structure nested within a DO WHILE structure:
DO WHILE .NOT. oDBEmp:EOF
 IF oDBEmp:Sex == "M"
 oDBEmp:Delete()
 ELSE
 oDBEmp:Salary += 500
 ENDIF
 oDBEmp:Skip()
ENDDO

To properly nest them, one construct must fall completely within the other.
There is no limit on the level to which you can nest control structures.

Method Invocations and Instance Variable Access

Method invocations execute the code associated with a particular METHOD
declaration. (This can be a class library method or one that you define as part of
your application.) In the example, there are two method invocations:
oDBEmp:Delete()

oDBEmp:Skip()

oDBEmp is an identifier representing a DBServer object.

Delete and Skip are identifiers associated with methods of the DBServer class.
The parentheses are required operators in method invocations, even if you are
not passing any arguments.

The send operator (:) connects to an object. It is also used to access instance
variables (and ACCESS/ASSIGN methods) either for the purpose of access, as in:
IF oDBEmp:Sex == "M"

or for the purpose of assignment, as in:
oDBEmp:Salary += 500

See the Assignment Statements section later in this chapter for more information.

Chapter 20: Overview of Language Elements 295

An Example Program

Function Invocations

Function invocations execute the code associated with a particular FUNCTION
entity declaration. (This can be a library function or one that you define as part
of your application.) In the example:
NoMen()

is a function invocation.

NoMen is the identifier associated with the function. The parentheses are
required operators in function invocations, even if you are not passing any
arguments.

Command Invocations

Command invocations are used to perform the action associated with a
command name. (This can be a command defined in STD.UDC or another UDC
file that you create). In the example:
CLEAR SCREEN

? "This application is " + cDoneMessage

are examples of command invocation statements.

"This application is " is a string literal.

The plus sign (+) is an operator used to concatenate two strings.

cDoneMessage is an identifier for a global variable entity.

Object Instantiation Statements

In many cases, you will instantiate an object like this, as part of an assignment
statement:
oDBEmp := DBServer{"employee"}

But, you can also use object instantiations as stand alone program statements.
(There are no cases of this in the example.) At first, it might seem like a strange
thing to do, but keep in mind that the Init() method of the object, which is
automatically called upon instantiation, can do all the processing necessary for
some objects, making the assignment unnecessary. In these cases, instantiation is
a valid program statement in and of itself.

296 Visual Objects Programmer's Guide

An Example Program

Assignment Statements

Assignment statements are used to store values in variables and database fields.
In the example:
oDBEmp := DBServer{"employee"}

is an assignment statement.

oDBEmp is an identifier representing a local variable.

:= is the assignment operator.

DBServer{"employee"} is an expression used to instantiate an object of the
DBServer class. (DBServer is the class identifier, {} are the instantiation operators,
and "employee" is a literal string that serves as an argument.)

This statement assigns the value on the right to the identifier on the left. After it
is executed, oDBEmp contains an object of the DBServer class.

Other operators used to form assignment statements are:

++
--
+= (illustrated in the example with oDBEmp:Salary += 500)
-=
*=
/=
%=
^=

Note: The = operator can also be used for assignments provided that the Old
Style Assignments option is checked either on the Compiler tab page in the
Application Options dialog box or on the Compiler Defaults tab page in the
System Settings dialog box.

Assignments that stand alone as program statements, like the one in the example,
are allowed in ACCESS, ASSIGN, FUNCTION, PROCEDURE, and METHOD
entity definitions only. You can also make assignments in GLOBAL, DEFINE,
LOCAL, and all instance variable declarations (such as INSTANCE and
PROTECT INSTANCE).

Chapter 20: Overview of Language Elements 297

An Example Program

298 Visual Objects Programmer's Guide

is compiled for debugging. __DEBUG__ can only be used for conditional
compilation (e.g., #ifdef debug).

Predefined Identifiers

The following identifiers are reserved by the compiler and are expanded during
compile time:

__AEFDIR__ Visual Objects Application Export
directory

__APPLICATION__ Application name

__APPWIZDIR__ Visual Objects Application

Wizard/Gallery directory

__CAVOBINDIR__ Visual Objects Binaries directory

__CAVODIR__ Visual Objects directory

__CAVODRIVE__ Visual Objects drive

__CAVOSAMPLESROOTDIR__ Visual Objects Samples directory

__DATE__ ANSI date string ("YYYYMMDD")

__ENTITY__ Entity name

__ENTITYSYM__ Symbolic entity name

__EXECUTABLEDIR__ Visual Objects Executable directory

__LINE__ Current line number

__MDFFILENAME__ Master document file name

__MEFDIR__ Visual Objects Module Export directory

__MODULE__ Module name

__OS__ Windows NT, Windows 95, or Windows 98

__PRGDIR__ Visual Objects Program File directory

__PROJECT__ Project name

__SYSDIR__ Windows system directory

__TIME__ Time string (HH:MM:SS)

__VERSION__ Visual Objects build number as a string
(e.g., "603")

__WINDIR__ Windows directory

__WINDRIVE__ Windows drive

Additionally, the identifier __DEBUG__ is automatically defined when an entity

Line Continuation

Chapter 20: Overview of Language Elements 299

return/linefeed pair, it looks to the next line for the remainder of the statement.
Using this technique, you can break a statement up onto several lines.

Comments

Comments make the code more readable. In the example:
// This is the startup routine for the app

is a comment. The comment indicators available in Visual Objects are:

Indicator Usage

// Single line comments and inline
comments at the end of a program
statement

/* ... */ Multiple line comments and true,
inline comments

* Single line comments

NOTE Single line comments

&& Inline comments at the end of a
program statement

TEXTBLOCK Entity declaration statement in which
all lines are ignored by the compiler

With all of the comment indicators except /*...*/, the compiler ignores all text
following the indicator until the next carriage return/linefeed pair is
encountered. With /*...*/ all text between the /* and the */, including carriage
return/linefeed pairs, is ignored. You can, therefore, use /*...*/ to embed a
comment within a line of code to create a true, inline comment.

Comment lines are allowed anywhere within an entity definition. To maintain
comments for the entire module, create a TEXTBLOCK entity.

Line Continuation
Unless you explicitly specify that a statement is to be continued onto a new line,
the compiler expects all statements to be completed before it encounters a
carriage return/linefeed pair. To continue a statement onto a new line, use the
semicolon (;) as a line continuation character:
oFSCustomer:FullPath := ;
 “\\ServerName\SharedName\PathName”

When the compiler encounters a semicolon followed by a carriage

Multistatement Lines

You cannot use the semicolon within a literal string to continue the remainder of
the string on the next line. If you need to continue a long string, close the string
delimiters and use the + operator before continuing with a new string on the next
line:
? "This line is going to be very long, so I'll" + ;
 " continue it onto a new line."

Note: The line continuation character (;) is ignored when used as part of a
comment.

Multistatement Lines
You can also use the semicolon to form a multistatement line. To do this, simply
place a semicolon, without a carriage return/linefeed, between the statements.
When the compiler encounters such a semicolon, it knows to read the next
statement from the same line. For example, the following IF construct in the
sample program uses the conventional one statement per line coding technique:
IF oDBEmp:Sex == "M"
 oDBEmp:Delete()
ELSE
 oDBEmp:Salary += 500
ENDIF

Here is the same IF construct, using multiple statements coded on the same line:
IF oDBEmp:Sex == "M" ; oDBEmp:Delete()
ELSE ; oDBEmp:Salary += 500
ENDIF

Note: The Debugger does not allow you to treat the individual statements in a
multistatement line independently. For example, you cannot step through the
individual statements. To debug the code, break the statements up into separate
lines.

300 Visual Objects Programmer's Guide

Chapter 21: Data Types 301

the strings to numbers (more on the subjects of operators, data type conversion,
and mixing data types in the “Operators and Expressions” chapter).

Chapter

21 Data Types

In Visual Objects programs, you will often find yourself manipulating data of
one kind or another. Whether it is a database field that you want to display on a
report, or a program variable that you want to use as a loop counter, each data
item has a specific data type that you determine. Data types are used by the
compiler and at runtime to enforce certain rules and to trap potential errors in
your programs.

These data types are supported by the Visual Objects language:

■ String

■ Symbol

■ Numeric types

■ Date

■ Logic

■ NIL

■ Void

■ Array

■ Code block

■ Object

Each data type has specific operations associated with it. For example,
expressing a value as a string lets you perform operations on it, such as
combining it with another string or obtaining a substring; however, you cannot
multiply two strings to get a product. Furthermore, except in rare cases, these
operations are strictly limited to the data type for which they are intended. This
means, for example, that you cannot compare a string to a number or concatenate
a date with a string.

Choosing a data type, however, does not necessarily prevent you from using
operations meant for another data type. For example, representing numbers as
strings does not preclude mathematical manipulation, but you must first convert

String

To help you analyze your data and choose appropriate data types, this chapter
discusses most of the data types listed previously. It will help you understand
the concept of data typing and give you a high-level overview of the various data
types available in the language.

The intention of this chapter is to lay the groundwork for the next two chapters,
“Variables, Constants, and Declarations” and “Operators and Expressions.”
These chapters will give you more specific information on declaring data types to
the compiler and using them to build expressions.

The array, code block, and object data types are more complex than the others
and are presented as separate chapters in this guide. Because of their
complexity, the discussion of these data types involves concepts that will not be
presented until the next two chapters. For this reason, detailed discussion of
these data types is delayed.

Finally, there are several system level data types that are not discussed in this
chapter. These data types include several numeric data types (mentioned briefly
in the Numeric section of this chapter) that are platform-independent, data
structures that you can use to define your own data types, and pointers. You
will find some information on these data types in the “Variables, Constants, and
Declarations” chapter.

The “Operators and Expressions” chapter in this guide defines operators by data
type.

String
The string—or character—data type identifies data items you want to manipulate
as character strings. Examples of string data are a person's name, address, and
state.

Often, you will find it more advantageous to represent numbers as strings
because of the types of operations you intend to use. For example, you will
seldom use a person's social security number in mathematical calculations, but
often use it as a reporting field along with other strings. Therefore, social
security numbers are almost always represented as strings rather than numbers.
Other examples of numbers that are typically represented as strings are zip codes
and phone numbers.

302 Visual Objects Programmer's Guide

String

Note: If you are already familiar with the concept of a database field, you may
also be aware of the existence of the memo data type for representing
variable-length strings. Memo is a special data type that applies only to database
fields and does not extend to the realm of program variables; however, the
discussion of the string data type applies equally to the memo data type. See
Chapter 8, “Using DBF Files,” in this guide for more information on the subject
of memo fields.

Character Set and
Literals

The string data type uses the ANSI character set.
To form a string literal, or constant, enclose zero or more valid
characters within one of the designated delimiter pairs:

■ two single quotes (for example, 'one to open and one to close')

■ two double quotes (for example, "one to open and one to close")

■ left and right square brackets (for example, [left to open and right to close])

Since all of the designated delimiter characters are part of the valid character set,
the delimiter characters themselves can be part of a string. To include a delimiter
character in a string literal, use an alternate character for the delimiter. For
example, if a string contains a single quote, enclose it in double quotes:

"I don't want to go."

Similarly, if a string contains double quotes, enclose it in single quotes:

'She said, "I have no idea."'

Note: To express a null—or empty—string, use a delimiter pair with no
intervening characters—including spaces. For example, " and [] both represent a
null string. You can also use the system-defined constant NULL_STRING for
this purpose.

Limitations The maximum string size is limited by the amount of available memory. Note
that this value may differ depending on your platform and is defined by the
constant MAX_ALLOC in the System Library.

Chapter 21: Data Types 303

Symbol

Symbol
The symbol data type gives you a more efficient way to handle string data.
Specifically, if you use symbols instead of strings when the string values are
known at compile time, your application will execute faster, especially if you do
a lot of comparisons.

The drawback of using symbols is that the available operators are limited to
assignment and simple comparisons; however, you can convert symbols to
strings using the Symbol2String() function, thereby obtaining access to all of the
string operations.

Character Set and
Literals

Because the function SysAddAtom() converts strings to
symbols (atoms), symbols can contain all characters defined in
the string character set. However, the literal representation for
symbols limits the range of literal symbols that you can define.

To form a symbol literal, precede one or more characters with the hash mark (#).
The first character must be an alphabetic character (A-Z, a-z) or an underscore,
and the remaining characters can be letters, numbers, and underscores only. In
literal symbol representations, lowercase letters are automatically converted to
uppercase. These are valid symbol literals:
#DOG
#CAT
#CAT_4

These symbol literals are not valid:

#DOG BARKS
#CAT#45
#CAT+DOG

Note: To express a null symbol, use the system-defined constant
NULL_SYMBOL.

Limitations The maximum symbol size is 65,535. The maximum number of symbols is
limited by the amount of available memory.

Note: Libraries included in the application may also use symbols, which will
further reduce the number of symbols directly available to an application.

304 Visual Objects Programmer's Guide

Numeric

Numeric
The numeric data type identifies data items that you want to manipulate
mathematically. Examples of numeric data items are a person’s age, the balance
of an account, and a loop counter.

Many data items that are represented as numbers, however, do not lend
themselves to the numeric data type. For example, social security numbers,
phone numbers, and zip codes are usually considered strings since you seldom,
if ever, use them in mathematical calculations.

The Visual Objects language offers support for several numeric data types. This
section generalizes all numeric data types without going into the specifics of any
one type unless absolutely necessary.

Numeric Type Description

INT Signed integer: under
Windows, 32 bits

FLOAT Floating point number: under
Windows, 64 bits

SHORTINT Signed 16-bit integer; identical
to ANSI C short

LONGINT Signed 32-bit integer; identical
to ANSI C long

BYTE Unsigned 8-bit integer (a byte);
identical to ANSI C unsigned
character

WORD Unsigned 16-bit integer (a
word); identical to ANSI C
unsigned short

DWORD Unsigned 32-bit integer (a
double word); identical to
ANSI C unsigned long

REAL4 32-bit floating point number;
identical to ANSI C float

REAL8 64-bit floating point number;
identical to ANSI C double

Chapter 21: Data Types 305

Numeric

Note: The data types listed in this table are ones that you can explicitly declare
(see the “Variables, Constants, and Declarations” chapter), but you can also have
undeclared numeric variables (sometimes called usual numerics) and field
variables that are defined in a database file structure as numeric. The
representations for these values are somewhat unique, but for the purpose of this
discussion, an undeclared numeric value is like an INT or a FLOAT, depending
on its value, and a numeric field is like a FLOAT.

Character Set and
Literals

The character set for the numeric data type is defined as the
digits from zero to nine, the period to represent a decimal
point, the plus and minus symbols to represent the sign of a
number, and the letters A-F, L, and X, uppercase or lowercase.

This character set is designed to cover all supported numeric types; however, not
all characters make sense for all numeric data types. For example, integer values
do not allow a decimal point, and decimal numbers do not allow the A-F
characters as digits.

There are several ways to form numeric literals using various subsets of this
character set, each of which is discussed below.

Important! In no case are literal numeric values delimited. If you enclose a number—
or any other string of characters—in string delimiters, it becomes a string.

Decimal Notation

The most familiar method for creating numeric literals is the standard base 10, or
decimal, notation, formed by stringing together one or more of the following:

■ one or more digits (zero through nine) to represent the whole portion of the
number

■ a single, optional decimal point

■ one or more digits to represent the fractional part of the number

For example:

■ 1234

■ 1234.

■ 1234.5678

■ .5678

■ 0.5678

306 Visual Objects Programmer's Guide

Numeric

Hexadecimal Notation

To represent numeric literals in base 16, or hexadecimal, use this notation:
0x<HexNumber>

In this representation:

■ 0 and x (uppercase or lowercase) are required to indicate this as a literal
hexadecimal representation.

■ <HexNumber> is an unsigned hexadecimal number (consisting of digits zero
through nine and letters A-F).

■ You cannot use intervening spaces anywhere within the representation.

These are examples of valid hexadecimal numbers:

■ 0x5EA

■ 0xFFFF

■ 0X5E7AFFFF

Binary Notation

To represent numeric literals in base 2, or binary, use this notation:
0b<BinaryNumber>

In this representation:

■ 0 and b (uppercase or lowercase) are required to indicate this as a literal
binary representation.

■ <BinaryNumber> is an unsigned binary number (consisting of digits zero and
one).

■ You cannot use intervening spaces anywhere within the representation.

These are examples of valid binary numbers:

■ 0b10100001

■ 0B111100001011

■ 0b1010000111110011

Chapter 21: Data Types 307

Numeric

Scientific Notation

You can also represent numeric literals using scientific notation:
<DecimalNumber>e<Exponent>

which you interpret as:
<DecimalNumber> * 10^<Exponent>

In this representation:

■ <DecimalNumber> is any valid decimal number as described in the Decimal
Notation section earlier. The decimal point in this number, however, is
required.

■ The letter e is required and can be either uppercase or lowercase.

■ The <Exponent> is an integer value (it has no decimal point) with an optional
unary sign (plus is assumed as the default).

■ You cannot use intervening spaces anywhere within the representation.

These are examples of numeric literals represented using scientific notation:

■ 1.5e7

■ 1.5E7

■ 911.123e-10

■ 2.7E-32

■ 1.0e+15

Long Integer Notation

You can specify a literal integer as a 32-bit value (LONGINT) using this notation:
<Number>l

In this representation:

■ <Number> is a numeric literal as described above in the Decimal Notation,
Binary Notation, or Hexadecimal Notation sections. If you use the decimal
notation, the number should be an integer (it should not include a decimal
point).

■ The letter l is required and can be either uppercase or lowercase.

■ You cannot use intervening spaces anywhere within the representation.

308 Visual Objects Programmer's Guide

Numeric

These are examples of numeric literals represented using the long integer
notation:

■ 0l

■ 4568930L

■ 0x5EAl

■ 0xFFFFl

■ 0b10100001L

■ 0B111100001011L

Negative Numbers

You can precede any of the numeric representations mentioned above with a
unary plus or minus sign but, strictly speaking, the sign is a unary operator—not
part of the literal representation:

■ -0b10100001

■ -0x6FF

■ -1.2e235

■ -1.2e-235

■ -1234

■ -1234.5678

■ -.5678

If you do not use a unary sign, a positive value is assumed. These two numbers
are equivalent:

■ 1234.567

■ +1234.567

Note: Since the unary plus and minus signs are operators, spaces are allowed
between the operator and the number. For example, these are valid negative
numbers:

■ - 0b10100001

■ - 0x6FF

■ - 1.2e235

■ - 1.2e-235

Chapter 21: Data Types 309

■ - 1234

■ - 1234.5678

Numeric

■ - .5678

Limitations The numeric data types are divided into two groups: platform-specific and
platform-independent. The platform-specific types are the ordinary
mathematical numerics that you will use most often in your programs, and the
platform-independent types are designed for low-level interfacing with the
underlying operating system.

The definitions of the platform-specific types change depending on the operating
system in use so that their size is not the same from one system to another. For
the Windows platform, the size limitations are:

Numeric Type Range of Values Significant Digits

INT -2,147,483,648 to
+2,147,483,647

NA

FLOAT 1.7E-308 to
1.7E+308

15

The platform-independent numeric types are specified with a certain size that is
guaranteed to be kept on all platforms:

Numeric Type Range of Values Significant Digits

SHORTINT -32,768 to
+32,767

NA

LONGINT -2,147,483,648 to
+2,147,483,647

NA

BYTE 0 to 255 NA

WORD 0 to 65,535 NA

DWORD 0 to 4,294,967,295 NA

REAL4 3.4E-38 to
3.4E+38

7

REAL8 1.7E-308 to
1.7E+308

15

For information regarding declaring a particular numeric data type, see Chapter
22, "Variables, Constants, and Declarations," in this guide.

310 Visual Objects Programmer's Guide

Date

Date
The date data type identifies data items that represent calendar dates. Examples
of date data items are a birthday, the date on which an account comes due, and
today’s date.

You can manipulate dates in several ways, such as finding the number of days
between two dates and determining what the date will be ten days from now.

Note: DATE is a reserved word and cannot, therefore, be used as a field or
variable name.

Character Set and
Literals

The date character set is defined as the digits from zero to nine
and the decimal point to separate the digits within the date.

To form a date literal, you string characters together using the ANSI date format:
[cc]yy.mm.dd

In this representation:

■ cc, if specified, represents the century (the default is 19)

■ yy represents the year

■ mm represents the month

■ dd represents the day

■ the decimal point is the separator

These are examples of valid date literals:

■ 89.01.02 is January 2, 1989

■ 92.07.22 is July 22, 1992

■ 1693.09.28 is September 28, 1693

■ 100.01.01 is January 1, 100

■ 0.0.0 (or any other invalid date) is a null date

Note: You can also express a null date using the system-defined constant
NULL_DATE.

Chapter 21: Data Types 311

Logic

Limitations These limitations apply to the individual components that go together to make
up a date:

■ cc, if specified, must be between 1 and 79

■ yy must be between 0 and 99

■ mm must be between 1 and 12

■ dd must be between 1 and 31

In addition to obeying these rules, all dates must have internal integrity. For
example, 89.11.31 and CToD("02/29/90") meet these criterion but are not valid
dates because November has only 30 days and 1990 was not a leap year.

All valid dates in the range 01/01/0100 to 12/31/7900 as well as a null date are
supported.

Logic
The logic data type identifies data items that are binary in nature. Typical logic
data items are those with values of true or false, yes or no, or on or off.

For example, you could represent a switch setting that is either on or off using a
logic value. A person’s marital status and the answer to a true/false question on
a quiz are other examples of logic data items.

Character Set and
Literals

The logic character set consists of the letters y, Y, t, T, n, N, f,
and F.

Though only two values are possible for this data type, there are several ways to
represent them. To form a literal, enclose one of the characters in the defined
character set between two periods. The periods are delimiters for logic values
just as quote marks are for strings.

The reserved words TRUE and FALSE are used to represent the literal logic
values.

312 Visual Objects Programmer's Guide

NIL

NIL
NIL is a unique data type having only one value which is represented using the
reserved word NIL. It is categorized as a data type because it has certain
operations associated with it. When you assign NIL to an existing polymorphic
variable, the variable does not retain its previous data type; however, NIL is in a
category of its own and does not have the flavor of a real data type. There are
several circumstances under which NIL values arise:

■ A variable that is created with PRIVATE, declared but not typed (for
example, LOCAL x), or declared AS USUAL will be initialized to NIL if you
do not specify an initial value.

■ A dynamic array will have its elements initialized to NIL when you first
specify its dimensions or create it with ArrayCreate().

■ A parameter defined as part of an untyped function, method, or procedure is
set to NIL if you skip it when you call the routine.

■ You can assign NIL to any polymorphic variable and use it in a comparison
statement to determine if such a variable contains the NIL value.

Note: You cannot assign NIL to a strongly typed variable other than a USUAL,
an OBJECT (or <idClass>), or an ARRAY. Except in these cases, the NIL value is
limited to undeclared and untyped variables. See “Variables, Constants, and
Declarations” for more information on the relationship between NIL and
strongly typed arrays and objects.

Character Set and
Literals

Using the reserved word NIL, you can create a literal NIL
value:
x := NIL

By definition, any polymorphic variable containing the NIL value is of the NIL
data type.

When you display a NIL value, the value is displayed, literally, as NIL:
?? x // Result: NIL

Tip: The purpose of NIL is to let you manipulate a variable that is not
initialized without generating a runtime error, but there are other uses that
you may find convenient. For instance, with undeclared logical variables,
you can use NIL to achieve three-state logic: the variable can contain three
values instead of just TRUE or FALSE. You would interpret a NIL value as
an unknown. You cannot do this with variables declared AS LOGIC.

Chapter 21: Data Types 313

VOID

314 Visual Objects Programmer's Guide

operation system, these issues become important.

See Chapter 22, “Variables, Constants, and Declarations” and Chapter 27,
“Functions and Procedures,” for more specific information on the NIL data type.

VOID
VOID, like NIL, is a unique data type that has a very limited usage. It is used
internally, and you can use it to define functions that do not return any value as
you would in a C function definition. However, no other operations are defined
for the VOID data type—it cannot be assigned as a value and does not even have
a literal representation.

NIL, NULL, and VOID—
What Is the Difference?

Think of NIL as a value without a data type and VOID as a
data type without a value. Since it is a legitimate value, you
can actually assign NIL to a variable and test for this value
using a comparison operator; the system uses NIL as a special
indicator for polymorphic variables that are not initialized and
skipped arguments. {xe "Data types:NIL"}{xe "Data
types:VOID"}

VOID, on the other hand, is not a value. When a routine returns VOID, you
cannot check the return value using a comparison, and you can never assign
VOID to a variable.

NULL values are another case altogether. There are several predefined NULL
constants that you can use as assignment values and to test for uninitialized
typed variables. They are like typed NILs. Some of these constants (such as
NULL_DATE and NULL_STRING) were mentioned earlier in this chapter, and
others are listed in Chapter 22, “Variables, Constants, and Declarations.”

See Chapter 27, “Functions and Procedures,” for more specific information on
the VOID data type used as a function return value.

Pointers
At runtime a program is made up of various components, such as functions,
methods, and variables. All these components are loaded into memory while the
program is running. To ensure that they interact properly, they have to reside in
memory in an ordered way. This ordering is achieved by assigning memory
addresses to each individual component. Normally, the developer does not have
to worry about these low level details, since address assignment and resolution is
handled by the operating system. However, for low level interfacing with the

Pointers

The address of an application component is also referred to as a pointer. A
pointer is an address value, pointing to some location in memory. In 32-bit
Windows this value may be within the range of 0 to 4GB. What makes working
with pointers difficult and a bit dangerous is the fact, that not all possible
address values are valid. Only addresses that contain actual application
components are valid values for pointers. A valid address depends on the actual
application. Also, some addresses may be read-only, in which case, accessing the
value will work fine but trying to change it will cause a processor exception.

Obviously there are different kinds of pointers. Pointers may point to the
contents of a variable (data pointers) or to the beginning of a function (function
pointers). Taking a look at data pointers, there are once again different types of
pointers. Data pointers might point to a different data type such as a LONG
value, a WORD value, a LOGIC value or even the location of another pointer. To
properly handle function pointers, you not only need the address of the function,
but also all the details (calling convention, number of parameters, parameter
types, return type) about the function being pointed to.

The operation of retrieving the value that a pointer is pointing to or calling the
function that a function pointer is pointing to is called dereferencing the pointer.

Visual Objects supports both untyped (sometimes also called anonymous) and
typed pointers. Untyped pointers are simply an address without any semantic
information attached to them. Looking at an anonymous pointer, it is impossible
to tell if the pointer is pointing to data or to a function. Therefore, the use of
anonymous pointers is limited since the compiler does not have the necessary
information to perform certain operations (e.g. pointer arithmetic). Also, the
compiler cannot prevent the programmer from dereferencing a pointer to the
wrong data type.

Untyped Pointers

Variables containing pointers are declared using the PTR type specifier:
FUNCTION Start()
 LOCAL p AS PTR

Pointers are automatically initialized to contain a NULL_PTR. This is an invalid
address, and therefore a NULL_PTR must not be dereferenced. This will
immediately cause a processor exception as is the case when using any other
invalid address value.

Chapter 21: Data Types 315

Pointers

The address of the following items can be obtained by using the address operator
(@) with them:

■ Variables (Global, Local)

■ Functions and procedures

■ Elements of DIM Arrays

■ Structure members

The following example illustrates how to retrieve the address of a local variable
and store it in a pointer variable:
FUNCTION Start()
 LOCAL l:=5 AS LONG
 LOCAL p AS PTR

 p := @l
 ? p

Displaying the value of a pointer will show the actual address value. This
information is usually not of much use.

Pointers are dereferenced using a dereference operator consisting of a type name
followed by the pointer in parenthesis. For example:
FUNCTION Start()
 LOCAL l:=5 AS LONG
 LOCAL p AS PTR

 p := @l
 ? LONG(p) // Output: 5

Note that with untyped pointers the compiler cannot check, if the data type
given in the dereference operation, is the correct type of the item the pointer is
pointing to.

Similarly, the value also can be changed by retrieving the value that a pointer is
pointing to:
FUNCTION Start()
 LOCAL l:=5 AS LONG
 LOCAL p AS PTR

 p := @l
 LONG(p) := 10
 ? l // 10

Pointers come in very handy when working with structures and dynamically
allocated heap memory (using MemAlloc()). Since the use of untyped pointers
does not allow any kind of compile checking, using typed pointers is highly
recommended.

316 Visual Objects Programmer's Guide

Pointers

Typed Pointers

A pointer was nothing more than an address to the CA-Visual Objects 1.0
compiler. Visual Objects has extended the view of a pointer to include semantic
information. The compiler uses this information to identify the type of data held
in the memory area the pointer addresses. This information now enables us to
do pointer arithmetic.

Pointer typing is applicable to the majority of Visual Objects basic data types.
Their usage is, however, limited in the case of the Visual Objects dynamic data
types.

Typed pointers can be used without restriction with the following data types:

Data Type Description

DATE Date value

LOGIC Logical value

INT Signed integer: under Windows, 32 bits

SHORTINT Signed 16-bit integer; identical to ANSI C
short

LONGINT Signed 32-bit integer; identical to ANSI C
long

BYTE Unsigned 8-bit integer (a byte); identical
to ANSI C unsigned character

WORD Unsigned 16-bit integer (a word); identical
to ANSI C unsigned short

DWORD Unsigned 32-bit integer (a double word);
identical to ANSI C unsigned long

REAL4 32-bit floating point number; identical to
ANSI C float

REAL8 64-bit floating point number; identical to
ANSI C double

Chapter 21: Data Types 317

Pointers

318 Visual Objects Programmer's Guide

the first element of a one dimensional array with a maximum of 10 REAL4
elements.

Furthermore, a restricted use of typed pointers is possible with the following
dynamic data types:

Data Type Description

FLOAT Floating point number: under Windows,
80 bits

OBJECT General object

<idClass> Object of a specific class

STRING Dynamic string

<idStructure> and <idUnion> are representative of specific structures and
unions and the AS form of these data types can be interpreted as pointers, due to
their internal implementations.

All pointer data types (typed pointers, PTR, PSZ, AS Structures, REF —
references) are now considered compatible in Visual Objects. It is therefore
possible to do a logical comparison or an assignment employing these various
types of equivalent pointers.

The compiler, for example, loses its semantic information in assigning a typed
pointer variable to a PTR variable.

Caution! This type of pointer usage is designed for advanced users with an
understanding of the Visual Objects internals.

Declaration of Typed Pointers

Typed pointers can be declared to the compiler by using either the LOCAL or the
GLOBAL statement. Either of these declarations are possible:
[STATIC] LOCAL <Variable List> AS <Data Type> PTR

[STATIC] GLOBAL <Variable> AS <Data Type> PTR

It is possible to initialize the typed pointer by the declaration. All typed pointers
that are not initialized by the declaration are assigned the initial value of
NULL_PTR. The following piece of code demonstrates the declaration and
initialization of a typed pointer:
LOCAL DIM fpArr[10] AS REAL4
LOCAL preal4:=@fpArr AS REAL4 PTR

In this example we define a REAL4 pointer (preal4) and initialize it to point to

Pointers

Chapter 21: Data Types 319

first operand of the addition/subtraction operation is a typed pointer and its
second operand represents a numeric value.

Dereferencing Typed Pointers

With Visual Objects, it is sensible to dereference a typed pointer because the
compiler then knows the type of data the dereferenced pointer addresses.

The syntax used for dereferencing typed pointers is similar to the type
conversion syntax that you may already be familiar with from the previous
version of Visual Objects: (<idType>(<Value>)). Typed pointer dereferencing is
achieved with the following syntax:
PTR(<Pointer Variable>)

The pointer variable can be typed to any of these data types:

■ DATE

■ LOGIC

■ INT

■ SHORTINT

■ LONGINT

■ BYTE

■ WORD

■ DWORD

■ REAL4

■ REAL8

Using this syntax, we can obtain the value of the first element of the array (the
element preal4 addresses) in the following manner:
PTR(preal4)

Pointer Arithmetic

Performing arithmetic operations with typed pointers is alluded to the inherently
semantic information they incur.

Pointer arithmetics are restricted to the operations of addition and subtraction.

Typed pointer addition/subtraction is unlike the normal addition/subtraction in
the following aspects:

Firstly, though it is a binary operation like the normal addition/subtraction,
typed pointer addition/subtraction will only be carried out in the case where the

Pointers

The second difference is an immediate implication of the first: typed pointer
addition is as opposed to the normal addition not commutative. If we add a
typed pointer to a numeric value, the compiler in a first step automatically
promotes the type of the numeric value to a pointer and subsequently does a
"normal" pointer addition. This is not equivalent to the typed pointer addition.

In typed pointer addition/subtraction, the resulting scaled pointer obtained with
the second operand (the numeric value) is added/subtracted to/from the first
operand (the typed pointer). The scaling is carried out using the size of the data
type being addressed by the first operand.

Pre/Post incrementing or decrementing typed pointers are special cases of the
general typed pointer addition or subtraction. In these special cases the compiler
automatically sets the value of the second operand to one.

In the example below, the statement ptemp++ does a typed pointer addition.
After the statement is carried out, the variable ptemp then addresses the
subsequent REAL4 element in the array, assuming that ptemp points to the first
array element before the statement is executed. After execution ptemp will be
pointing to the second element. In this particular case, the value of the pointer
has not only been increased by one (the magnitude of the second operand), but
by 1*4 (since the _SizeOf(REAL4) is 4).
LOCAL prandom, ptemp AS REAL4 PTR
LOCAL w AS WORD

// allocate memory area for sparse array of 100
// REAL4 elements
prandom := PTR(REAL4, MemAlloc(100 * _SizeOf(REAL4))

// initialize sparse array
ptemp := prandom
FOR w:=1 UPTO 100
 PTR(ptemp) := 0.0
 ptemp++
NEXT

// randomly access/assign values to elements
// in sparse array
prandom[10] := 5.75
prandom[50] := 10.25

The subtraction of pointers further poses a particular result. Typed pointer
subtraction has a specific interpretation in the case where both operands of the
operation represent pointers. The result of the operation in this particular case
gives the number of elements (with respect to the size of the data being
addressed by the first pointer) between these two elements.

Executing the expression ptemp - prandom after our initialization loop in the
above example will yield the value 100.

320 Visual Objects Programmer's Guide

Chapter

22
Variables, Constants, and
Declarations

The previous chapter, “Data Types,” introduced you to the concept of
categorizing data according to the kind of information it represents and went on
to describe how the Visual Objects language provides you with certain
predefined data types designed to handle a wide variety of information.

This chapter introduces you to variables and constants, shows you how to create
and declare them, and explains how to associate them with a particular data
type.

Terminology
There are several terms used throughout this chapter that you may not know.
Many of the terms are defined as they are introduced, but this section defines
some of the more basic terms while describing the general nature of variables
and constants.

The term variable is used, quite literally, to describe a value that is subject to
change. Similarly, the term constant describes a value that always stays the same.

You define variables and constants by specifying names for them and assigning
values to the names. Then, when you refer to a variable or constant name that
you have defined in your application, its value is returned.

Variable names and constant names must be legal identifiers. That is, the name must
begin with a letter of the alphabet and can contain only letters, numbers, and the
underscore character. Names are fully significant up to 64 KB characters and
must not conflict with reserved words. (The reserved words are listed in
Appendix B of this guide.)

There are two ways to define a variable name. You can create the variable at
runtime by assigning a value to an identifier, or you can declare a variable name
to the compiler. Once you have created or declared a variable name, you can
change its value at any time during your application.

Chapter 22: Variables, Constants, and Declarations 321

Field Variables

Constants are a similar case. You could create a variable at runtime and never
change its value throughout your application and, in a sense, this variable could
be called a constant. However, you can also specifically declare constants as
compiler entities and thereby gain certain advantages. True compiler constants
are the subject of this chapter.

Once you define a variable or constant name, it continues to exist and to possess
a value until it is released from memory. Some variables are released
automatically, while others must be explicitly released. Some variables are never
released. The duration of a variable’s life is referred to as its lifetime.

Visibility refers to the conditions under which a variable is accessible to the
program during execution. Some variables, even though they have been created
and assigned a value, may not be visible under certain conditions.

Scope is used to refer collectively to the lifetime and visibility of a variable or
constant. This term is also used to refer to the lexical unit to which a declaration
applies.

Field Variables
One of the most important and powerful aspects of Visual Objects is its database
system that allows you to create and manipulate structured database files within
your applications.

You create a database as a disk-based file by defining a structure, including field
names, data types, and lengths, in a distinct step during the application
development process using DBServer Editor as described in the IDE User Guide.
Afterwards, you design and code the programs that rely on this structure to use
and manipulate the data within the database file.

You can look at a database as a table, containing rows (or records) and columns
(or fields) as its basic components. Once a database file exists on disk, within
your application you can open it in a work area, move the work area record pointer
to change the current record, and access the data in a particular column of the
current record using its field name.

The term field variable is a synonym for a database field name. Field variables
typically exist and possess values before the application begins execution, and
they continue to exist after the application terminates. They are visible to all
entities in an application as long as their corresponding database file is open.

322 Visual Objects Programmer's Guide

Field Variables

Variable Type Lifetime Visibility

FIELD Persistent—while
database exists

Application—
while database
is open

Note: All fields are visible throughout the application, but the FIELD
declaration statement, described later in this section, applies only to the entity in
which it occurs.

DBServer Field References

If you are using the DBServer (or another DataServer) class, you refer to field
names as if they were instance variables, using the database server object and the
send operator (:):
FUNCTION ListAll()
 LOCAL oDBNames
 oDBNames := DBServer{"names")
 DO WHILE !oDBNames:EOF
 ? oDBNames:Name, oDBNames:Phone
 oDBNames:Skip()
 ENDDO

Using the DBServer class is the preferred method for database access because the
code will automatically support multiple instantiations of itself, a very
compelling benefit when programming in a GUI environment. With the
exception that the data types of the data server objects are not declared (this
concept is introduced later in this chapter in the Strongly Typed Variables
section), this code is as efficient and unambiguous as possible. See Chapter 7,
“Data Server Classes,” earlier in this guide for more information on the benefits
of using data servers.

Aliased Field References

If you are not using one of the data server classes to access your database file,
you need to concern yourself with the possibility of ambiguous variable
references (fields and variables with the same name). Consider the following
example:
FUNCTION ListAll()
 USE names NEW
 DO WHILE !EOF()
 ? Name, Phone
 DBSkip()
 ENDDO

Chapter 22: Variables, Constants, and Declarations 323

Field Variables

324 Visual Objects Programmer's Guide

fields in all open database files have application-wide visibility.

When this code is executed, it will display the fields Name and Phone in the
Names database, provided that they exist. If the field names do not exist, the
program will look for variables of the same name and display them. If the
variables are not found, a runtime error will occur.

But, none of this can be decided at compile time because the compiler has no way
of knowing anything about Name and Phone and must, therefore, generate a good
deal of code to handle all the possibilities, causing your program to be slower
than necessary.

To eliminate runtime overhead and make your application as efficient as
possible, you should qualify all field names (and function calls) using the
database alias name:
FUNCTION ListAll()
 USE names New
 DO WHILE !Names->(EOF())
 ? Names->Name, Names->Phone
 Names->(DBSkip())
 ENDDO

This code is as unambiguous and efficient as possible because every field
reference and function call is qualified.

FIELD Declarations and _FIELD Aliases

Instead of using the database alias to qualify each field reference, you can use the
_FIELD alias or declare the field names to the compiler using the FIELD
statement:
FUNCTION ListAll()
 USE names NEW
 DO WHILE !Names->(EOF())
 ? _FIELD->Name, _FIELD->Phone
 Names->(DBSkip())
 ENDDO

FUNCTION ListAll()
 FIELD Name, Phone IN Names
 USE names
 DO WHILE !Names->(EOF())
 ? Name, Phone
 Names->(DBSkip())
 ENDDO

Both of these solutions eliminate ambiguity, but neither is as desirable as
explicitly qualifying field names with a particular alias.

Note: Like all variable declaration statements, the FIELD statement applies only
to the entity in which it occurs, not the entire application. The statement does
not, however, limit the visibility of the fields it declares to the current entity. All

Dynamically Scoped Variables

Chapter 22: Variables, Constants, and Declarations 325

described as dynamic, or polymorphic.

Recap

There are a lot of ways to deal with fields. The following list summarizes them,
in reverse order of preference:

■ Use the field name, unqualified, and let the compiler generate runtime code
to figure out what you mean. This technique has several disadvantages:

1. The program will be inefficient because of the runtime overhead
involved.

2. The compiler and you may not agree on the runtime decision.

3. The program will be prone to errors because of the possibility of
conflicting field and variable names, which can go undetected.

4. The program will require that a particular work area be selected when it
runs.

5. The program will not support opening the same database in multiple
work areas.

■ Use the _FIELD alias or the FIELD declaration statement. This technique
solves all the problems listed above except numbers 4 and 5.

■ Use an alias qualifier for all field names and function names. This will
eliminate number 4 but not 5.

■ Use the DBServer class to eliminate number 5.

Dynamically Scoped Variables
Visual Objects provides support for dynamically scoped variables that are created
and maintained completely at runtime. The term dynamically scoped refers to
the fact that the scope of these variables is not limited by the entity in which the
variable is created.

Variable Type Lifetime Visibility

PRIVATE Until creator returns or
until released

Creator and called routines

PUBLIC Application or until
released

Application

The data type of a dynamically scoped variable changes according to the
contents of the variable. For this reason you will often hear this type of variable

Dynamically Scoped Variables

326 Visual Objects Programmer's Guide

new value (and a new data type) to the variable at any time:
PRIVATE x := 10, y

Warning! Dynamically scoped variables are supported only if the Undeclared Variables
compiler option is checked. Otherwise, any reference to a dynamically scoped variable
will result in a compiler error.

Dynamically scoped variables are provided mainly for CA-Clipper/Xbase
compatibility; however, they are very useful in certain circumstances. For
instance, they let you develop rapid prototypes and have certain inheritance
properties that you may find hard to resist.

You must be aware, however, that using them comes at a cost. Consider these
points:

■ Because they are not resolved at compile time, these variables require
overhead in the form of runtime code, making your application larger and
slower than necessary.

■ No compile time checking for type compatibility is possible with these
variables.

■ Using the inheritance properties of these variables defies one of the basic
tenets of modular programming and may lead to maintenance and
debugging problems down the line. Furthermore, this practice will make the
transition to lexically scoped and typed variables more difficult.

This section explores dynamically scoped variables fully, but Visual Objects has
several options for variable declarations that you will want to explore before
choosing to use this variable class. The next two sections in this chapter
introduce you to Lexically Scoped Variables and Strongly Typed Variables,
which you may find useful.

Important! For the sake of illustration, some of the examples in this section use
unorthodox programming practices. Using the inheritance properties of public and
private variables instead of passing arguments and returning values is not recommended.

Private

Private is one of the two types of dynamically scoped variables, and there are
several ways to create a private variable:

■ Assign a value to a non-existent variable name (for example, x := 10). The
variable takes on the data type of its assigned value until you assign a new
value to it. (x is numeric, but the assignment x := "Ms. Jones" changes it to a
string.)

■ List the variable name as part of a PRIVATE statement. If you do not make
an assignment at this time, the variable takes on the NIL value and data type;
otherwise, it takes on the data type of its assigned value. You can assign a

Dynamically Scoped Variables

 creates x as a numeric value of 10 and y as NIL. Later on, the assignments:
x := "Ms. Jones"
y := TRUE

 change these types to string and logical.

■ List the variable name as part of a PARAMETERS statement within a
FUNCTION or PROCEDURE definition. The variable takes on the data type
of its associated argument when the routine is called, or NIL if the argument
is omitted. You can assign a new value (and a new data type) to the variable
at any time.

Private variables have these properties:

■ You can access them within the creating routine and any routines called by
the creator. In other words, private variables are automatically inherited by
called routines without having to pass them as arguments.

■ You can hide them from a called routine by explicitly creating a private
(using PRIVATE or PARAMETERS) or declaring a local (using LOCAL)
variable with the same name in the called routine.

■ They are automatically released from memory when the creator returns to its
calling routine, or you can release them explicitly using RELEASE, CLEAR
ALL, or CLEAR MEMORY.

In this example, the function Volume() expects three arguments, or parameters,
to be passed. When the function is called, it creates three private variables,
nLength, nWidth, and nHeight to accept the arguments. Because they are created
with the PARAMETERS statement, any higher-level variables (either public or
private) created with these names are temporarily hidden, preventing their
values from being overwritten in memory:
FUNCTION Volume()
 PARAMETERS nLength, nWidth, nHeight
 RETURN nLength * nWidth * nHeight

In the next example, a modified version of Volume() creates a private variable
(assuming no other variable name nVolume is visible) to store its return value. If
the variable nVolume exists prior to calling Volume() and is visible to Volume()
(for example, nVolume may be public or private to the routine that called
Volume()), its value is overwritten in memory and will remain changed when the
function returns to its calling routine:
FUNCTION Volume()
 PARAMETERS nLength, nWidth, nHeight
 nVolume := nLength * nWidth * nHeight
 RETURN nVolume

Chapter 22: Variables, Constants, and Declarations 327

Dynamically Scoped Variables

In this version, Volume() specifies the nVolume variable as PRIVATE. Doing this
temporarily hides any higher-level variable (either public or private) with the
same name, preventing its value from being overwritten in memory:
FUNCTION Volume()
 PARAMETERS nLength, nWidth, nHeight
 PRIVATE nVolume := nLength * nWidth * nHeight
 RETURN nVolume

Public

The second category of undeclared variable is public. Public variables have
application-wide lifetime and visibility, and you can define them in only one
way:

■ List the variable name as part of a PUBLIC statement. If you do not make an
assignment at this time, the variable takes on a value of FALSE (or NIL for
array elements); otherwise, it takes on the data type of its assigned value.
You can assign a new value (and a new data type) to the variable at any time.

Public variables have these properties:

■ Once they are created, you can access them anywhere in the application. In
other words, public variables are automatically inherited by all routines in
the application without having to pass them as arguments or post them as
return values.

■ You can hide them from a routine by explicitly creating a private (using
PRIVATE or PARAMETERS) or declaring a local (using LOCAL) variable
with the same name.

■ They are not released from memory until you explicitly release them using
RELEASE, CLEAR ALL, or CLEAR MEMORY.

In this example, the function Volume() is defined without arguments. Instead,
the calling routine, Compute(), creates three public variables, nLength, nWidth,
and nHeight that are automatically visible to Volume():
PROCEDURE Compute()
 PUBLIC nLength := 5, nWidth := 2, nHeight := 4
 ? Volume() // Result: 40

FUNCTION Volume()
 RETURN nLength * nWidth * nHeight

328 Visual Objects Programmer's Guide

Dynamically Scoped Variables

In the next example, a modified version of Volume() creates a public variable to
store the computed volume, getting around having to return a value to the
calling routine. Since nVolume is public, it is not released from memory when
Volume() returns:
PROCEDURE Compute()
 PUBLIC nLength := 5, nWidth := 2, nHeight := 4
 Volume()
 ? nVolume // Result: 40

FUNCTION Volume()
 PUBLIC nVolume
 nVolume := nLength * nWidth * nHeight

Variable References

Once a public or private variable is created as demonstrated in the previous two
sections, you obtain its value by referring to its name. You might display the
value of a variable using a built-in command or function:
? nVolume
QOut(nVolume)

or use its value as part of an expression:
Str(nVolume, 10, 2) + " cubic feet"

For dynamically scoped variables, you can use the _MEMVAR alias to qualify a
variable reference. In some cases, you may have to do this in order to help the
compiler resolve what might otherwise be an ambiguous reference (for example,
if you have a field variable with the same name as a memory variable and want
to use the memory variable in an expression).

Note: MEMVAR is an abbreviation for memory variable, a term that is
synonymous with dynamically scoped variable.

Assuming that the database file Measures has fields named nLength, nWidth, and
nHeight, this example calls Volume() using the field variable values:
FUNCTION Calculate()
 PRIVATE nLength := 5, nWidth := 2, nHeight := 3
 USE measures
 ? Volume(nLength, nWidth, nHeight)
 ...

To force the function to use the private variables instead of the field variables,
you could use the _MEMVAR-> (or, more simply, M->) alias to qualify the
variable names:
FUNCTION Calculate()
 PRIVATE nLength := 5, nWidth := 2, nHeight := 3
 USE measures

Chapter 22: Variables, Constants, and Declarations 329

 ? Volume(_MEMVAR->nLength, _MEMVAR->nWidth, _MEMVAR->nHeight)
 ...

Dynamically Scoped Variables

Of course, it is better to avoid ambiguous situations like the one described above
by taking care to have unique field and variable names, but the point is that the
compiler has certain default rules for handling ambiguous references. If you do
not want to be at the mercy of those defaults, it is best to qualify variable names
in all cases.

MEMVAR Declarations

Although you may hear them referred to as such, the statements mentioned so
far in the discussion of dynamically scoped variables are not declarations. The
term declaration refers to a statement whose purpose is to inform the compiler of
something—PRIVATE, PARAMETERS, and PUBLIC are statements that
generate memory variables at runtime.

In fact you never have to declare a dynamically scoped variable to the compiler,
which is the reason for their inefficiency. Because they are not created using
compile-time declaration statements, the compiler has to generate runtime code
for handling such issues as type translation, memory management, and resolving
ambiguous references to variable names since it is possible for several variables
with the same name to be visible at one time.

You can, however, declare dynamically scoped variables with the MEMVAR
statement and they will be created as PRIVATE variables:
FUNCTION Calculate()
 MEMVAR nLength, nWidth, nHeight
 nLength := 5
 nWidth := 2
 nHeight := 3
 USE measures
 ? Volume(nLength, nWidth, nHeight)
 ...

In this case, the MEMVAR statement causes memory variables to take
precedence over field variables with the same names, causing Volume() to be
called with the private variables.

Using MEMVAR to declare dynamically scoped variable names to the compiler
may make your programs slightly more efficient (especially if you have lots of
ambiguous references); however, it will not eliminate the runtime overhead of
these variables. The next section shows you how to declare variable names to the
compiler, and thus avoid ambiguous variable references all together.

330 Visual Objects Programmer's Guide

Lexically Scoped Variables

Lexically Scoped Variables
In the previous section, you were introduced to dynamically scoped variables
and were informed of their inherent drawbacks. To help you overcome some of
these drawbacks, you can declare variables (called lexically scoped variables)
based on the lexical unit in which they will be used. A lexical unit is an
executable entity (such as a function, procedure, or code block) or a module.

Like dynamically scoped variables, lexically scoped variables can also be
polymorphic (their data type can change during the course of an application).
However, lexically scoped variables are resolved at compile time rather than
runtime and are, therefore, much more efficient. In addition to the increased
program efficiency that they offer, lexically scoped variables also serve to enforce
modular programming principles that will make your programs more robust.

This section explores lexical scoping as it applies to polymorphic variables, but
Visual Objects also supports strong data typing (discussed in the Strongly Typed
Variables section below) which will further increase the efficiency and robustness
of your applications.

Local
Local is one of two types of lexically scoped variables. There are two ways to
create local variables:

■ List the variable name as part of a LOCAL statement. If you do not make an
assignment at this time, the variable takes on the NIL value and data type;
otherwise, it takes on the data type of its assigned value. You can assign a
new value (and a new data type) to the variable at any time. For example:
LOCAL x := 10, y

 creates x as a numeric value of 10 and y as NIL. Later on, the assignments:
x := "Ms. Jones"
y := TRUE

 change these types to string and logical.

■ List the variable name as a parameter in parentheses as part of a
FUNCTION, METHOD, or PROCEDURE statement or in vertical bars as
part of a code block definition. The variable takes on the data type of its
associated argument when the routine is called, or NIL if the argument is
omitted. You can assign a new value (and a new data type) to the variable at
any time. For example:

 FUNCTION Area (x,y)
 RETURN x * y
 cbVar := {|xVAR| xVAR+3}

Chapter 22: Variables, Constants, and Declarations 331

Lexically Scoped Variables

Local variables have a lifetime and visibility that is limited to the entity in which
they are declared:

■ You can access them within the declaring routine only—they are not
automatically inherited by called routines like private variables. You must
pass them as arguments in order to make them accessible in a called routine.

■ They are automatically released from memory when the creator returns to its
calling routine. You cannot explicitly release them from memory.

This example declares the variable nVar to the compiler using the LOCAL
statement:
FUNCTION SomeFunc()
 LOCAL nVar := 10
 .
 . <Executable statements>
 .
 NextFunc()
 RETURN TRUE

When SomeFunc() is called at runtime, several things happen:

■ nVar is initialized to a value of 10—any variable that has the same name is
temporarily hidden from view.

■ When the function NextFunc() is executed, nVar still exists but cannot be
accessed because it is not visible.

■ When the execution of SomeFunc() is complete, the local copy of nVar is
destroyed, and any variable with the same name in the calling program is
once again accessible.

Thus, if you want the value of nVar to be visible to a called routine, you must
pass it as a parameter (for example, NextFunc(nVar)). Similarly, if you need the
value of nVar in the calling routine, you must return it (for example, RETURN
nVar). In this way, using local variables forces you to adhere to basic modular
programming principles.

Note: If a routine is invoked recursively, each activation creates a new set of
local variables.

STATIC as a Lifetime
Modifier

You may use the STATIC keyword as a lifetime modifier
within a LOCAL declaration. Doing this prevents the variable
from being released from memory when the creator returns to
its calling routine.

Thus, a static local has an application lifetime. The visibility, however, like a
regular local, is limited to the creating entity. In other words, static locals have
these properties:

332 Visual Objects Programmer's Guide

■ You may access them within the declaring routine only.

Lexically Scoped Variables

Chapter 22: Variables, Constants, and Declarations 333

and returns.

■ They are retained in memory when the creator returns to its calling routine,
but they are no longer visible. You cannot explicitly release them from
memory.

■ On subsequent calls to the creating routine, they become visible again.

The scoping rules for locals and static locals are different because STATIC
changes the lifetime of a local variable:

Variable Type Lifetime Visibility

LOCAL Creator Creator

STATIC LOCAL Application Creator

Note: When an application containing static variable declarations is invoked,
the variables are created and initialized (using the initial value specified with
STATIC LOCAL or NIL) before the beginning of program execution. Thus,
initial values are assigned only once per application run, not each time the
creator is called.

This example declares the variable nCount to the compiler using the STATIC
LOCAL statement:
FUNCTION CountMe()
 STATIC LOCAL nCount := 0
 .
 . <Executable statements>
 .
 ? "This is call number", ++nCount

Note: Initial values that you define as part of the STATIC LOCAL statement
must evaluate to constants at compile time (for example, literals and simple
expressions involving only operators, literals, and DEFINE constants.) Then, at
runtime, several things happen:

■ When the application containing CountMe() is invoked, nCount is initialized
to zero before the beginning of program execution. This way, nCount does
not get set back to zero each time CountMe() is called.

■ The first time you call CountMe(), nCount becomes visible with its initial
value of zero—any variable that has the same name is temporarily hidden
from view. The function then increments nCount to one before displaying
“This is call number 1.”

■ When the execution of CountMe() is complete, the local copy of nCount is
retained with its new value; however, nCount is no longer visible.

■ The next time you call this function, nCount has its previous value of one
which is incremented before the function displays “This is call number 2”

Lexically Scoped Variables

■ This cycle is repeated each time you call CountMe() so that the function
displays an accurate count of how many times it has been called.

Tip: You can use STATIC as an abbreviated syntax for STATIC LOCAL.
Thus in the previous example, you could substitute STATIC nCount := 0 for
STATIC LOCAL nCount := 0.

Global

Global is another category of lexically scoped variable. You can define global
variables in only one way:

■ List the variable name as part of a GLOBAL statement. If you do not make
an assignment at this time, the variable takes on a value of NIL; otherwise, it
takes on the data type of its assigned value. You can assign a new value (and
a new data type) to the variable at any time.

Note: Global variables are compiler entities. This means, among other things,
that you cannot include a GLOBAL declaration within another entity such as a
function definition. You can only declare one global variable per GLOBAL
statement. Initial values that you define as part of the GLOBAL statement, must
evaluate to constants at compile time (for example, literals and simple
expressions involving only operators, literals, and DEFINE constants.)

Global variables have application-wide lifetime and visibility:

■ You can access them anywhere throughout the application. In other words,
global variables are automatically inherited by all routines in the application
without having to pass them as arguments or post them as return values.

■ You can hide them from a routine by explicitly declaring another variable
(for example, using LOCAL or MEMVAR) with the same name.

■ You cannot explicitly release them from memory—their lifetime is
guaranteed throughout the application.

STATIC as a Visibility
Modifier

You can use the STATIC keyword as a visibility modifier
within a GLOBAL declaration. Doing this restricts access of the
variable to the module in which it is declared. A module is a
means for organizing entities, such as functions and classes,
and is considered to be a lexical unit.

334 Visual Objects Programmer's Guide

Strongly Typed Variables

Chapter 22: Variables, Constants, and Declarations 335

you the advantage of debugging your programs more quickly and easily.

■ You can greatly increase the integrity of your data and, therefore, the
robustness of your application if you use strongly typed variables.

Like a regular global, a static global has an application lifetime, but its visibility is
limited to the module in which it is declared. In other words, static globals have
the following properties:

■ You can access them anywhere within the declaring module. In other words,
only those routines defined in the same module have access to static globals.

■ You can hide them from a routine by explicitly declaring another variable
(for example, using LOCAL or MEMVAR) with the same name.

■ You cannot explicitly release them from memory—their lifetime is
guaranteed throughout the application.

The scoping rules for globals and static globals are different because STATIC
changes the visibility of a global:

Variable Type Lifetime Visibility

GLOBAL Application Application

STATIC GLOBAL Application Module

Strongly Typed Variables
In the previous section, you were introduced to compiler declarations as they
apply to polymorphic variables. These variables are declared at compile time,
giving them certain advantages over undeclared variables, but their data types
are still dynamic. For example, there is nothing to prevent you from changing
the data type of a variable from numeric to string:
FUNCTION SomeFunc()
 LOCAL nVar := 10
 .
 . <Executable statements>
 .
 nVar := "New character value"
 RETURN nVar

You can, however, declare the data types of variables (called strongly typed
variables) within declaration statements. Strongly typed variables, because they
are declared, are lexically scoped and adhere to all of the scoping and other rules
stated in the Lexically Scoped Variables section.

The ability to specify data types for your program variables is advantageous for
several reasons:

■ All type compatibility checks can be performed at compile time, allowing

Strongly Typed Variables

336 Visual Objects Programmer's Guide

value—identical to an untyped variable

■ Because they involve no runtime overhead, using strongly typed variables
significantly increases the efficiency of your code.

Tip: The Visual Objects compiler has a type inferencing option. If you use
lexically scoped variable declarations in your programs, you can use this
option to achieve some of the benefits of strong data typing without actually
specifying data types in your existing declarations.

Data Type Declarations

Both the LOCAL and GLOBAL statements provide syntax for specifying the data
types of the variables they declare using the AS keyword. The FUNCTION and
PROCEDURE definition statements provide a similar syntax and semantic,
including the ability to strongly type the return value of a function.

Note: For information about using strongly typed arguments with METHOD,
see the online help system; and for information about using them with code
block definitions, see Strong Typing under the Creating Code Blocks section in
Chapter 26, “Code Blocks,” later in this guide.

Once you declare the data type of a variable, attempting to use it in another
context will result in a compiler error. The following table lists the data types
available.

Data Type Description

ARRAY Dynamic array

CODEBLOCK Compile-time code block

DATE Date value

LOGIC Logical value

OBJECT General object

<idClass> Object of a specific class

STRING Dynamic string

SYMBOL Symbol

<idStructure> Specific structure

USUAL Explicit declaration for a polymorphic

Strongly Typed Variables

VOID In function definitions only, used to
indicate no return value

Data Type Description

INT Signed integer: under Windows, 32 bits

FLOAT Floating point number: under
Windows, 80 bits

SHORTINT Signed 16-bit integer; identical to ANSI
C short

LONGINT Signed 32-bit integer; identical to ANSI
C long

BYTE Unsigned 8-bit integer (a byte);
identical to ANSI C unsigned character

WORD Unsigned 16-bit integer (a word);
identical to ANSI C unsigned short

DWORD Unsigned 32-bit integer (a double
word); identical to ANSI C unsigned
long

REAL4 32-bit floating point number; identical
to ANSI C float

REAL8 64-bit floating point number; identical
to ANSI C double

PSZ Pointer to a zero-terminated character
string

PTR Address value

Thus, in the example given earlier in which a LOCAL numeric variable was
declared, you could have stated its type. In this example, iVar is strongly typed
as an integer (INT), and the statement iVar := "New character value" produces a
compiler error:
FUNCTION SomeFunc()
 LOCAL iVar := 10 AS INT
 .
 . <Executable statements>
 .
 iVar := "New character value" // Compiler error!
 RETURN iVar

Chapter 22: Variables, Constants, and Declarations 337

Strongly Typed Variables

Type declaration is straightforward, for the most part. You simply use the
proper keyword in an AS clause as part of the declaration statement (such as
GLOBAL, LOCAL, or FUNCTION). Specifying data types for function
parameters and return values, as well as some of the more obscure data types
listed in the table above, however, deserve further discussion and are presented
as topics later in this section.

Initial Values

When you declare variables using data types, you can assign initial values in the
LOCAL and GLOBAL declaration statements similar to the way in which you
assign initial values for polymorphic variables:
GLOBAL iCounter := 0 AS INT
LOCAL fTemp := 98.6 AS FLOAT

Alternatively, you can assign initial values after the declaration:
FUNCTION CalcTemp(cAnimal)
 LOCAL fTemp AS FLOAT
 DO CASE
 CASE cAnimal == "Human"
 fTemp := 98.6
 .
 . <More cases>
 .
 ENDCASE

If you declare a strongly typed variable and do not make an initial assignment,
the variable will take on a default value, depending on its data type, as defined
in the following table. The NULL_ symbols listed in the table are system-defined
constants representing the null value for each data type.

There is no benefit in initializing a LOCAL variable in the declaration. You
won’t be able to step through the declarations when debugging your application
if you use the initialization. It is therefore recommended to do the following:
LOCAL x AS INT
x := 5

instead of
LOCAL x := 5 AS INT

Data Type Default Initial Value

ARRAY NULL_ARRAY
(see Note below)

CODEBLOCK NULL_CODEBLOCK

338 Visual Objects Programmer's Guide

DATE NULL_DATE

LOGIC FALSE

Strongly Typed Variables

OBJECT, <idClass> NULL_OBJECT

STRING NULL_STRING

SYMBOL NULL_SYMBOL

USUAL NIL

Data Type Default Initial Value

SHORTINT, INT, LONGINT,
FLOAT, BYTE, WORD,
DWORD,
REAL4, REAL8

0

PSZ NULL_PSZ

PTR, <idStructure> NULL_PTR

You can rely on the NULL value initialization without having to assign a NULL
value explicitly. For example:
LOCAL x := 0 AS INT

or
LOCAL x AS INT
X :=0

will not be caught by the compiler, causing the NULL value assignment to be
performed twice, which is ineffective.

Note: NULL_ARRAY is the initial value for an array declared without
dimension specifications (for example, LOCAL <idArray> AS ARRAY). If you
specify array dimensions as part of the declaration you are, in effect, making an
assignment to the array and, therefore, NULL_ARRAY will not apply. As an
example:
LOCAL aValues AS ARRAY

yields aValues as a NULL_ARRAY, whereas:
LOCAL aValues[10] AS ARRAY

does not. The latter statement is equivalent to:
LOCAL aValues AS ARRAY
aValues := ArrayCreate(10)

which initializes each element in the array aValues to NIL.

Chapter 22: Variables, Constants, and Declarations 339

Strongly Typed Variables

Tip: Instead of using NULL_ARRAY and NULL_OBJECT, you can compare
a strongly typed array or object to NIL to determine if it is in an uninitialized
state, and you can assign the NIL value to return an array or object to an
uninitialized state. In these cases, NIL is identical to the corresponding
NULL_ constant and does not, of course, change the data type of the array or
object to NIL.

Typing Parameters and Return Values

You can specify the data type of a local function parameter (and the function
return value):
FUNCTION SomeFunc(iVar AS INT) AS STRING
 .
 .<Executable statements>
 .
 RETURN cString

In this example, the (iVar AS INT) clause specifies the function argument as an
integer, and the AS STRING clause following the parameter list declares the
function return value as a string (the VOID data type is limited to use in this
particular context).

When you call SomeFunc(), the variable that you use as a function argument
must be strongly typed as INT, and any operation that you perform using the
return value must be valid for the string data type. Otherwise, compiler errors
will be generated.

Important! Declaring data types of function parameters and return values is slightly
more complicated than indicated here. In fact, doing so imposes certain restrictions on
the use of the function, including your ability to skip parameters when calling the
function, to use the function in a macro expression, and to freely pass arguments by
reference or value. For more information on this subject, including specific details
regarding these restrictions, see Chapter 27, “Functions and Procedures,” later in this
guide.

340 Visual Objects Programmer's Guide

Strongly Typed Variables

Chapter 22: Variables, Constants, and Declarations 341

declaration still offers you efficiency advantages over not declaring the variable
at all.

Class Names as Data Types

The subject of classes that you define in your applications has not yet been
presented. However, Visual Objects does give you this capability, and this
subject is discussed in detail in Chapter 25, “Objects, Classes, and Methods,” in
this guide.

Briefly, you define class entities using the CLASS statement and later use the
class name to create instances of the class. Each class instance that you create is
called an object, which is also its data type. Thus, you can define a class and
create a declared instance of the class:
CLASS Animal // Define Animal class
 .
 . <Instance declarations defining the class>
 .

FUNCTION UseClass()
 LOCAL oJag AS OBJECT // Declares oJag as an object, any class

 oJag := Animal{} // Creates oJag as Animal class
 .
 . <Executable statements>
 .

The AS OBJECT clause allows you to assign any instance of any class to the
variable oJag. For example, if you had a class named Car defined in your
application, you could use the statement oJag := Car{} within the UseClass()
function without causing an error.

You can further limit the type of object that can be assigned to a variable by
naming the class in the declaration statement:
FUNCTION UseClass()
 LOCAL oJag AS Animal // Declares oJag as an instance of the Animal class

 oJag := Animal{} // Creates oJag as Animal class
 .
 . <Executable statements>
 .

The AS Animal clause means that you can only assign instances of the Animal
class (and its subclasses) to oJag. If the Class Checking compiler option is
checked, including the statement oJag := Car{} within the UseClass() function
would cause a compiler error.

As you can probably guess, declaring a variable using a specific class gives your
application speed and code size advantages over using the OBJECT declaration,
and being more specific about the declaration of a variable leaves less room for
programming errors. However, you may have a situation in which you want a
name to be used as more than one class of object, in which case the OBJECT

Strongly Typed Variables

Strong Typing Instance
Variables

There is another level of data typing available within a CLASS
definition. Specifically, you can declare AS data types for
instance variables, although doing so is optional:
CLASS Animal // Define Animal class
 EXPORT cGenus AS STRING
 EXPORT cSpecies AS STRING
 INSTANCE iPopulation AS INT
 .
 . <Other class instances>
 .

Instance variables are a special category of variable that you can declare only
within a CLASS entity. For more information on instance variables, see the
“Objects, Classes, and Methods” chapter later in this guide.

Structure Names as Data Types

The subject of data structures that you define in your applications has not yet
been presented in this guide. However, Visual Objects does give you this
capability.

Briefly, you define structure entities using the STRUCTURE statement and later
use the structure name as part of a declaration statement to declare structure
variables. Structure variables are complex, the components being variables that
you declare within the structure and access using the dot operator (.).

AS vs. IS Typing

You must declare structure variables using either the AS or the IS keyword. The
difference between these two declaration methods is that:

■ IS automatically allocates the memory needed to hold the structure and
deallocates the memory when the declaring entity returns.

■ AS requires that you allocate memory using MemAlloc() before initializing
structure variables. You must also deallocate the memory used by the
structure variable using MemFree() before the declaring entity returns.

Important! IS typing is much simpler than AS typing, and in most cases should satisfy
your requirements for using structures. AS typing is recommended for experienced
systems programmers.

This example illustrates IS structure typing:
STRUCTURE SysOne // Define SysOne data structure
 MEMBER iAlpha AS INT
 MEMBER pszName AS PSZ

342 Visual Objects Programmer's Guide

FUNCTION UseStruct()
 LOCAL strucVar IS SysOne
 strucVar.iAlpha := 100

Strongly Typed Variables

 .
 . <Statements that access structure members>
 .

This example illustrates AS structure typing, with its required memory allocation
and deallocation:
STRUCTURE SysOne // Define SysOne data structure
 MEMBER iAlpha AS INT
 MEMBER pszName AS PSZ

FUNCTION UseStruct()
 LOCAL strucVar AS SysOne
 strucVar := MemAlloc(_SizeOf(SysOne))
 strucVar.iAlpha := 100
 .
 . <Statements that access structure members>
 .
 MemFree(strucVar)

Strong Typing Structure Members

From these examples, you may have noticed that structures involve two levels of
data typing: one within the STRUCTURE definition and the other when the
structure variable is declared. The latter has been the focus of this discussion so
far, but the former requires some explanation as well.

You use the STRUCTURE statement to mark the beginning of the definition of a
structure entity, followed by one or more MEMBER statements that define what
the structure looks like. You must adhere to the following rules when defining
structure members:

■ Include an AS or IS data type for each MEMBER—strong typing is required.

■ Do not use data types that require garbage collection (such as array, float,
object, string, and usual).

Variable Structure Alignment

The STRUCTURE statement has been extended with an optional ALIGNMENT
clause. In CA-Visual Objects 1.0, all structure components were aligned to a byte
boundary. The components of a structure completely filled up the memory block
allocated for the structure. There was no internal memory fragmentation.
Today’s modern processors demand specific data alignment in order to
guarantee minimal access times. Aligning structure components on a byte
boundary does not inherently fulfill this demand anymore. You might
unfortunately fragment memory internally by not employing a byte boundary
alignment. Trading off space for speed has become quite reasonable.

Chapter 22: Variables, Constants, and Declarations 343

The syntax of the STRUCTURE statement has been modified to:
STRUCTURE <Structure_Name> [ALIGN <Alignment>]

Strongly Typed Variables

344 Visual Objects Programmer's Guide

would not be very efficient to have a structure with a member for each possible
type. Instead USUALs can best be represented by a structure containing a union
as follows:

 Member_Declaration

Possible alignments (<Alignment>) are 1, 2, 4, and 8. When the optional
ALIGNMENT clause is not specified, a default alignment of 4 is assumed.

Applying the _sizeof() operator to the structure (<Structure_Name>), yields the
total amount of memory (in bytes) occupied by the structure.

This example illustrates the STRUCTURE statement:
STRUCTURE Person ALIGN 8
 MEMBER PersId AS INT
 MEMBER Sex AS BYTE
 MEMBER Age AS INT

The memory layout of this structure is:
pid pid pid pid FREE FREE FREE FREE
sex FREE FREE FREE FREE FREE FREE FREE
age age age age FREE FREE FREE FREE

The expression _sizeof(Person) results in 24.

Changing the alignment in the STRUCTURE declaration of Person to one (1),
results in a packed structure and the _sizeof(Person) then yields 9.

The prime reason for introducing structure alignment is to exploit the speed
advantage of modern processors. However, interfacing of sub-systems aligning
data to a non-byte boundary to Visual Objects would be impossible without this
feature.

Unions

UNIONs are like STRUCTUREs, except that all members start at offset zero (0).
In other words, assigning a value to a union member affects all other union
members. You use the UNION statement to mark the beginning of the definition
of a union entity, followed by one or more MEMBER statements that define what
the union looks like. You must adhere to the following rules when defining
union members:

■ Include an AS or IS data type for each MEMBER -- strong typing is required.

■ Do not use data types that require garbage collection (such as array, float,
object, string and usual).

Visual Objects' polymorphic values (USUALs) are a good example of the use of
unions. USUALs either contain a string, an object, a float, a long, a date, a
logical, a codeblock or NIL. Since a USUAL only contains one value at a time, it

Constants

UNION Value
 MEMBER s AS STRING
 MEMBER f AS FLOAT
 MEMBER l AS LONG
 MEMBER d AS DATE
 MEMBER lo AS LOGICAL
 MEMBER c AS CODEBLOCK
STRUCTURE Usual
 MEMBER dwTag AS DWORD
 MEMBER Val AS Value

The USUAL Data Type

USUAL is different from other type declarations because it is not a data type per
se, but an explicit declaration for a polymorphic variable. There are two main
reasons to use the usual type declaration:

■ An AS USUAL declaration will prevent the compiler from attempting to
infer the data type of a variable, regardless of the Allow Type Inference
compiler option.

■ Within a function definition, AS USUAL lets you use calling conventions that
require strongly typed arguments and return values without actually
specifying a data type. Calling conventions and data typing within function
declarations are discussed in Chapter 27, “Functions and Procedures” in this
guide.

Usual values can be of any data type described in Chapter 21, “Data Types,”
(except, of course, VOID). STRUCTURE names and dimensioned arrays cannot
be stored as usuals.

Constants
Constants are provided to let you assign logical names to constant values that
you use repeatedly. In many ways, constants are like lexically scoped variables.
For example, you declare them, initialize them, and optionally assign data types
to them. There are, however, some distinct differences, the major one being that
you cannot change the value of a constant once you have initialized it.

Using declared constants instead of literal values makes your code more
readable and easier to maintain. For example, if the constant value changes, you
are faced with changing a single line of code, the declaration statement, as
opposed to searching for and changing each line of code where you use the
value. Using a constant instead of a variable whose value you never change
offers a slight size and performance improvement in your application.

Chapter 22: Variables, Constants, and Declarations 345

Constants

Declaration and Initialization

You declare constants using the DEFINE statement:
DEFINE cMyName := "Lou"

Like globals, constants are compiler entities. Thus, you cannot include a DEFINE
declaration within another entity, such as a function definition. Constant values
that you assign as part of the DEFINE statement must evaluate to constants at
compile time (for example, literals and simple expressions involving only
operators, literals, and other DEFINE constants.)

Lifetime and Visibility

Constants have application-wide lifetime and visibility.

■ You can access them anywhere throughout the application. In other words,
constants are automatically inherited by all routines in the application
without having to pass them as arguments or post them as return values.

■ You can hide them from a routine by explicitly declaring a variable (for
example, using LOCAL or MEMVAR) with the same name.

■ You cannot explicitly release them from memory—their lifetime is
guaranteed throughout the application.

You can use the STATIC keyword as a visibility modifier within a DEFINE
declaration. Doing this restricts access of the constant to the module in which it
is declared. Thus, like a regular constant, a static constant has an application
lifetime, but its visibility is limited to the module in which it is declared.

The scoping rules for constants and static constants are different because STATIC
changes the visibility of a constant:

Constant Type Lifetime Visibility

DEFINE Application Application

STATIC DEFINE Application Module

346 Visual Objects Programmer's Guide

Constants

Strong Typing

As with LOCAL and GLOBAL variables, you can assign a data type to a constant
when you declare it:
DEFINE cName := "Lou" AS STRING

The data types available for constant declarations are limited to the following:

■ DATE

■ LOGIC

■ SYMBOL

■ STRING

■ SHORTINT

■ INT

■ LONGINT

■ FLOAT

■ BYTE

■ WORD

■ DWORD

Specifying a data type for a constant has no effect on the compiler; it is merely for
the sake of documentation.

Chapter 22: Variables, Constants, and Declarations 347

A Summary Table

A Summary Table
Because there are so many different types of variables and constants,
determining the scope of a particular one may seem confusing.

This table summarizes the scoping rules for all of the variable and constant types
presented in this chapter:

Variable/Constant Type Lifetime Visibility
FIELD Persistent—while

database exists
Application—
while database
is open

PRIVATE Until creator
returns or until
released

Creator and
called routines

PARAMETERS Until creator
returns or until
released

Creator and
called routines

PUBLIC Application or
until released

Application

Code block parameters* Creator Creator

FUNCTION parameters* Creator Creator

METHOD parameters* Creator Creator

PROCEDURE parameters* Creator Creator

LOCAL Creator Creator

STATIC LOCAL Application Creator

GLOBAL Application Application

STATIC GLOBAL Application Module

DEFINE Application Application

STATIC DEFINE Application Module

* These refer to formal parameters declared within parentheses as part of a
declaration statement or within the vertical bars as part of a code block
definition. In effect, these parameters are LOCAL to the declaring entity.

348 Visual Objects Programmer's Guide

Chapter

23 Operators and Expressions

As you were shown in Chapter 21, “Data Types,” all data items are identified by
type, and each data type has specific rules for forming its literal values. Chapter
22, “Variables, Constants, and Declarations,” showed you how to initialize and
create variables and constants and how to determine their data types. These
chapters introduced you to the most basic data items in the Visual Objects
language, literals, variables, and constants.

Another basic data item is the function call. The Visual Objects language is rich in
the variety of functions that it provides, and each one is documented in the
online help system. In addition to these library functions, you can call functions
that you define (more on this in Chapter 27, “Functions and Procedures”) and
functions defined in third-party libraries. Regardless of how and where they are
defined, the data type of a function call is always determined by its return value.

This chapter defines all of the operators that are available to you and shows you
how to use them with the basic data items to build expressions. One of the main
reasons for understanding data types is so that you will understand how to build
expressions. The operators that you will learn about in this chapter are strictly
limited in the data types they will accept.

Terminology
An expression is, in its simplest form, a literal value, a variable or constant name,
or a function call. You can also form more complicated expressions by stringing
together a finite number of these basic items using operators.

All expressions represent values and, thus, have an associated data type. You
will use expressions within other program statements such as functions,
declarations, and commands, but (with the exception of assignments and some of
the other special operators) an expression cannot appear as a separate line of
code in a program. The syntax representations in the online help system will tell
you what type of expression is expected.

Chapter 23: Operators and Expressions 349

An operator is a special symbol or word reserved by Visual Objects. Like
functions, operators perform a specific operation and return a value of a
particular data type.

String Operators

350 Visual Objects Programmer's Guide

syntax and expects a numeric operand.

All operators in Visual Objects require either one or two arguments, called
operands. Operators requiring a single operand are called unary operators, and
those requiring two operands are called binary operators.

Most binary operators use infix notation, which means that the operator is placed
between its operands. The multiplication operator (*) is an example of a binary
operator which demonstrates infix notation:
12 * 12 // 144

Most unary operators use prefix notation in which you place the operator before
the operand, or postfix notation in which you place the operator after the
operand.

An example of a unary prefix operator is the negate (!) operator:
? !TRUE // FALSE

The postincrement operator (++) is an example of a unary postfix operator:
LOCAL iCount := 1 AS INT
iCount++ // iCount is now 2

Some operators use a syntax that looks like a function call (and are, for this
reason, sometimes referred to as pseudofunctions), with the operands enclosed in
parentheses following the operator name. An example of a binary operator that
uses function-calling syntax is the _And() operator:
LOCAL iOne := 1, iTwo := 2, iResult AS INT
iResult := _And(iOne, iTwo)

An example of a unary operator that uses function-calling syntax is the Float()
operator:
LOCAL fValue := 1.5 AS FLOAT, iType := 5 AS INT
fValue := Float(iType)

All operators have strict rules regarding their usage, including the data types for
which they are valid (for example, an operator may be valid for numbers but not
for dates). All of the rules that apply to operator usage are described in this
section. Using any operator incorrectly results in a compiler error (if you use
strong typing) or a runtime error (if you use polymorphic variables).

String Operators
The string operators are used to form expressions of the string data type (they
return a string value). The + and - operators are binary, requiring two string (or
memo) type operands. _Chr() is a unary operator that uses the function-calling

Date Operators

Symbol Operation

+ Concatenate

- Concatenate without intervening spaces

_Chr() Convert a numeric code to a string value

Concatenation Concatenate means to form a new string by joining two strings together. The -
operator moves the trailing spaces of the first string to the end of the resulting
string, so that there are no intervening spaces between the two original strings.
The + operator leaves spaces intact.

This example function displays the results of several string expressions:
DEFINE cFirst := "Mary " AS STRING
GLOBAL cSecond := "Jo" AS STRING

FUNCTION PrintStrings()
 LOCAL cNew AS STRING
 ? "Mary " + "Alice" // Mary Alice
 ? cFirst - "Anne" // MaryAnne
 ? cFirst + cSecond // Mary Jo
 ? cFirst + (cNew := "Beth") // Mary Beth
 ? Trim(cFirst) + cSecond // MaryJo

■ Concatenate two literals:
"Mary " + "Alice"

■ Concatenate a constant and a literal:
cFirst - "Anne"

■ Concatenate a constant and a variable:
cFirst + cSecond

■ Concatenate a constant and a string expression:
cFirst + (cNew := "Beth")

■ Concatenate a string function return value and a variable:
Trim(cFirst) + cSecond

_Chr() _Chr() is identical (syntactically and functionally) to the Chr() function. The only
difference is that since it is resolved at compile time, it is more efficient and can
be used in a DEFINE, GLOBAL, or STATIC LOCAL statement to specify an
initial value. See the Chr() entry in the online help system for more details.

Date Operators

Chapter 23: Operators and Expressions 351

The date operators are used to form expressions of the date data type. Except
where indicated, these operators are binary, requiring one date and one numeric
operand.

Date Operators

Symbol Operation

++ Unary increment (prefix or postfix)

-- Unary decrement (prefix or postfix)

+ Add a number of days to a date

- Subtract a number of days from a date

Note: You can also subtract one date from another using the subtraction
operator (-). The result of this type of operation is a numeric value that
represents the number of days between the two dates. Thus, when the - operator
is used to subtract one date from another, it is a numeric operator. See the
Numeric Operators section for more information.

You have already seen + and - described as string operators in the previous
section, but here they are called date operators. You will see these operators yet
again in the next section on Numeric Operators. These operators are overloaded,
which means that their function changes depending on the data type of the
operands. When you use + or - with a date and a numeric value, it is a date
operator and, as such, returns a date value.

The + and – operators are not commutative, meaning that the order of the
operands is significant in determining the result of the operation. For example,
dValue + iValue is not the same as iValue + dValue. dValue + iValue is a date,
whereas iValue + dValue is a numeric.

This example function displays the results of several date expressions:
GLOBAL dToday AS DATE

FUNCTION PrintDates()
 LOCAL dToday AS DATE
 LOCAL iValue := 14 AS INT
 dToday := Today()
 ? 93.04.01 + 5 // 04/06/1993
 ? dToday + 10 // Ten days from now
 ? dToday + iValue // Two weeks from now
 ? dToday - iValue // Two weeks ago
 ? CToD("04/01/93") + 7 // 04/08/1993

■ Add a literal date to a literal number:
93.04.01 + 5

■ Add a date variable to a literal number:
dToday + 10

■ Add a numeric variable to a date variable:

352 Visual Objects Programmer's Guide

dToday + iValue

■ Subtract a numeric variable from a date variable:
dToday - iValue

Numeric Operators

■ Add a date function return value to a numeric literal:
CToD("04/01/93") + 7

The increment operator (++) is a special case of the + operator that increases a
date variable by one. Similarly, the decrement operator subtracts one from a
date variable. These operators are also overloaded because you can use them
with numeric and date variables. See the Increment and Decrement Operators
section below for more information and examples.

Numeric Operators
The numeric operators are used to form expressions of the numeric data type.
As a general rule, these operators require numeric type operands (see Date
Operators above for the only exception). By definition, all of the numeric
operators return numeric values. Except where noted in the table, the numeric
operators are binary.

Symbol Operation

++ Unary increment (prefix or postfix)

-- Unary decrement (prefix or postfix)

* Multiplication

/ Division

Symbol Operation

% Modulus (integer remainder of division)

^ or ** Exponentiation

+ Addition or unary positive (prefix) (operands
can be two numeric values, two date values, or
one of each)

- Subtraction or unary negative (prefix) (operands
can be two numeric values, two date values, or
one of each)

>> Bitwise shift right

<< Bitwise shift left

_And() Bitwise and

_Or() Bitwise or

Chapter 23: Operators and Expressions 353

Numeric Operators

Note: You can also subtract a numeric value from a date using the subtraction
operator (-). The result of this type of operation is a date. Thus, when the -
operator is used to subtract a number from a date, it is a date operator. See the
Date Operators section for more information.

As you have already learned, Visual Objects supports several declared numeric
data types (such as INT and FLOAT) as well as an undeclared numeric data type
used for polymorphic variables. With the exception of the bitwise operators
discussed later in this section, the numeric operators apply to all numeric data
types, and mixing the various numeric types within an expression is permitted.

This example function displays the results of several numeric expressions:
DEFINE iTen := 10 AS INT

FUNCTION PrintNums()
 LOCAL fValue := 14.5 AS FLOAT
 ? 2 ^ 3 // 8
 ? 15 + 5 // 20
 ? 20 - fValue // 5.5
 ? fValue * iTen // 145.0
 ? iTen ^ 2 // 100
 ? SqRt(100) + 2 // 12.00
 ? 101 / iTen // 10.10
 ? 101 % iTen // 1

■ Perform exponentiation using two literal numbers:
2 ^ 3

■ Add two literal numbers:
15 + 5

■ Subtract a numeric variable from a literal number:
20 - fValue

■ Multiply a numeric variable by a numeric constant:
fValue * iTen

■ Raise a numeric constant to a power using a literal number:
iTen ^ 2

■ Add a numeric function return value to a numeric literal:
SqRt(100) + 2

■ Divide a numeric literal by a numeric constant:
101 / iTen

■ Calculate modulus of a numeric literal using a numeric constant:
101 % iTen

354 Visual Objects Programmer's Guide

Numeric Operators

Increment and Decrement Operators

Increment and decrement are unary operators that you can use with either a
numeric or a date operand. Unlike other operators which can operate on more
complicated expressions, the operand must be a variable name. (Field variables
must be qualified as described in Chapter 22, “Variables, Constants, and
Declarations.”) The resulting data type is the same as that of the operand.

The ++ operator increments, or increases the value of, its operand by one, and the
-- operator decrements, or decreases the value of, its operand by one. Thus, both
operators perform an operation on, as well as an assignment to, the operand. In
terms of addition, subtraction, and assignment operators, they might be defined
as:

■ ++x is equivalent to x := x + 1

■ --x is equivalent to x := x - 1

Note: Since it is used as part of a calculation, the operand must contain a value
prior to using either of these operators.

You can specify both operators as prefix or postfix: the prefix form changes the
value of the operand before the rest of the expression is evaluated, whereas the
postfix form changes the value afterwards.

Tip: The prefix forms of these operators generate more efficient code than
their equivalent counterparts (that is, using the plus or minus operator with
an assignment operator). The postfix forms, on the other hand, do not and
may, in fact, make the program less efficient.

This code illustrates the prefix increment operator in an assignment statement.
Since the increment occurs before the assignment takes place, both variables have
the same value:
LOCAL iValue := 1, iNewValue AS INT
iNewValue := ++iValue
? iNewValue // Result: 2
? iValue // Result: 2

The next example demonstrates the postfix decrement operator. Because the
assignment takes place before the original variable is decremented, the two
values are not the same:
LOCAL dValue := 93.12.31, dNewValue AS DATE
dNewValue := dValue--
? dNewValue // Result: 12/31/1993

Chapter 23: Operators and Expressions 355

? dValue // Result: 12/30/1993

Numeric Operators

356 Visual Objects Programmer's Guide

and the top row as operands.

Note: Since ++ and -- perform assignments, these operators can be used in their
simplest form as program statements. For example, iValue++ is considered a
valid program statement, but 50 + iValue++ is not.

Bitwise Operators

The >> (right shift), << (left shift), _And(), and _Or() operators are bitwise
operators, meaning they manipulate integer values as bit strings. These
operators have special rules regarding their usage and may not be as familiar to
you as some of the other numeric operators mentioned so far in this section.

Shift The >> and << operators shift a numeric value right or left a specified number of
bits. The first operand, the number to be shifted, must be one of these numeric
data types:

■ INT

■ SHORTINT

■ LONGINT

■ BYTE

■ WORD

■ DWORD

The second operand, the number of bits to shift, must be a numeric literal or
constant and must be a SHORTINT or WORD data type.

This example illustrates these two operators. Note that non-zero bits are shifted
off the end of the result—they do not wrap around:
LOCAL bNum := 255 AS BYTE, bResult AS BYTE
 // Bit representation
 // 255 is 1 1 1 1 1 1 1 1
bResult := bNum >> 2 // 63 is 0 0 1 1 1 1 1 1
bResult := bNum << 1 // 254 is 1 1 1 1 1 1 1 0

Note: If you checked Overflow Checking in the Runtime group box on the
Compiler Defaults tab page in the System Settings dialog box, you will receive a
runtime Overflow error on the second bResult assignment.

Logical The _And(), _Or(), and _XOr() operators perform a logical operation between
two numeric values using their bit string representations.

The following truth tables define the _And(), _Or(), and _XOr() operators by
showing their results for all possible combinations of bits 1 and 0. The results in
the body of each table are obtained by using the values in the left-hand column

Numeric Operators

_And() 1 0

1 1 0

0 0 0

_Or() 1 0

1 1 1

0 1 0

_XOr() 1 0

1 0 1

0 1 0

For _And(), _Or(), and _XOr() both operands must be one of these numeric data
types:

■ INT

■ SHORTINT

■ LONGINT

■ WORD

■ DWORD

These operators use function-calling syntax as illustrated in the following
examples:
LOCAL iX := 129, iY := 65 AS INT
 // Bit representation
 // 129 is 1 0 0 0 0 0 0 1
 // 65 is 0 1 0 0 0 0 0 1
? _And(iX, iY) // 1 is 0 0 0 0 0 0 0 1
? _Or(iX, iY) // 193 is 1 1 0 0 0 0 0 1
? _XOr(iX,iY) // 192 is 1 1 0 0 0 0 0 0

Chapter 23: Operators and Expressions 357

Logic Operators

Variable Parameter Lists

In CA-Visual Objects 1.0 the _AND, _OR, and _XOR operators were limited to a
maximum of two operands. The programmer had to cascade these operators, in
cases where more than two operands were required. This sort of cascading is no
longer necessary with Visual Objects.

The following expression pairs can be considered equivalent:
_AND(A, (_AND(B, (_AND(C, D))))) _AND(A, B, C, D)
_OR(A, (_OR(B, (_OR(C, D))))) _OR(A, B, C, D)
_XOR(A, (_XOR(B, (_XOR(C, D))))) _XOR(A, B, C, D)

Logic Operators
Like all other operators, the logic operators are grouped together because each
returns a logic value. The logic operators, however, are broken into two distinct
groups based on their operand data types. Boolean operators act on logic operands
only, performing a strictly defined algebraic function. Relational operators
compare two values of the same data type and return a logic value indicating the
result of the comparison.

Boolean Operators

The Boolean operators are used to form logic expressions. All of these operators
require logic operands. Except where indicated in the table, the Boolean
operators are binary.

Symbol Operation

.NOT. or ! Unary negate (prefix)

.AND. And

.OR. Or

The quick way to define these operators is to tell when they return TRUE: .AND.
returns TRUE if both operands are TRUE; .OR. returns TRUE if either operand is
TRUE; and .NOT. returns TRUE if its operand is FALSE.

358 Visual Objects Programmer's Guide

Logic Operators

This example function generates a complete truth table for each of the Boolean
operators:
FUNCTION PrintTruth()
 ? TRUE .AND. TRUE, TRUE .AND. FALSE
 ? FALSE .AND. TRUE, FALSE .AND. FALSE

 ? TRUE .OR. TRUE, TRUE .OR. FALSE
 ? FALSE .OR. TRUE, FALSE .OR. FALSE

 ? .NOT. TRUE, !FALSE

The result of this program, although not as nicely formatted, is:

.AND. TRUE FALSE

TRUE TRUE FALSE

FALSE FALSE FALSE

.OR. TRUE FALSE

TRUE TRUE TRUE

FALSE TRUE FALSE

.NOT. TRUE FALSE

 FALSE TRUE

Note: Visual Objects uses a shortcut when evaluating the .AND and .OR.
operators. For .AND., the second operand is not evaluated if the first operand
evaluates to FALSE. For .OR., the second operand is not evaluated if the first
operand evaluates to TRUE.

Chapter 23: Operators and Expressions 359

Logic Operators

Relational Operators

The relational operators (also called comparison operators) are used to form logic
expressions. All of them are binary operators requiring two operands of the
same data type (or one NIL operand in the cases where NIL is an allowed data
type).

Symbol Operation Operand Data Types

< Less than String, date, numeric,
logic

<= Less than or equal String, date, numeric,
logic

> Greater than String, date, numeric,
logic

>= Greater than or
equal

String, date, numeric,
logic

= Equal All data types

== Exactly equal,
including trailing
spaces

String

== Same as = operator All data types other than
string

<>, #, or != Not exactly equal,
the opposite of the
== operator

Strongly typed strings
(i.e., declared AS STRING
or AS PSZ)

<>, #, or != Not equal, the
opposite of the =
operator

All data types other than
strongly typed strings
(see above)

$ Substring String

Note: Many of the numeric and logic operators can be converted to methods if
used with an object as the first operand. See Chapter 25, “Objects, Classes, and
Methods,” in this guide for more information on this subject.

360 Visual Objects Programmer's Guide

Logic Operators

The comparison rules for these operators depend on the data type in question:

■ String: Comparison is based on the underlying ANSI code (for example, the
code for "A" is 65 and the code for "Z" is 90, making "A" < "Z"). Strings are
compared according to the following rules, assuming the expression to test is
cLeft = cRight:

1. If cRight is a NULL_STRING, quit comparing and return TRUE.

2. If Len(cRight) > Len(cLeft), quit comparing and return FALSE.

3. Compare all characters in cRight with cLeft until cRight runs out of
characters or until there is a difference. If all characters are the same,
return TRUE; if there is a difference, return FALSE.

■ Symbol: Comparison is performed using a numeric value that is uniquely
associated with the symbol when it is created. Comparison of symbols is
much faster than strings.

 Note: Literal symbols are converted to uppercase letters, making a
comparison such as:
? #cat = #CAT

 result in TRUE. To preserve the casing of letters in symbols, store them
using SysAddAtom() instead of literals:
symLittleCat := SysAddAtom("cat")
symLargeCat := SysAddAtom("CAT")
? symLittleCat = symLargeCat // FALSE

■ Date: Dates are compared chronologically.

■ Numeric: Numbers are compared based on magnitude.

■ Logic: TRUE is greater than FALSE.

■ NIL: NIL is not equal to anything except a NIL, NULL_ARRAY, or
NULL_OBJECT value.

■ Array: Comparison using the = operator determines if two arrays are
actually references to the same array. If they are, this operator returns TRUE;
otherwise, it returns FALSE.

■ Object: Comparison using the = operator determines if two objects are
actually references to the same object. If they are, this operator returns
TRUE; otherwise, it returns FALSE.

Chapter 23: Operators and Expressions 361

Logic Operators

This example function displays the results of several logic expressions involving
relational operators:
GLOBAL cName := "Lou" AS STRING

FUNCTION PrintYesNo()
 ? 15 < 5 // FALSE
 ? 15 = 5 // FALSE
 ? 15 > 5 // TRUE
 ? SqRt(25) + 5 = 10 // TRUE
 ? Today() > 59.12.20 // TRUE
 ? cName = "Frank" // FALSE
 ? "Lo" $ cName // TRUE

■ Compare two literal numbers:
15 < 5
15 = 5
15 > 5

■ Compare a numeric function return value to a literal number:
SqRt(25) + 5 = 10

■ Compare a date function return value to a literal date:
Today() > 59.12.20

■ Compare a string variable to a literal string:
cName = "Frank"

■ Determine if a string literal is a substring of a string variable:
"Lo" $ cName

Exactly Equal Most of the relational operators are fairly straightforward, and you are probably
already familiar with them. You may not, however, be familiar with the exactly
equal operator (==).

You can use this operator to compare strings for exact equality in length and
content, including trailing spaces:
? "String One " == "String One" // FALSE
? "String One" == "String One " // FALSE
? "String One" == "String One" // TRUE

For all other data types, this operator is equivalent to the = operator.

362 Visual Objects Programmer's Guide

Assignment Operators

Chapter 23: Operators and Expressions 363

operators, you must qualify the field name as described in Chapter 22,
“Variables, Constants, and Declarations.”

Assignment Operators
The assignment operators are summarized separately to avoid repeating them
under each applicable data type. These operators assign a value to a variable
and return the assigned value as a result, letting you include assignments in
expressions.

Symbol Operation Operand Data Types

:= Assign String, symbol, date,
numeric, logic, NIL,
array, code block, object

+= Add (or concatenate) and
assign

String, numeric, mix date
and numeric

-= Subtract (or concatenate)
and assign

String, date, numeric, mix
date and numeric

^= Exponentiate and assign Numeric

*= Multiply and assign Numeric

/= Divide and assign Numeric

%= Modulus and assign Numeric

The assignment operators are unique among the operators in that they require a
variable name (including a class instance variable) as the first operand—the
second operand can be any data type that is appropriate for the operator in
question. The data type of an assignment operation is determined by the value
assigned (the second operand).

If you declare the variable you are assigning using strong typing, the data type of
the second operand must fit the declared data type or your program will
produce errors when compiled. For example, the following assignment is illegal
because it attempts to put a string into an integer variable:
LOCAL iValue AS INT
...
iValue := "String Value Not Allowed!"

Important! You can perform simple assignments using the equal sign (=) instead of one
of the assignment operators, but this is not recommended. Making assignments in this
manner is limiting in that the assignment statement must stand alone and cannot be part
of an expression. Unless the Old Style Assignments compiler option is checked, the use
of = as an assignment operator will not be allowed.

Note: If you want to assign a value to a field using any of the assignment

Assignment Operators

364 Visual Objects Programmer's Guide

the compound operators require the first operand to have an initial value
because it is used as part of a calculation.

Assignments as Program Statements

You can use assignment operators to form program statements just as you would
use a command, function, or method invocation. For example, the following
lines of code may appear in a program:
iValue := 25
iNewValue := SqRt(iValue) ** 5
iValue += iNewValue

You can also perform multiple (or chained) assignments within the same program
statement. When you assign values in this manner, the assignments are executed
from right to left. This feature is particularly useful when you need to store the
same value to many different fields, possibly in different database files:
oDBCust:CustID := oDBTrans:TransNo := cIDNumber

Assignments as Expressions

As stated earlier, each assignment operator returns a value whose data type
depends on the second operand. Therefore, you can use assignments alone or as
part of other expressions anywhere in the language where an expression is
allowed:
IF (dDate := (Today() - 1000)) = CToD("12/20/79")
? SqRt(iValue := (iValue ** 2))
? cString += " Add this to the end"

Compound Assignments

The compound assignment operators perform an operation between the two
operands and assign the result to the first operand.

Operator Example Definition

+= a += b a := a + b

-= a -= b a := a - b

*= a *= b a := a * b

/= a /= b a := a / b

%= a %= b a := a % b

^= a ^= b a := a ^ b

Unlike the assignment operator (:=) which you can use to initialize a variable,

Mixing Data Types

This example code illustrates the += operator using string, date, and numeric
data types:
// String (concatenation)
LOCAL cString := "Hello" AS STRING
cString += " there"
? cString // "Hello there"

// Date (addition)
LOCAL dDate := 90.12.12 AS DATE
dDate += 12
? dDate // 12/24/90

// Numeric (addition)
LOCAL iValue := 10 AS INT
? SqRt(iValue += 15) // 5
? iValue // 25

Mixing Data Types
As you have seen from reviewing all of the operators in this chapter, operations
between different data types are almost never permitted. There are a few
exceptions, however, that have already been pointed out, such as the case
involving calculations between dates and numbers, and the case in which
various data types can be compared to NIL.

Automatic Type Conversion

There are instances in which Visual Objects automatically performs a type
conversion. In general, there are many cases in the language where you can use
a data item other than the type called for, and the compiler will generate code to
perform the necessary conversion for you. Internally, this is accomplished using
conversion operators of the form:
<idType>(<Value>)

<idType> can be any of these data types:

ARRAY INT PTR SYMBOL
CODEBLOCK LOGIC REAL4 WORD
DATE LONGINT REAL8
DWORD OBJECT SHORTINT
FLOAT PSZ STRING

For example, there are no restrictions to prevent you from creating complex
numeric expressions involving many numeric data types. The compiler supplies
the appropriate conversion operators to change the data items within the
expression to the data type with the largest storage capacity:

Chapter 23: Operators and Expressions 365

LOCAL iX := 100 AS INT, fY := 25.5 AS FLOAT
? iX * fY

Mixing Data Types

Since iX and fY have different data types, and since FLOATs have a greater
storage capacity than INTs, the compiler would generate something like this:
? Float(iX) * fY

You can also use any numeric expression, regardless of its actual type, as an
argument whenever a strong numeric type is required by the function syntax.
Again, the compiler supplies the necessary conversion operator to obtain the
required type:
LOCAL fY := 25.5 AS FLOAT
? I2Bin(fY)

I2Bin() requires a SHORTINT as its argument. Thus, the compiler generates
something like:
? I2Bin(ShortInt(fY))

The conversion operators are available as part of the language and, as such, you
can use them to perform type conversions. You will find, however, that in most
cases their use is unnecessary because of the automatic type conversion
described above.

One case in which you will find the conversion operators essential is to prevent
automatic type conversion when it is not what you want. Using these operators,
you can gain explicit control over how numeric expressions are evaluated. For
example, to prevent the automatic conversion of iX to a FLOAT value:
LOCAL iX := 100 AS INT, fY := 25.5 AS FLOAT
? iX * Int(fY)

Important! Many conversions are illegal using these operators. For example, you
cannot convert a number to a string as in String(100). Any conversion you attempt that
is not possible will result in a compiler error. To perform conversions of this nature, use
the functions discussed in the next section, Manual Type Conversion.

Note: The conversion operators are intended mainly for use by the compiler and
are provided to remain in keeping with the open architecture philosophy of this
product. There are, however, certain cases in which the advanced user may need
them to convert a pointer reference to a particular data type.

Manual Type Conversion

There are instances in which an automatic type conversion is not possible. For
example, if a function requires a string argument, you cannot use a number and
expect it to work. Doing so will always result in an error, whether it be a
compiler or a runtime error.

366 Visual Objects Programmer's Guide

Mixing Data Types

The compiler cannot handle this type of conversion nor is it permitted using the
conversion operators. In these cases, you will use functions that are specifically
designed to convert a value from one type to another at runtime.

Suppose that you want to form a string expression that displays a date value
along with some text on a report. This expression is not valid because the +
operator is not defined for adding strings and dates:
"Today's date is " + Today()

To get around this problem, you could convert the date value to a string using
the DToC() (Date To Character) function:
"Today's date is " + DToC(Today())

In this expression, the functions Today() and DToC() are evaluated first,
converting today’s date to a string value. The resulting string is then
concatenated to the string literal, "Today's date is ".

Similarly, you can convert numbers to strings using the Str() function:
"The total amount is " + Str(fTotal, 9, 2)

Another common conversion that you may need to perform is string to numeric,
in which case you would use the Val() function:
nNextSSN := Val(cSSN) + 1

The examples given here illustrate only a few of the more commonly used
conversion functions. There are many more, all of which are detailed in the
online help system.

Converting Typed Pointers

With the introduction of typed pointers, it now becomes necessary to be able to
do an explicit conversion between the different pointer types. Automatic pointer
conversions are carried out by the compiler (various compiler warnings inform
the user of these automatic conversions). However, as a general rule, it is not
recommended to rely on these automatic conversions. The applied conversion
rules will occasionally not comply with the programmer's intention, resulting in
programs, which are semantically incorrect. Such errors are usually of very
subtle nature but become very problematic when debugging the program.
Implicit pointer conversion should be avoided whenever possible.

Visual Objects provides the following syntax for pointer conversions. This
syntax is similar to the explicit type casting syntax of the language —
<idType>(_cast, <Variable>):

Chapter 23: Operators and Expressions 367

PTR(<idType>, <Pointer Variable>)

Mixing Data Types

The idType can be one of the following data types:

■ DATE

■ LOGIC

■ INT

■ SHORTINT

■ LONGINT

■ BYTE

■ WORD

■ DWORD

■ REAL4

■ REAL8

The "Pointer Variable" can be of any pointer type (typed pointer, PTR, PSZ, AS
Structure).

The anonymous pointer (pointer of type PTR) supplied by MemAlloc() is
explicitly converted to a typed pointer (of type REAL4). For more information
on pointers, refer to the Pointers section in Chapter 21, “Data Types” in this
guide.

Type Casting

There are also several operators that let you perform type casting. These
operators resemble the type conversion operators discussed earlier, but are
designed for use at a much lower level of programming. Their general format is:
<idType>(_CAST, <Value>)

where <idType> is one of the data types listed in the Automatic Type Conversion
section above.

Unlike the type conversion operators, the type casting operators change only the
data type of an expression, not its value:
Long(_CAST, Today())

means take the date value Today() and use it as a long integer.

The compilation of these operators will always succeed, even though what you
are trying to do may have unpredictable results, as in this example which
attempts to use the number 5 as an object pointer:

368 Visual Objects Programmer's Guide

Object(_CAST, 5) // Nonsense example!

Special Operators

Caution! Type casting is a very low-level and dangerous feature designed for writing
and porting Assembler and C-level routines.

Special Operators
There are several symbols that have special meaning in the Visual Objects
language. These are special operators that often appear in expressions.

Operator Valid Data Types

() Argument list or grouping within an
expression

{} Literal array, code block, or class instance

[] Array element

: Send, used to access instance variables
and to send messages to an object

. Structure member access, macro
terminator

-> Alias identifier

& Compile and execute (macro)

@ Reference

Parentheses

You can use parentheses in expressions to force a particular evaluation order
(more on this subject in the Expression Evaluation section) or to make a
complicated expression more readable. When using parentheses for grouping
within an expression, the item that falls within the parentheses must be a valid
expression.

For example, you might group this expression:
x + y * 15

to cause the addition to occur before the multiplication, thus changing the result
of the expression:
(x + y) * 15

Chapter 23: Operators and Expressions 369

You might also group this expression:
x < 14 .AND. x > 21

Special Operators

to make it more readable without changing the order of evaluation:
(x < 14) .AND. (x > 21)

You could not, however, group this expression as follows because the entity
within the parentheses is not a valid expression:
x < (14 .AND. x) > 21

You must use parentheses to indicate a function or method call—arguments, if
any, are expected to occur between the parentheses. For example:
LOCAL cString := "Frank Louis", cNickName AS STRING
cNickName := Substr3(cString, 7, 3) // "Lou"

Curly Braces

Curly braces ({}) identify literal arrays and code blocks. The only difference
between the two representations is that the code block literal must also contain a
parameter list (even if it is empty) delimited with vertical bars (||):
LOCAL aOne AS ARRAY
LOCAL cbDisplay, cbToday AS CODEBLOCK
aOne := {1, 2, 3, 4, 5, 6} // Literal array
...
cbDisplay := {|x| QOut(x)} // Code block with arguments
...
cbToday := {|| QOut(Today())} // Code block with no arguments

You will also use curly braces ({}) to create an instance of a class. An example of
this use of the curly braces appears under the Message Send heading below.

Subscript

The subscript operator ([]) references a single array element using its numeric
subscript: (subscript)"] (subscript)]
LOCAL aOne AS ARRAY
aOne := {1, 2, 3, 4, 5, 6} // Literal array
...
? aOne[1]

Separate subscripts for multidimensional arrays using commas or several sets of
square brackets. These two array element references are equivalent:
LOCAL aMulti AS ARRAY
aMulti := {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}
? aMulti[3, 2] // Result: 8
? aMulti[3][2] // Result: 8

370 Visual Objects Programmer's Guide

Special Operators

When using the subscript operator to access array elements, you are limited to
eight dimensions. To access array elements beyond eight dimensions, use the
ArrayGet() and ArrayPut() functions, nested to the appropriate level.

Message Send

The send operator (:) sends messages to a class instance, or object, and accesses
its instance variables. In the following sketchy example, a class is defined with a
single instance variable and one method. The function UseClass() creates an
instance of the class (using {} operators), and initializes the instance variable and
invokes the method using the send operator (:):
CLASS Animal // Define Animal class
 EXPORT Genus
 .
 . <Other instance declarations>
 .

METHOD Population() CLASS Animal
 .
 . <Statements defining the method>
 .

FUNCTION UseClass()
 LOCAL oJag AS OBJECT // Declares oJag as an object, any class

 oJag := Animal{} // Creates oJag as Animal class
 oJag:Genus := "Felus"
 ? oJag:Population()
 .
 . <Executable statements>
 .

You can also have an array as the first operand when using the message send
operator to invoke a method. In this case, the array should contain objects as its
elements (or other arrays that eventually lead to objects), and the method will be
invoked for each element in the array.

Method invocations are like function calls in that they perform an operation and
return a value. They can appear as stand alone program statements; however,
instance variables, like all other variables, can only appear as part of another
statement, such as an assignment.

Chapter 23: Operators and Expressions 371

Special Operators

Dot

The dot operator (.) accesses a member of a structure. Its syntax is:
<idStructVar>.<idMember>

To use this operator, you must first define a structure and declare a variable to
hold it:
STRUCTURE SysOne // Define SysOne data structure
 MEMBER iAlpha AS INT
 MEMBER pszName AS PSZ

FUNCTION UseStruct()
 // Declare variable to hold SysOne structure
 LOCAL strucVar IS SysOne
 strucVar.iAlpha := 100
 .
 . <Statements that access structure members>
 .

The dot operator also serves as the macro terminator, which is discussed further
in The Macro Operator section later in this chapter.

Alias Identifier

The alias identifier qualifies a variable reference. For example,
_FIELD-><idField> explicitly specifies a field variable, and
_MEMVAR-><idVariable> (or M-><idVariable>) explicitly specifies a polymorphic
variable.

For a field variable, you can use the specific database alias (defined when you
open the database file) as in <idAlias>-><idField>.

You can also use the alias identifier with an expression by enclosing the
expression in parentheses, as in <idAlias>->(<Expression>). If the expression is a
single function or procedure call, the parentheses are optional (for example,
<idAlias>->EOF()). When you use the alias identifier in this manner, the work
area associated with the specified alias is selected before the expression is
evaluated, and the current work area is selected afterwards.

Macro

The macro symbol (&) is the compile-and-run operator. It is a unary prefix
operator whose only valid operand is a character variable. The macro operator is
discussed in more detail later in this chapter in The Macro Operator section.

372 Visual Objects Programmer's Guide

Expression Evaluation

Reference

The reference operator (@) is valid in the argument lists of method, function, and
procedure calls—sometimes it is a required part of the syntax, as with FRead(). It
is also valid for assigning the address of a value to a pointer.

@ is a unary prefix operator whose operand can be any variable name (field
variables are not allowed), array element, method, or function call. It works by
returning the address of, or reference to, its operand.

When you use the @ operator to pass a value, the value is passed by reference.
This means that the called routine can modify the value directly.

For functions defined using the CLIPPER calling convention and methods, you
can use the reference operator (@) for any argument. For functions defined using
the STRICT or other calling convention, the arguments defined using the REF
keyword require that you use @ when calling the function, whereas the
arguments defined using the AS keyword do not allow @.

You can also use @ to obtain the address of a variable or function return value.
The address is returned as a pointer (PTR).

Expression Evaluation
When evaluating expressions with two or more operations that are not explicitly
grouped together with parentheses, Visual Objects uses an established set of
rules to determine the order in which the various operations are evaluated.
These rules, called precedence rules, define the hierarchy of all of the operators
discussed so far in this chapter and are strictly enforced to insure that
expressions are evaluated in a consistent manner.

For the most part, expressions are operations that manipulate a single data type.
For example, an expression might concatenate several character strings or
perform a series of mathematical operations on several numbers.

There are, however, expressions in which the evaluation of several different
operations are necessary. For example, a complex logic expression can involve
several related operations, on different data types, that are connected with
Boolean operators:
cString1 $ cString2 .AND. nVal1++ > nVal2 * 10

Chapter 23: Operators and Expressions 373

Expression Evaluation

Precedence Levels

When more than one type of operator appears in an expression, the
subexpressions are evaluated in a particular order according to the operators
involved. The established order is:

1. Unary signs (+, -)

2. Exponentiation (^, **)

3. Multiplication, division, and modulus (*, /,%)

4. Addition, subtraction, and concatenation (+ and -)

5. Comparison (<, <=, >, >=, =, ==, <>, #, !=,. $)

6. Boolean negate (.NOT., !)

7. Boolean and (.AND.)

8. Boolean or (.OR.)

9. Assignment (:=, *=, /=, %=, +=, -=)

Note: All function calls and operators that are not mentioned in this list are
evaluated before any other operators. Expressions within these entities (such as
a function argument that requires evaluation) are evaluated according to the
precedence defined above.

Except for assignments, all operations at the same level of precedence are
performed in order from left to right. Assignments are performed in order from
right to left. For the compound operators, the nonassignment portion (such as
addition or concatenation) of the operation is performed first, followed
immediately by the assignment.

Note: The increment (++) and decrement (--) operators are not included with the
precedence levels listed above. Depending on whether you use the prefix or the
postfix form, these operations occur just before or after the most immediate
operation in which they are involved.

In the example given earlier:
cString1 $ cString2 .AND. nVal1++ > nVal2 * 10

The order of evaluation of the subexpressions is:

1. nVal2 * 10

2. cString1 $ cString2

3. nVal1 > (result of Step 1)

4. nVal1++

374 Visual Objects Programmer's Guide

5. (result of Step 2) .AND. (result of Step 3)

Expression Evaluation

The next example shows how the established precedence rules guarantee that
like expressions produce like results. Consider these two, algebraically
equivalent numeric expressions:
5 * 10 + 6 / 2 // Expression a
6 / 2 + 5 * 10 // Expression b

Expression a is evaluated as:

1. 5 * 10 equals 50

2. 6 / 2 equals 3

3. 50 + 3 equals 53

Expression b is evaluated as:

1. 6 / 2 equals 3

2. 5 * 10 equals 50

3. 3 + 50 equals 53

Without precedence rules, these two expressions would be evaluated in order
from left to right, and expressions a and b would produce different results:

a. 5 * 10 equals 50; 50 + 6 equals 56; 56 / 2 equals 28

b. 6 / 2 equals 3; 3 + 5 equals 8; 8 * 10 equals 80

Neither result is correct, and the two results are not the same.

Parentheses

As stated earlier, you can override the order in which an expression is evaluated
using parentheses. When you use parentheses in an expression, all
subexpressions within parentheses are evaluated first using the precedence rules
described in this section. If you nest the parentheses, the evaluation is done
starting with the innermost pair and proceeding outward.

Continuing with the first numeric expression used in the example above, you
could use parentheses to force the addition operation to be evaluated first:
5 * (10 + 6) / 2

Using parentheses in this manner changes the result of the expression by
evaluating it in this order:

1. 10 + 6 equals 16

2. 5 * 16 equals 80

Chapter 23: Operators and Expressions 375

3. 80 / 2 equals 40

The Macro Operator

Tip: Although the Visual Objects language provides a specific order of
precedence for evaluating expressions, it is better programming practice to
explicitly group operations for readability and to be certain that what
executes meets your expectations.

The Macro Operator
The macro operator in Visual Objects is a special operator that allows runtime
compilation of expressions and text substitution within strings. Whenever the
macro operator (&) is encountered, the operand is submitted to a special runtime
compiler referred to as the macro compiler that can compile expressions but not
statements or commands.

Text Substitution

You can use the macro operator with a string variable (called a macro variable) as
the operand:
&<cMacroVar>

When you include a macro variable within a string, the contents of the variable
are substituted for the variable reference. This use of the macro operator is
known as text substitution:
cMacro := "there"
? "Hello &cMacro.!" // Result: Hello there!

The period (.) is the macro terminator and it is optional. You need it to indicate
the end of the macro variable in order to distinguish it from adjacent text in the
statement as illustrated in the above example.

When you use the macro operator for text substitution, the operand must be a
polymorphic variable whose data type is string, the macro operator must
immediately precede the variable, and the string within which you use the macro
variable must be known at compile time. If you fail to follow these guidelines,
the macro variable will not be expanded.

376 Visual Objects Programmer's Guide

The Macro Operator

Thus, a macro variable will not be expanded under these circumstances:

■ The variable is a field variable, a declared variable, or an array element.

■ The macro variable is enclosed in parentheses.

■ The string within which the macro variable appears is not known at compile
time (it may, for example, be entered by the user at runtime). (The
StrEvaluate() function described in the Related Functions section below
offers you this capability.)

In all of these cases, the macro operator is assumed to be literal text:
cMacro := "there"
? "Hello &(cMacro)" // Result: Hello &(cMacro)

Compile and Execute

When you use the macro operator in a place where an expression is expected
(such as a function or command argument) the macro symbol behaves as the
compile and execute operator, resulting in runtime compilation and execution of
the expression.

Thus, you can use the macro operator to compile and execute a macro variable
containing an expression stored as a string value. When you use the macro
operator in this manner, the expression is compiled by the macro compiler and
executed. The compiled code is then discarded:
cMacro := "DToC(Today())"
? &cMacro // Displays today's date

If you specify a string expression enclosed in parentheses and prefaced by the
macro operator (&), the expression is evaluated and the contents of the resulting
string is compiled and executed:
cNum1 := "15 "
cNum2 := "+ 30"
? &(cNum1 + cNum2) // Result: 45

When you enclose the macro operand within parentheses, you are creating a
macro expression which, unlike a macro variable, can contain array elements and
fields. This example illustrates using the macro operator with an array element:
LOCAL aStruct AS ARRAY
LOCAL iField AS INT
USE customer
aStruct := DBStruct()
DO WHILE .NOT. EOF()
 // Displays contents of each field
 FOR iField := 1 UPTO ALen(aStruct)
 ? &(aStruct[iField, DBS_NAME])
 NEXT

Chapter 23: Operators and Expressions 377

 DBSkip()
ENDDO
DBCloseArea()

The Macro Operator

Using Declared Variables

When you use the macro operator to compile and execute an expression stored in
a macro variable, the variable can be a declared variable; however, the expression
contained within the macro variable cannot reference declared variables.
Similarly, variables occurring within a macro expression can be declared, but the
expressions contained in the variables cannot reference declared variables.

Some examples of the correct and incorrect usage of declared variables with the
macro operator are:

■ The following example correctly uses a declared variable as the macro
operator operand:
LOCAL cNum := "5 + 10"
? &cNum // Result: 15

■ This example correctly uses declared variables in a macro expression:
LOCAL cNum1 := "5 + 10 ", cNum2 := "+ 15"
? &(cNum1 + cNum2) // Result: 30

■ The next example incorrectly makes a reference to a declared variable within
a macro variable:
LOCAL cNum := "5 + 10 + nNum", nNum := 30
? &cNum // nNum not known at runtime

■ The next example incorrectly makes a reference to a declared variable within
a macro expression:
LOCAL cNum1 := "5 ", cNum2 := "+ 10 + nNum",nNum := 30
? &(cNum1 + cNum2) // nNum not known at runtime

Using Operators

Certain operators, listed below, are not allowed in macro expressions:

■ Type casting operators

■ Conversion operators

■ ++, --

■ >>, <<

■ _And(), _Or()

■ _Chr()

■ _TypeOf()

■ _SizeOf()

■ _MakePtr()

378 Visual Objects Programmer's Guide

All other operators, including compound assignments and message sends, are
fully supported.

The Macro Operator

Using Functions

As a general rule, you can call a function within a macro expression only if it is
defined with the CLIPPER calling convention. In addition, the following
functions may be called even though they use the PASCAL calling convention:

AAdd() DoW() Lower() Str()
Asc() DToS() Max() SqRt()
Abs() DToC() LTrim() Substr()
At() Eval() Min() Today()
CDoW() Exp() Month() Trim()
Chr() Integer() Replicate() Upper()
CMonth() Left() Right() Val()
CToD() Len() Round() Year()
Day() Log() Space()

Nesting Macros

You can nest the macro operator as deep as necessary, provided the resulting
expression is not too complex. For example, after assigning a macro variable to
another macro variable, the original macro variable can be expanded, resulting in
the expansion of the second macro variable and evaluation of its contents:
cOne = "&cTwo"
cTwo = "cThree"
cThree = "hello"

? &cOne // Result: "hello"

Related Functions

The Visual Objects language has several functions that give you access to the
macro system.

Function Description

Evaluate() Compiles a string value containing an expression
and executes the result (i.e.,
MExec(MCompile()))

MAssign() Performs an assignment to a macro variable or
expression

MCompile() Compiles a string value containing an expression

MCShort() Controls logic shortcutting in macro expression
evaluation

Chapter 23: Operators and Expressions 379

MExec() Executes a compiled string

The Macro Operator

StrEvaluate() Allows text substitution within runtime strings

MCompile() and MExec() break the compile and execute operations performed
by the macro operator into distinct steps. These functions let you compile an
expression, save the compiled code in a variable, and execute the compiled code
repeatedly:
PROCEDURE Start()
 LOCAL cPCode AS STRING
 USE exp_file
 DO WHILE .NOT. EOF()
 // Compile ExpField
 cPCode := MCompile(ExpField)
 ...
 MExec(cPCode)
 ...
 MExec(cPCode)
 ...
 MExec(cPCode)
 ...
 DBSkip()
 ENDDO
 DBCloseArea()

Since the compile operation is the most time consuming, using MCompile() and
MExec() instead of the macro operator (&) could potentially save you a lot of
time.

Important! Strings that you compile with MCompile() are valid during the current run
only. For this reason, you cannot store them (in a database or memory file, for example)
and attempt to execute them with MExec() in subsequent runs. Doing so will produce
unpredictable results.

Evaluate() is the functional equivalent of the macro (compile and execute)
operator (for example, Evaluate(<cExp>) is the same as &(<cExp>)). There are no
advantages to using this function over the macro operator except for the
possibility that you might find the function less cryptic when reading code.

MCShort() lets you set a flag that controls logic shortcutting in macro expression
evaluation. When TRUE (the default), macro expressions involving .AND. and
.OR. operators are performed using the shortcut described in the Logic Operators
section earlier in this chapter. When FALSE, these expressions are evaluated in
their entirety—no shortcuts are taken.

StrEvaluate() lets you perform text substitution in strings that are entered at
runtime:
MEMVAR cOne
LOCAL cTwo AS STRING
cOne := "world"
ACCEPT "Enter a macro string " TO cTwo

380 Visual Objects Programmer's Guide

// If you type "Hello &cOne" (without quotes)
? cTwo // Result: "Hello &cOne"
? StrEvaluate(cTwo) // Result: "Hello world"

The Macro Operator

It is possible to perform assignments to a variable, array element, or object
instance variable by storing the value on the left-hand side of the assignment in
one or more variables and using the macro operator. For instance, this example
stores the value 5 to a variable named iValue:
MEMVAR iValue
LOCAL cVar AS STRING
cVar := "iValue"
&cVar := 5
? iValue // Result: 5

The next example is similar, but uses a macro expression instead of a simple
variable to make an assignment to an array element:
MEMVAR aOne
LOCAL cArray, cIndex, cExp AS STRING
cArray := "aOne"
cIndex := "[5]"
aOne := ArrayNew(10)
cExp := cArray + cIndex
&cExp := 100
? aOne[5] // Result: 100

You can also use the MAssign() function to perform assignments in this manner.
The two previous examples are repeated below to illustrate the use of this
function:
MEMVAR iValue
LOCAL cVar AS STRING
cVar := "iValue"
MAssign(cVar, 5)
? iValue // Result: 5

MEMVAR aOne
LOCAL cArray, cIndex AS STRING
cArray := "aOne"
cIndex := "[5]"
aOne := ArrayNew(10)
MAssign(cArray + cIndex, 100)
? aOne[5] // Result: 100

All of these functions are documented in the online help where you can look to
find more information.

Chapter 23: Operators and Expressions 381

The Macro Operator

Macros and Code Blocks

The macro compiler supports runtime compilation of code blocks, allowing you
to evaluate code blocks that are stored (as strings) in database fields or entered
by the user at runtime.

In this example, the field BlockField contains a code block stored as a string. This
field is used in a macro expression that returns the code block. The code block is
saved in the variable cbBlock, which is later evaluated with Eval():
PROCEDURE Start()
 LOCAL cbBlock
 USE exp_file
 DO WHILE .NOT. EOF()
 // Compile code block
 cbBlock := &(BlockField)
 ...
 Eval(cbBlock)
 DBSkip()
 ENDDO
 DBCloseArea()

Note: Because runtime code blocks are implemented as instances of the
system-defined _CODEBLOCK class, their data type is object; therefore, you
cannot save them to variables declared as code blocks (for example, LOCAL
cbBlock AS CODEBLOCK in the above example will not work.) You can store a
runtime code block either as a polymorphic variable (as in the above example) or
AS OBJECT (or, more specifically, AS _CODEBLOCK) if you require strong
typing.

Tip: You can also use the macro operator within a code block definition.
See Chapter 26, “Code Blocks,” in this guide for a discussion of macro
expansion within code blocks.

382 Visual Objects Programmer's Guide

The Macro Operator

When Not to Use the Macro Operator

The following list summarizes situations in which using the macro operator is
either not allowed or not recommended:

■ You cannot use the macro operator as part of a declaration statement.

■ You cannot use a field or an array element with the macro operator for the
purpose of text substitution, although these items are allowed in macro
expressions.

■ You cannot use a declared variable as part of an expression that you intend
to compile and execute with the macro operator.

■ You cannot access structures in macro expressions.

■ You cannot use SELF and SUPER (see Chapter 25, “Objects, Classes, and
Methods”) in macro expressions.

■ Although you cannot use the macro operator to substitute command
keywords, you can use it to substitute all or part of a command argument
(for example, with the COPY command, you can use a macro variable for the
target file name but not to substitute the COPY or TO keywords). In syntax
representations, command keywords are denoted using uppercase letters,
whereas arguments are denoted using metasymbols (for example, COPY TO
<xcFile>).

 The practice of using the macro operator to substitute command arguments,
however, is not recommended. In most cases where you would want to do
this, the syntax allows you to use an extended expression which is preferable
(for example, use COPY TO (cFileName) instead of COPY TO &cFileName).

■ You can use the macro operator to substitute individual items in a command
argument list but not to substitute the entire list. Again, this is not a
recommended practice and in most cases you can use extended expressions
instead.

■ When creating an array with PRIVATE or PUBLIC, the square brackets are
required to be a literal part of the syntax—as with command keywords, you
cannot substitute them using a macro variable.

Chapter 23: Operators and Expressions 383

Chapter 24: Arrays 385

data type.

Chapter

24 Arrays

An array is a collection of related data items that share the same name. Each
value in an array, referred to as an element, can be uniquely identified using one
or more integer values called subscripts.

An array is said to have one or more dimensions, depending on how many
subscripts are required to identify a particular element. The maximum number
of elements in each dimension gives the size of an array. For example, a
two-dimensional array requires two subscripts (a row and a column number) to
identify an element. If the array has three rows and five columns, its size is three
by five (3x5).

Some examples of arrays are a list of state names and abbreviations, a list of disk
file names and other attributes, and a series of numeric values.

Visual Objects supports two distinct kinds of array, dynamic and dimensioned,
both of which are discussed in this chapter.

Dynamic Arrays
Visual Objects supports an array data type that you can use to represent dynamic
arrays. The term dynamic is used to describe the changing nature of these
arrays.

Elements within the same array do not have to be of the same data type. For
example, it is possible to create an array in which the first element is a string, the
second a numeric value, the third a code block, and so on. You can store other
arrays as elements in a dynamic array and, thus, create arrays of non-uniform
dimensions. You can also change the size of this type of array throughout your
application.

With dynamic arrays, not only can you manipulate the array elements, but you
can also manipulate the array itself. For example, you can use dynamic arrays as
arguments and return values. For this reason, dynamic arrays represent a true

Dynamic Arrays

Literal Arrays

As a data type, dynamic arrays have a literal representation. To create a literal
array, enclose zero or more expressions as a comma-separated list within the
designated array delimiter pair, {}:
{[<uExp> [, <uExp> ...]]}

The expressions represent the elements of the array and can be of any usual data
type (see Chapter 22, “Variables, Constants, and Declarations”). For example,
the following represents a one-dimensional array containing the numeric values
1 through 3:
{1, 2, 3}

Another one-dimensional array containing a string, a numeric value, and a date
might look like:
{"Hello", SqRt(x), Today()}

Since an array element can contain another array, you can create a
two-dimensional literal array as in this example:
{{1, 2, 3}, {"a", "b", "c"}, {.T., .T., .F.}}

Note: To return an array to its uninitialized null state, use the system-defined
constant NULL_ARRAY (or NIL). To create an empty array (one with no
elements, zero length), use the array delimiters with no element list (for example,
{}).

Limitations

There is no limit to the number of dimensions per array, but the subscript
operator ([]) has a limit of eight dimensions. If more dimensions are required,
functional access with ArrayGet() and ArrayPut() must be used.

Creating Arrays

You can declare dynamic arrays to the compiler using the LOCAL or GLOBAL
statements (see Chapter 22, “Variables, Constants, and Declarations,” for more
information). To do this, you specify an identifier name followed by the array
dimensions in square brackets using either of the following syntax conventions:
<idArray>[<nElements>, <nElements>, <nElements>]

<idArray>[<nElements>][<nElements>][<nElements>]

386 Visual Objects Programmer's Guide

Dynamic Arrays

Unlike other syntax representations, the square brackets (shown in bold) are a
literal part of the array definition and you must include them—they do not
represent an optional part of the syntax. All dimensions other than the first are
optional:
LOCAL aMyArray[2][10]
STATIC LOCAL aYourArray[100]
GLOBAL aAnother[2, 3, 5]

You can also create dynamic arrays at runtime using the PUBLIC or PRIVATE
statements. The syntax for creating arrays with PUBLIC and PRIVATE is the
same as for GLOBAL and LOCAL.

Another way to create an array is to assign an array expression to a polymorphic
variable. This technique also works with GLOBAL, LOCAL, PUBLIC, and
PRIVATE, letting you create and initialize an array in the same statement:
aFirst := {1, 2, 3, 4, 5}
LOCAL aMyArray := ArrayCreate(100)
GLOBAL aYourArray := {"One", "Two", "Three"}
PRIVATE aAnother := Directory("*.dbf")

Important! You cannot specify multidimensional literal arrays as part of a GLOBAL
statement.

Finally, you can declare a simple variable name and, later in the program, assign
an array value to it. These three examples are equivalent:
// Example 1
LOCAL aMyArray[100]

// Example 2
LOCAL aMyArray := ArrayCreate(100)

// Example 3
LOCAL aMyArray
aMyArray := ArrayCreate(100)

Strong Typing

Dynamic arrays that you declare to the compiler or that you create at runtime are
treated as polymorphic variables, which means that you can change their data
type. Consider this example:
LOCAL aNums[10]
AFill(aNums, 100)
? aNums[1] // Displays 100
...
aNums := "New character value"
? aNums[1] // Runtime error!

Chapter 24: Arrays 387

Dynamic Arrays

The LOCAL statement creates aNums as a ten element array. AFill() assigns a
value of 100 to each element so that when you query the first element, 100 is
displayed. Then, the assignment statement changes the variable named aNums
to a string value, destroying the array that was previously stored. Thus, when
you query the first array element again, a runtime error occurs because aNums is
no longer an array.

Note: The ability to use polymorphic variables to store dynamic arrays may be
important in your application, but you should know that it comes at a cost.
Applications that use polymorphic variables require runtime overhead and are
prone to errors.

If you do not want to allow a variable name that you declare as an array to
change data type in your application, you can specify the ARRAY data type
(called strong typing) as part of the declaration statement. Doing this will trap as
a compiler error any instance in which you misuse the variable name, including
an attempt to change its data type or to use it where another data type is
expected.

When the previous example is repeated with the variable aNums strongly typed
as an array, a compiler error occurs when you attempt to assign a string value to
aNums:
LOCAL aNums[10] AS ARRAY
AFill(aNums, 100)
? aNums[1] // Displays 100
...
aNums := "New character value" // Compiler error!
? aNums[1]

Declaring an array with the ARRAY data type does not change its dynamic
nature. The data types of the individual elements can still vary along with the
size and structure of the array—array elements are always untyped, usual
values. See Chapter 22, “Variables, Constants, and Declarations,” in this guide
for more information on the advantages of declaring and strongly typing
variables.

Addressing Array Elements

After you create an array, you access its elements using an integer index called a
subscript. The syntax you use to address elements is the same as the syntax to
specify the array dimensions.

To address an element of a one-dimensional array, place the subscript of the
element in square brackets following the array name. For example, if aNums is a
one-dimensional array you would use this syntax to address its first element:

388 Visual Objects Programmer's Guide

aNums[1]

Dynamic Arrays

Note that subscript numbering begins with one (it is one-based).

To address an element of a multidimensional array, you can either enclose each
subscript in a set of square brackets or separate the subscripts with commas and
enclose the list in square brackets. If aNums is a two-dimensional array, both of
these statements address the element stored in the second column of the tenth
row:
aNums[10][2]
aNums[10, 2]

You can use an array element reference as a variable anywhere in the language
that is appropriate for its data type.

Assigning Values to Array Elements

Array elements are assigned an initial value that differs depending on how you
create the array. For instance, if you create the array by defining its dimensions
using a LOCAL, GLOBAL, PUBLIC, or PRIVATE statement, all of the elements
are initialized to NIL.

If you create the array using a function, the initial value of the elements depends
on the function return value. With ArrayCreate(), the initial value for all
elements is NIL, but with a function like Directory(), the initial value of the
elements depends on the contents of the disk drive and directory that you
specify.

If you create a literal array, you specify the initial value of the elements in the
literal representation.

Once you create an array, you can change the value of individual elements using
any assignment operator (defined in Chapter 23, “Operators and Expressions,”)
that is appropriate for the data type of the element:
// Declare aOne and initialize to NIL
LOCAL aOne[30] AS ARRAY, siCount AS SHORTINT

// Assign each element a numeric value
FOR siCount := 1 TO ALen(aOne)
 aOne[siCount] := siCount
NEXT

// Increment 1st element from 1 to 2
++aOne[1]

// Multiply 2nd element by 3 and store result 6
aOne[2] *= 3

// Divide 3rd element by 3 and store result 1
aOne[3] /= 3

Chapter 24: Arrays 389

Dynamic Arrays

Note: This example illustrates the traditional method for traversing a
one-dimensional array with the FOR...NEXT programming construct. See the
FOR entry in the online help system for more information. Also see the AEval()
entry for another, less traditional method of array traversal.

The AFill() function gives you a quick way to assign the same value to all
elements of an array. This example assigns a string value of “First” to each
element in aOne:
LOCAL aOne[30] AS ARRAY
AFill(aOne, "First")

The values that you assign to array elements can be of any usual data type (see
Chapter 22, “Variables, Constants, and Declarations”).

Multidimensional Arrays

To create a multidimensional array, you can either declare the array with more
than one dimension parameter or assign another array to one of the elements of a
one-dimensional array.

Using either of these techniques, you can create and maintain traditional
multidimensional arrays that have a fixed number of elements in each dimension
(for example, to represent the rows and columns of a table). To declare a
two-dimensional array with ten rows and two columns:
LOCAL aTable[10][2] AS ARRAY

Arrays that you create in this manner are usually expected to adhere to certain
rules. For example, each column should contain the same type of information for
each row in the array (for example, column one might be a string and column
two a number). However, since there are no rules regarding what can be stored
in an array, you must implement this level of control programmatically.

The fact that you can assign an array to an existing array element allows you to
dynamically change the structure of an array. For example, there is nothing to
prevent you from doing something like this:
aTable[1][2] := {1, 2, 3, 4, 5}

This assignment changes aTable to a point where it can no longer be thought of as
a two-dimensional array because one of its elements is an array reference. In
particular, a reference to aTable[1][2][1] is now valid (it returns 1) where it was
not before. References to aTable[1][1][1] and aTable[2][1][1], however, result in
runtime errors.

390 Visual Objects Programmer's Guide

Dynamic Arrays

Chapter 24: Arrays 391

same array—they point to the same memory location—and comparing them
with = returns TRUE.

This feature of assigning an array reference to an array element is handy in many
applications—it lets you create ragged arrays that have non-uniform dimensions;
however, you must exercise whatever control you think is necessary for storing
and addressing array elements. You should not make any assumptions about
the structure of a dynamic array unless you enforce the structure
programmatically.

Arrays as References

Dynamic arrays are treated as references. This means that a variable to which you
assign an array (or which you declare as an array) does not actually contain the
array. Instead, it contains a pointer to a location in memory where the actual
array contents are stored.

Thus, it is possible to have multiple references to the same array in your
application. When you have more than one reference to the same array, changes
to one are automatically reflected in the others:
LOCAL aFirst, aSecond AS ARRAY
aFirst := {1, 2, 3}
aSecond := ASize(aFirst, 5)
aSecond[4] := 4
aSecond[5] := 5
? aFirst[4] // Displays 4
? aFirst[5] // Displays 5

Since ASize() returns a reference to its argument, aFirst and aSecond are actually
references to the same array; therefore, any changes made to one are
automatically seen in the other.

Equal Operator

You can use the equal operator (=) to determine if two variables refer to the same
array:
LOCAL aFirst, aSecond, aThird AS ARRAY
aFirst := {1, 2, 3}
aSecond := {1, 2, 3}
aThird := aFirst
? aFirst = aSecond // FALSE
? aFirst = aThird // TRUE

In this example, even though aFirst and aSecond contain exactly the same
elements, they are created independently and, therefore, are two distinct array
references. In other words, they point to different locations in memory and
comparing them with = returns FALSE.

However, since aThird is created using aFirst, these two variables represent the

Dynamic Arrays

Arrays as Parameters

When you pass an array as an argument, it is passed by value unless you use the
reference operator (@). However, unlike parameters of other data types, any
changes that you make to array elements in the called routine are automatically
reflected in the original array (and in all references to it):
FUNCTION Start()
 LOCAL aNums[10] AS ARRAY
 AFill(aNums, 0) // Elements set to 0
 MyFill(aNums) // Elements incremented by 1

 ? aNums[1] // Result: 1

FUNCTION MyFill(aTemp AS ARRAY)
 LOCAL siCount AS SHORTINT
 FOR siCount = 1 TO ALen(aTemp)
 ++aTemp[siCount]
 NEXT

This is another implication of treating arrays as references. Even though the
array is passed by value, the value passed is a reference and, therefore, behaves
in the indicated manner.

The behavior described above holds true if you pass the array by reference using
the @ operator, but there are some subtle differences between passing an array
by reference and by value. Most notably, it is possible to destroy an array
reference that you pass by reference:
FUNCTION Start()
 LOCAL aNums[5]
 AFill(aNums, 0) // Elements set to 0
 MyFill(@aNums) // Pass by reference

 ? aNums[1] // Result: 1

FUNCTION MyFill(aTemp)
 aTemp := {1, 2, 3, 4, 5}

In this example, the function MyFill() creates a new array reference. Since aNums
is passed by reference, this change is reflected when MyFill() returns, and
aNums[1] contains a value of 1.

When you pass by value, this is not possible. The original array reference will
always remain intact when the function returns:
FUNCTION Start()
 LOCAL aNums[5]
 AFill(aNums, 0) // Elements set to 0
 MyFill(aNums) // Pass by value

 ? aNums[1] // Result: 0

FUNCTION MyFill(aTemp)
 aTemp := {1, 2, 3, 4, 5}

392 Visual Objects Programmer's Guide

Dimensioned Arrays

Chapter 24: Arrays 393

therefore, does not represent an expression. This means that you cannot use
dimensioned arrays as arguments or as return values.

Arrays as Return Values

In addition to the ability to pass arrays as parameters, you can also use them as
return values. This lets you create an array reference using a function or method
call:
FUNCTION Start()
 aNew := MakeArray(10, "New value")

FUNCTION MakeArray(nElements, uFillValue)
 LOCAL aTemp[nElements]
 AFill(aTemp, uFillValue)
 RETURN aTemp

Dimensioned Arrays
Declaring Dimensioned
Arrays

In addition to dynamic arrays, you can also have arrays whose
dimensions are fixed at compile time. These are called
dimensioned arrays and you declare them using the DIM
keyword of the LOCAL and GLOBAL statements. For
example:
LOCAL DIM aMyArray[10]
LOCAL DIM acNames[2][3] AS STRING
GLOBAL DIM aiGroups[100] AS INT
GLOBAL DIM aoCars[20] AS OBJECT
LOCAL DIM aoAnimals[15] AS AnimalClass

Dimensioned arrays can contain up to eight (8) dimensions, except in the case of
dimensioned arrays of function pointers (see below). Strongly typing the
elements of a dimensioned array is optional.

The dimensions that you specify when you declare a dimensioned array remain
in effect throughout your application—you cannot change the size of the array at
runtime as you can with dynamic arrays. When you strongly type the array
elements, the compiler performs the necessary type checking to prevent you
from misusing the array (for example, storing a string value to an integer array
element).

Dimensioned arrays are much faster to access and more compact than dynamic
arrays but, from a language standpoint, not nearly as flexible in their usage.
They do not fall into the array data type category, which means that you cannot
manipulate them with functions designed to accept arrays as arguments. They
have other limitations as well. For example, a DIM array of FLOAT values is not
initialized to 0.0.

In fact, the dimensioned array itself does not have a data type of its own and,

Using the Array Operator on Typed Pointers

In general, you cannot manipulate the array as a whole the way you can with
dynamic arrays. The array elements, however, are typed and you can use them
in expressions. As with dynamic arrays, dimensioned arrays are one-based.

Dimensioned arrays are compatible with C and are designed for interfacing at
the operating system level.

Using Dimensioned
Arrays with Function
Pointers

There are some restrictions to using dimensioned arrays with
function pointers. The syntax for a dimensioned array of
function pointers is:

(LOCAL | GLOBAL) DIM <vName> "[" dim1 [,dim2 … dim4] "]";
<FunctionName> PTR

For example:
LOCAL DIM aFcnPtrs [2,3] MyFunction PTR

There are restrictions to consider when using dimensioned arrays with function
pointers. First, the maximum number of dimensions that can be used are four, as
opposed to eight for regular dimensioned arrays. Also, default initialization of
function pointer variables is limited to only the first element. For a single-
dimensional array, that would only be element <vName>[1]. For a four-
dimensional array it would be element <vName>[1,1,1,1]. Therefore, it is the
programmer’s responsibility to initialize the remaining elements of the DIM
array before trying to use the array.

Note: See Chapter 27, “Functions and Procedures,” for further information
about function pointers.

Using the Array Operator on Typed Pointers
A more flexible way of dereferencing typed pointers is provided with Visual
Objects. This is achieved by applying the array operator to the typed pointer.
This method is more flexible, because unlike the previous method, we are not
only restricted to the current element being addressed by the pointer, but to any
other element in our memory space.

Using this syntax we can obtain the value of the tenth element of our array in the
following manner:
preal4[10]

394 Visual Objects Programmer's Guide

Using the Array Operator on Typed Pointers

At the first glance it might seem superfluous to define a typed pointer to access
an array element, which could directly be accessed using the array variable.
However, think of the case where you dynamically allocate and fill memory with
elements of a particular data type in your application. It then becomes necessary
to either access the data sequentially or randomly. In either case, one of the
provided methods are readily applicable.

The following program example demonstrates this aspect. In the example we
use certain features like typed pointer conversion and pointer arithmetic which
are also explained in Chapter 21, “Data Types,” of this guide:
LOCAL prandom, ptemp AS REAL4 PTR
LOCAL w AS WORD

// allocate memory area for sparse array of 100
// REAL4 elements
prandom := PTR(REAL4, MemAlloc(100 * _SizeOf(REAL4)))

// initialize sparse array
ptemp := prandom
FOR w:=1 UPTO 100
 PTR(ptemp) := 0.0
 ptemp++
NEXT

// randomly access/assign values to elements
// in sparse array
prandom[10] := 5.75
prandom[50] := 10.25

Array Operator used Beyond the Third Dimension

With CA-Visual Objects 1.0 you had a limit of three dimensions when using the
subscript operator to access the elements of an array. To access array elements
beyond three dimensions, you had to use the ArrayGet() and ArrayPut()
functions, nested to the appropriate level.

Now with Visual Objects, this limit has been moved from three to eight. You can
now directly use the subscript operator up to the eighth dimension to access
array elements. For more information on pointers, refer to the Pointers section of
Chapter 21, “Data Types,” in this guide.

Chapter 24: Arrays 395

Chapter 25: Objects, Classes, and Methods 397

and its behavior (code). In Visual Objects, the class exists in code, before the
program starts to run. At runtime, many objects share the code of their class.
Thus, a class is to objects what a cookie cutter is to cookies.

Chapter

25 Objects, Classes, and Methods

The Visual Objects language provides facilities for defining and otherwise
manipulating objects as a data type. This chapter discusses the terminology that
you will need to understand object-oriented programming and the language
components that you will need to create objects and use them in an application.

In this chapter, you will learn how to define a class of objects, how to instantiate
objects of a particular class, and how to invoke their methods and determine
their properties.

You will see how the Visual Objects language satisfies the basic principles for an
object-oriented programming language and how it provides several unique
features, such as exported instance variables and access/assign methods, that are
not supported in some other object-oriented languages.

Each of the statements mentioned in this chapter is discussed further in the
online help system. There are also numerous support functions for working with
objects, instance variables, classes, and methods. In the online help system, these
are documented individually and grouped together under Object in the
“Functions by Category” chapter.

Note: In addition to providing the syntax and semantics for using your own
classes, Visual Objects provides you with several predefined system classes. The
system classes are not only described in the online help system, but also found
earlier in this guide. You can access them in the same manner as you access
classes that you define.

Classes
An object is a software component consisting of both code and data. It is created
at runtime and exists only while the application is running.

A class is the code that tells the application how to implement the behavior of an
object. It is a template that you use to define the components of an object (data)

Methods

Class

Object

Object

Object

Object

Compile time Runtime

Cookie cutter Cookies

Code

A class consists of one or more of the following, all of which will be defined and
discussed in this chapter:

■ Methods

■ Instance variables (both internal and exported)

■ Virtual variables

The methods define the behavior of the class and the instance and virtual
variables define its data. The term property refers to all the externally visible
components of a class (that is, its virtual variables and exported instance
variables).

The CLASS statement declares a class name to the compiler and begins the
definition of the data portion of the class.

Methods
A method is the code for a single action in the behavior of an object. It is correct,
therefore, to use the word “method” to refer to a portion of source code and also
to refer to that code at runtime.

Declaring

Methods define what a class of objects is capable of doing. You define methods
as separate programming units outside of the class entity definition using the
METHOD statement.

398 Visual Objects Programmer's Guide

Methods

For this reason, you must identify a class name for each method you declare.
Even though methods are entities, the compiler uniquely identifies method
names as part of a particular class, so there is no conflict if you use the same
method name in several different classes. (Because of this, the various browsers
in the IDE and this documentation refer to methods by their “full names,” for
example DBServer:Skip().)

A method is a lot like a function—it has parameters, declarations, programming
statements, and a return value. It is different, however, in several ways:

■ A method is defined for a specific class.

■ At runtime, a method knows which specific class it belongs to and can,
therefore, access all properties and instance variables defined for and
inherited by that class.

■ By default, a method returns SELF (a special keyword that refers to the object
itself). If you don’t want the method to return a value, you must explicitly
specify RETURN NIL.

Typing

Visual Objects supports two different types of methods. Methods that do not
allow typing of parameters (untyped methods) and methods with typed
parameters (typed methods). The behaviors differ in the following ways. Calls
to untyped methods are resolved symbolically at runtime (late-bound), incurring
some overhead to the method calls. However, they are very flexible. You can
check for the existence of methods, send untyped methods to an array, etc.

Typed methods are not as flexible but they provide compile-time type-checking.
Also, they have better performance since the method sends are direct calls
utilizing a virtual table (vtable) (early-bound).

Visibility

Methods have a visibility both from within the class and from the outside. The
visibility defines how a method can be invoked and in what context. The
normal, default, visibility is that all methods can be called by all other methods
within the class and all subclasses. In addition, all modules outside of the class
that have a pointer to an instance of the class can call all methods in the class.

There are two keywords that can be used to further limit the visibility of
methods, PROTECT and HIDDEN. Protected methods can only be called by
methods of the class declaring the method and all subclasses. Hidden methods
can only be called by the class that declares the method.

Chapter 25: Objects, Classes, and Methods 399

Instance Variables

400 Visual Objects Programmer's Guide

course. For example, a subclass can be used only to override methods of its
parent class, without requiring any instance variables of its own.

Protected and hidden methods are declared by prefixing a method declaration
with the keywords PROTECT or HIDDEN. For example:
PROTECT Method MyProrMethod(x,y,z) CLASS MyClass

Both method types can only be called in the context of their class. Thus they
must be called through a self call:
Method SomeMethod CLASS MyClass
 self:MyProtMethod(1,2,3)

Currently Protect and Hidden Methods are implemented for late bound
(untyped) methods only.

Invoking

When you invoke a method, not only must you specify the method name with its
arguments, you must also specify the object for which the method should be
invoked. Remember that although the method belongs to the class, it refers to
the contents of instance variables and those exist only in the context of a specific
object.

Method invocation is done with the message send operator, the colon:
<oObject>:<idMethod>([<uArgList>]) → uResult

Within a method, you must specify <oObject> using the keyword SELF to invoke
a method in the same class. As with a function call, the parentheses must be
specified even if there are no arguments, and the return value can be used or
discarded.

Instance Variables
After the CLASS statement, you can declare instance variables that serve as the
data portion of the class. Thus, instance variables, their names, and types are
declared as part of the class entity at compile time.

However, the actual value of each instance variable is handled at runtime by the
code in the application, particularly the methods of the class and possibly its
subclasses. At runtime, each instance variable contains a value or a reference to
an array or another object, and each object created from the class has these
instance variables as its components. Instance variable values are kept with the
object and vary from one object to another, defining the state of the object.

Note: A class definition with no instance variables is perfectly legitimate, of

Instance Variables

Declaring

There are four different types of instance variables, each declared with a different
keyword and each offering different characteristics:

■ INSTANCE declares instance variables that are visible only in methods of
their class and subclasses. These regular instance variables are “late bound”:
you can override them with access and assign methods of the same name.

■ PROTECT INSTANCE (or just PROTECT) declares instance variables that
are visible only in methods of their class and subclasses. Protected instance
variables are “early bound:” you cannot override them with access and
assign methods of the same name.

■ HIDDEN INSTANCE (or just HIDDEN) declares instance variables that are
visible in methods of their class, but not subclasses. They are also “early
bound” and cannot be overridden.

■ EXPORT INSTANCE (or just EXPORT) declares instance variables that are
visible outside the class, as externally properties of objects. Exported
variables are scoped like their class: they have module-wide visibility if their
class is declared as STATIC; otherwise, they have application-wide visibility.
They are “early bound” if possible, and cannot be overridden.

In summary, the different types of instance variables provide these
characteristics:

 Binding Visibility

 Late Early External Class Subclass

EXPORT √ √ √ √

PROTECT √ √ √

HIDDEN √ √

INSTANCE √ √ √

(The implications of late and early binding and the overriding of instance
variables are discussed in the Binding of Instance Variables and Virtual Variables
sections later in this chapter.)

The instance variables can be typed or untyped, like any local variable; they can
also be assigned initial values, like local variables. These are all valid examples
of instance variable declarations:
INSTANCE Tare := 800 AS INT
INSTANCE aCar := {} AS ARRAY

Chapter 25: Objects, Classes, and Methods 401

PROTECT Engineer
HIDDEN Engine
EXPORT License AS USUAL

Instance Variables

402 Visual Objects Programmer's Guide

knows about the database once you have opened it, but methods are not defined
for objects, they are defined for classes. NoIVarGet() allows the object to pretend
that it has a new set of variables.

(See Chapter 22, “Variables, Constants, and Declarations,” in this guide for more
information on the advantages of strong typing.)

Assigning Initial Values

If not initialized in the declaration or set in the Init() method (see the
Instantiation section later in this chapter), instance variables are initialized to the
appropriate null value for their type, or to NIL if untyped. (See Chapter 21,
“Data Types,” in this guide for more information on NIL and initial null values.)

Referencing

When you reference an instance variable outside the class (in the case of exported
instance variables), you must specify the object to which the instance variable
belongs. Remember that instance variables exist only in the context of a specific
object.

Like method invocations, external instance variable references are accomplished
using the message send operator:
<oObject>:<idVar>

SELF Inside a class and its subclasses, instance variables are normally referenced using
only their name, but you can specify <oObject> using the keyword SELF to
resolve a potential conflict. For example, local variable declarations hide all
instance variables with the same name. In such a case, you would need to
distinguish the instance variable from the local variable using SELF.

NoIVarGet() and
NoIVarPut()

You can prevent a runtime error from occurring when an
instance variable name is not found by defining methods called
NoIVarGet() and NoIVarPut(). These methods, if present, will
be automatically invoked whenever an instance variable cannot
be found. They are called with the instance variable name as a
parameter, in the form of a symbol and, in the case of
NoIVarPut(), with the value to be assigned as a second
parameter. This feature is useful in detecting and preventing a
runtime error and also for creating virtual variables
dynamically at runtime.

The DBServer and DataWindow classes use this technique to be able to create
database fields as virtual variables. The dilemma here is that after opening a
database with the generic class—say opening EMPLOYEE.DBF in DBServer—
you would like to be able to refer to EmpNo as a variable, but of course the
DBServer class does not know anything about the employee database. The object

Instantiation

METHOD NoIVarGet(symFieldName) CLASS DBServer
 IF AScan(aFieldNames, symFieldName) > 0
 RETURN FieldGetArea(wWorkArea, symFieldName)
 ELSE // Variable doesn’t exist
 SELF:Error(...) // generate a real error
 RETURN NIL // and return NIL
 ENDIF

Of course, if you use the DBServer Editor in the IDE, it generates a subclass for
the particular database, so there is no need for NoIVarGet(). In that case we have
a class that knows about the field; the NoIVarGet() technique is used for when
only the object knows about the field.

Instantiation
Objects that you create from a class are called instances of that class. You will
hear the terms object and instance used interchangeably. To instantiate a class, or
create an object, you name the class followed by the instantiation operators, {}:
<idClass>{[<uArgList>]}

In most cases the created object is assigned to a variable, in a statement like this:
<idObject> := <idClass>{[<uArgList>]}

but it is also possible and useful to create objects without assigning them to
anything. The object can do some useful work on its own before disappearing, it
can register itself with another object and thus do the assignment implicitly, or it
can be created only for the purpose of being passed as a parameter in a function
call.

A function or a method can also create and return an object, using a statement
like this:
RETURN <idClass>{[<uArgList>]}

In that case, you can create an object implicitly using a function or method call:
<idObject> := <idFunction>([<uArgList>])

<idObject> := <idObject>:<idMethod>([<uArgList>])

Init() Method If you define a method named Init(), it is called automatically when you create an
instance of the class to which the method belongs. Arguments listed within the
instantiation operators are passed as parameters to the Init() method. Common
uses for the Init() method are to initialize instance variables, allocate memory
needed by the object, register the object, create subsidiary objects, and set up
relationships between objects.

Chapter 25: Objects, Classes, and Methods 403

Instantiation

Note: This does not correspond exactly to a constructor method required in some
languages. A constructor is required to create the object and allocate its memory;
here, the object is constructed automatically—Init() is used only to do
initialization processing that is required by the application logic. Hence the
name, Init(), rather than Construct(), Create(), ClassName(), or New().

Important! The Init() method must be untyped.

Example Here is an example that illustrates the concepts and terms discussed so far.

47

Loco Car Car

Train
CLASS Car // A railroad car
 EXPORT nTare := 1000 AS USUAL
 EXPORT nPassengers := 0 AS USUAL

METHOD Weight() CLASS Car
 RETURN nTare + nPassengers * 150
 // 150 = average passenger weight

CLASS Loco AS USUAL
 EXPORT nTare := 6000
 METHOD Weight() CLASS Loco
 RETURN nTare + 300
 // 300 = combined weight of driver and guard

CLASS Train
 EXPORT oLoco AS OBJECT
 EXPORT aCar AS ARRAY

METHOD Init() CLASS Train
 oLoco := Loco{}
 aCar := {} // Empty array, no cars yet

METHOD AddCar() CLASS Train
 AAdd(aCar, Car{})
 RETURN NIL

METHOD Length() CLASS Train
 RETURN ALen(aCar)

METHOD Weight() CLASS Train
 LOCAL nW, k AS USUAL
 nW := oLoco:Weight()
 FOR k := 1 UPTO SELF:Length()
 nW := nW + aCar[k]:Weight()
 NEXT
 RETURN nW

404 Visual Objects Programmer's Guide

Instantiation

Here is some code that uses these classes:
LOCAL oTrain := Train{}
oTrain:AddCar()
oTrain:aCar[1]:nPassengers := 28
oTrain:AddCar()
oTrain:aCar[2]:nPassengers := 22
? oTrain:Length() // Prints: 2
? oTrain:Weight() // Prints: 15800

oTrain is an object whose class is Train. Train has four methods and two instance
variables. The state of the object oTrain consists of the values of its instance
variables oLoco and aCar, and indirectly of the states of the oLoco object.

Notice the Init() method of class Train. As explained earlier, Init() is a special
method that the system calls when you create an object of that class. Car and
Loco do not have Init() methods; instead, they rely on the initial values of their
variables, specified in their class declarations.

The state of the object oTrain looks like this:

oTrain

oLoco

nTare

aCar[1] aCar[2] aCar[n]...

...

Each Car looks like:

oCar

nTare nPassengers

Chapter 25: Objects, Classes, and Methods 405

Virtual Variables

406 Visual Objects Programmer's Guide

to have. It is the state you see from outside the object and is actually faked by the
access and assign methods. The real state is usually inaccessible from the
outside.

Virtual Variables
Instance variables declared as EXPORT can be referenced from outside the class,
but the others, the non-exported, or internal, instance variables, are not directly
accessible from outside of the class. If you want to access an internal variable,
you must use a method. This is a desirable behavior of encapsulation: by
insulating the data associated with a class through code, you can ensure that
only valid values are assigned. But it also has the unpleasant side effect that the
interface for accessing data is dependent on the implementation of the class:
CLASS Employee
 EXPORT Name
 PROTECT Salary

METHOD SetSalary(x) CLASS Employee
 IF SELF:ValidSalary(x) // Validate assignment
 RETURN Salary := x
 ELSE
 SELF:Error(...)
 RETURN NIL
 ENDIF

METHOD GetSalary() CLASS Employee
 RETURN Salary
...
oEmp := Employee{}
oEmp:Name := "Jones"
oEmp:SetSalary(10000) // Different syntax!
? oEmp:Name
? oEmp:GetSalary() // Different syntax!

This violates the spirit, at least, of encapsulation.

Access and Assign Methods

Instead of directly referring to the contents of an actual instance variable, you can
use a virtual variable that simulates an instance variable by means of special
methods.

In Visual Objects, the special methods are introduced by the keywords ACCESS
and ASSIGN. ACCESS declares a method that is automatically executed each
time you access a virtual variable with the name of the method, using the
<idObject>:<idVar> syntax. Similarly, ASSIGN declares a method that is
automatically executed each time you use the method name in an assignment
statement, using the <idObject>:<idVar> := <uValue> syntax. <uValue> is passed
as an argument to the assign method. Thus, the syntax for manipulating virtual
variables is the same as for exported instance variables even though their
implementation is different.

Virtual variables represent an object’s virtual state, the state the object “pretends”

Virtual Variables

Note: If all the instance variables are exported and there are no access or assign
methods, the virtual state is the same as the real state. This is a legitimate but not
very cautious programming style.

Overriding Instance
Variables

Access and assign methods can be used to intercept references
to regular instance variables (those declared with INSTANCE)
of the same name. Thus, if you change the declaration for
Salary and replace the methods in the example above with
access and assign methods, you turn Salary into a virtual
variable and eliminate the special syntax needed to manipulate
it:
CLASS Employee
 EXPORT Name
 INSTANCE Salary

ASSIGN Salary(x) CLASS Employee
 IF SELF:ValidSalary(x) // Validate assignment
 RETURN Salary := x
 ELSE
 SELF:Error(...)
 RETURN NIL
 ENDIF

ACCESS Salary() CLASS Employee
 RETURN Salary

...
oEmp := Employee{}
oEmp:Name := "Jones"
oEmp:Salary := 10000 // Same syntax!
? oEmp:Name
? oEmp:Salary // Same syntax!

Note: You cannot override exported, protected, or hidden instance variables in
this manner. See Binding of Instance Variables later in this chapter for more
information.

Calculated Variables Virtual variables have other applications besides providing a consistent interface
for instance variables of the same name. For example, you can create virtual
variables that are calculated based on the values of other instance variables. As
with internal instance variables, you could use a regular method to compute
virtual variables, but this would mean using a different syntax for accessing
them. Access methods extend the syntax used for accessing instance variables to
computed virtual variables.

Chapter 25: Objects, Classes, and Methods 407

Virtual Variables

To illustrate this point, the Train example introduced earlier is repeated, this time
using virtual variables:
CLASS Car // A railroad car
 HIDDEN nTare := 1000 AS USUAL
 HIDDEN nPassengers := 0 AS USUAL

ASSIGN Passengers(nPeople) CLASS Car
 RETURN nPassengers := nPeople

ACCESS Passengers() CLASS Car
 RETURN nPassengers

ACCESS Weight() CLASS Car
 RETURN nTare + nPassengers * 150
 // Average passenger weighs 150 pounds

CLASS Loco
 HIDDEN nTare := 6000 AS USUAL

ACCESS Weight() CLASS Loco
 RETURN nTare + 300
 // + driver + guard

CLASS Train
 HIDDEN oLoco AS OBJECT
 HIDDEN aCar AS ARRAY

METHOD Init() CLASS Train
 oLoco := Loco{}
 aCar := {} // Empty array, no cars yet

METHOD AddCar() CLASS Train
 AAdd(aCar, Car{}) // Hitch up a new Car
 RETURN NIL

ACCESS LastCar() CLASS Train
 RETURN aCar[ALen(aCar)]

ACCESS Length() CLASS Train
 RETURN ALen(aCar)

ACCESS Weight() CLASS Train
 LOCAL nW, k AS USUAL
 nW := oLoco:Weight
 FOR k := 1 UPTO SELF:Length
 nW := nW + aCar[k]:Weight
 NEXT
 RETURN nW

Note: When referring to a virtual variable in a method of the same class, SELF:
is optional if the method overrides a defined INSTANCE variable and required
otherwise.

Here is some code that uses these classes:
LOCAL oTrain := Train{}
oTrain:AddCar()
oTrain:LastCar:Passengers := 28
oTrain:AddCar()

408 Visual Objects Programmer's Guide

oTrain:LastCar:Passengers := 22
? oTrain:Length // Prints: 2
? oTrain:Weight // Prints: 15800

Virtual Variables

Train has two methods, three virtual variables, and two internal variables. The
virtual variable Length is a good example of something that appears like a
variable to the code that uses the class. Inside, it is a call to the ALen() function.
The virtual variable Weight works by summing the weights of all the parts of the
train. The internal state of the object oTrain consists of the values or states of
oLoco and aCar.

Virtual variables can have one of three implementations:

� Read-only, where there is an access but no assign method (LastCar, Length,
and Weight in the example)

� Read-write, where both methods are supplied (Passengers in the example)

� Write-only, where there is an assign but no access method (much less
common than read-only and read-write)

The purpose of virtual variables is to hide and simplify the internal structure of
the object’s state. For example, the code that uses the Train no longer knows that
an array is used in its implementation. If the train application grew so that you
needed to store more information about each piece of rolling stock, you could
store the details of each Car in a database, and the code that uses the Train class
would still work—without even knowing you had made the change.

Encapsulation

The term encapsulation was introduced at the beginning of this section to refer to
the insulation of the inside of a class from changes you make outside it, and vice
versa.

In the second Train example above, all of the classes are well-encapsulated.
Code outside each class cannot see the internal state of an object of that class. It
can only see the virtual state.

This encapsulation was achieved by declaring the instance variables inside the
class as hidden instead of exported; the only way that code outside the class can
touch hidden and other internal variables is through methods.

Access and assign methods enable you to construct a complete encapsulation of
the class, consisting of methods for the set of actions that the class knows how to
perform and virtual variables for the set of data that the class exhibits. You can
see this difference by comparing the two train examples presented so far.

While most object-oriented languages support encapsulation of behavior, no
other commercial language supports encapsulation of the data interface to a class
as well.

Chapter 25: Objects, Classes, and Methods 409

Inheritance

You can change the way that a class does something internally, as long as you do
not change its interface. You do not even have to recompile any code that uses
the class, a big advantage, especially when the class is part of an extension
library. This is why encapsulation is considered good practice. It limits change
propagation and, therefore, reduces the maintenance burden and improves
reliability.

Inheritance
The programming technique by which you adapt the behavior of a class without
changing its definition is called inheritance. Because you can give the class new
behavior without in any way destabilizing it, you achieve incremental
enhancement. You progress from a stable status to an improved stable status.

When a class inherits from another class, it is called a subclass, and it inherits the
following:

� Methods

� Instance variables (except hidden ones)

� Virtual variables

The subclass can then add instance variables and add to or redefine inherited
methods and virtual variables. Inheritance is accomplished using the INHERIT
keyword of the CLASS statement.

The Class Tree

Inheritance forms a tree (called the class tree or, less precisely, the class hierarchy):
each class can have at most one ancestor that it inherits from and any number of
descendants. However, even though a class has only one direct ancestor, that
ancestor may inherit from another class, and so on. Thus, a subclass can
potentially inherit from many classes. The term superclass refers to any one of the
classes from which a subclass ultimately inherits, while the term parent class
refers to its immediate ancestor.

410 Visual Objects Programmer's Guide

Inheritance

Example with
Inheritance

You could modify the Train example above so that Loco
inherits from Car. Here is the new code:
CLASS Car // Now means any rolling stock
 PROTECT nTare := 1000 AS USUAL
 PROTECT nLoad := 0 AS USUAL

ASSIGN Passengers(nPeople) CLASS Car
 RETURN nLoad := nPeople * 150

ACCESS Passengers() CLASS Car
 RETURN nLoad

ACCESS Weight() CLASS Car
 RETURN nTare + nLoad

CLASS Loco INHERIT Car

METHOD Init() CLASS Loco
 nTare := 6000
 nLoad := 300 // Crew, actually

You can remove ACCESS Weight from class Loco—it now inherits its Weight
from class Car. Because of the good encapsulation in the second version of the
Train example, you do not have to change any code in either the Train class or
the code that uses it. Note that the virtual variable Passengers now stores the
weight of the passengers instead of their number. The benefit of this version
with inheritance is that you can now write:
CLASS FreightCar INHERIT Car

METHOD Init() CLASS FreightCar
 nTare := 800

ASSIGN Load(nNet) CLASS FreightCar
 RETURN nLoad := nNet

and you can add an array of freight cars to your train.

Resolving Method Invocations

Inheritance is also used to determine the correct method to invoke when you
send a message to an object at runtime (all method invocations are dynamically, or
late, bound). If the method is not defined for the class, the runtime system
attempts to locate an inherited method with the same name. Only when all
inheritance possibilities have been exhausted will you receive an error message
that the method is not defined.

NoMethod() You can prevent a runtime error from occurring when a method name is not
found by defining a method called NoMethod(). This method, if present, will be
automatically invoked whenever a method cannot be found. Any arguments
passed to the original method will be passed to NoMethod() as well.

Chapter 25: Objects, Classes, and Methods 411

Declaring Object Variables

412 Visual Objects Programmer's Guide

instantiate the object in the declaration.
LOCAL oPoint := Point2D{3, 4}
STATIC LOCAL oHideIt := SecretClass{}

To determine the method name that caused the problem, use the function
NoMethod() inside your method NoMethod(). For example:
METHOD NoMethod() CLASS Jaguar
 LOCAL symMethodName := NoMethod() AS SYMBOL
 ErrorMessage(AsString(symMethodName) + ;
 " not implemented for class " + ;
 ClassName(SELF))

Referring to the Superclass

SUPER is a special keyword that refers to the class that is the nearest ancestor of
the method lookup. It passes a message up the inheritance tree to the superclass
and is meaningful only if the current object’s class inherits from another class.

You can use SUPER with the message send operator to refer directly to a method
defined in a superclass. If you redefine a method in a subclass (by creating a
method with the same name as one in a superclass), SUPER is the only way you
can override the redefined method with the superclass version.

This is commonly done to make a subclass method add some specific processing
to an inherited method but not replace it completely. It is particularly common in
Init() methods that add some subclass-specific initialization. In this example, the
class for NY employees has specific constraints on the values allowed for two
fields:
CLASS NYEmployee INHERIT Employee
 ...
METHOD Init() CLASS NYEmployee
 SUPER:Init() // Regular initialization
 FieldSpec(#State):SetValidation({||State="NY"})
 FieldSpec(#Salary):SetRange(1000, 2000)
 RETURN SELF

Declaring Object Variables
An object can be stored in any type of variable: undeclared, declared (as LOCAL,
GLOBAL, or one of the types of INSTANCE variable), or created dynamically
(with PUBLIC or PRIVATE). For example:
LOCAL oPoint
STATIC LOCAL oHideIt
GLOBAL oJaguar, oLion, oTiger
EXPORT INSTANCE oParent
PROTECT INSTANCE oChild
PRIVATE oSecret

With LOCAL and INSTANCE declarations (but not with GLOBAL), you can

Binding of Instance Variables

Chapter 25: Objects, Classes, and Methods 413

there is no need for all that runtime lookup. In addition, early bound references
allow the compiler to do compile-time validation of data types.

Strong Typing Objects can be assigned to undeclared or untyped, polymorphic variables, but as
always, these are not safe because they do not provide for compile-time checking
of consistent use:
LOCAL oJag
...
oJag := Animal{} // Creates oJag from Animal class
oJag := 100 // Changes oJag to numeric
...
oJag:Display() // Runtime error!

To protect against inadvertent misuse like this, an object variable can be typed as
OBJECT:
LOCAL oJag := Animal{} AS OBJECT
...
oJag := 100 // Compiler error!

You can further limit the type of object that can be assigned to a variable by
naming the class in the declaration statement:
LOCAL oJag := Animal{} AS Animal
...
oJag := Car{} // Compiler error!

The AS Animal clause means that you can assign only instances of the Animal
class (and its subclasses) to oJag. If the Class Checking compiler option is
checked, the statement oJag := Car{} causes a compiler error because it would
change oJag from an instance of the Animal class to an instance of the Car class.

See Chapter 22, “Variables, Constants, and Declarations,” in this guide for more
information on the advantages of declaring and strongly typing variables.

Binding of Instance Variables
References to instance variables can be either early or late bound, depending on
how your references are made and how the variables are declared.

Early binding (also called compile-time or static binding) means that the compiler
knows exactly how to reference the variable at compile time and generates code to
do so.

Late binding (also called runtime or dynamic binding) is necessary if the compiler
cannot determine from the program source code exactly where the variable is or
how to go about referencing it. In these cases, it generates code to look the
symbol up in a table at runtime.

Obviously, using early bound instance variables improves performance because

Binding of Instance Variables

414 Visual Objects Programmer's Guide

binding is always possible.

On the other hand, late bound references give you a lot of flexibility in
structuring your applications. For example, if you have several classes that all
have an instance variable Label, you can write some code that takes an unknown
object and prints or displays its label, regardless of what kind of object it is given.
You can simply reference oObject:Label, trusting that the runtime system will
resolve the reference if possible. (Of course, you must ensure that only objects
that have a Label variable are used in this way.)

Isomorphism vs.
Polymorphism

This is a key example of both isomorphism and polymorphism.
Isomorphism means that different types of objects look the same
when viewed from the outside (in effect, they respond to the
same message, whether it be a method invocation or a reference
to a property, in some reasonably consistent way).
Polymorphism, on the other hand, is when a name (such as a
variable name) can represent many different data types (hence
the term “polymorphic variable”).

Isomorphism and polymorphism work together in object oriented programming
(OOP). In this example, both the variable oObject and the function or method
containing the code that invokes oObject:Label are polymorphic. The objects
themselves are isomorphic—because they have the same kind of behavior, you
can ignore the differences between them.

Thus, your choice of programming approach depends on the requirements of
your application.

Early or Late Bound

Whether a reference to an instance variable is early or late bound depends both
on how the instance variable is declared and on how the reference to the object is
declared. A reference is early bound if both of these conditions are satisfied:

■ The reference to the variable is resolvable at compile time, which in turn
requires that one of these conditions be satisfied:

– The object is held in a variable, which is declared as a class

– The type inferencing engine of the compiler can determine the class of
the object held in an untyped variable

– The object reference is to SELF, explicitly or implicitly.

■ The instance variable is declared as EXPORT, PROTECT, or HIDDEN.

PROTECT and HIDDEN instance variables are referred to only from inside
methods of the class, so the object reference is always SELF, whether explicitly
stated or implied; hence, the type of the object is always known, and early

Binding of Instance Variables

EXPORT variables, on the other hand, can be referenced outside of the class and,
therefore, early binding may not be possible. For example, in this code the
reference to oNum:Number is early bound:
CLASS MyClass
 EXPORT Number AS INT

FUNCTION SomeOtherFunction()
 ...
 RETURN oVal // oVal is object of MyClass

FUNCTION UseClass()
 LOCAL oNum AS MyClass
 oNum := SomeOtherFunction()
 oNum:Number := 5 // This reference is early
 // bound since the compiler
 // knows what both oNum and
 // Number are.

However, if you replace the code for UseClass() as shown below, oNum is
undeclared and, therefore, oNum:Number is late bound:
FUNCTION UseClass()
 LOCAL oNum
 oNum := SomeOtherFunction()
 oNum:Number := 5 // At runtime, the system
 // will:
 // 1. Find the class of oNum
 // 2. Search class for the
 // location of Number
 // 3. Check type of Number
 // 4. Store the value 5 into
 // that location

Note: Dynamic array elements are untyped, so a reference like:
cClientName := aClients[i]:Name

is always late bound.

Overloading Instance Variables

With regular instance variables, which are always late bound, it is possible to
“overload” the variable name with access and assign methods, intercepting a
reference to it and replacing it with a call to the method. You do this by creating
an access or assign method with the same name as the INSTANCE variable:
CLASS Employee
 EXPORT Name
 INSTANCE Salary

ASSIGN Salary(x) CLASS Employee
 IF SELF:ValidSalary(x) // Validate assignment
 RETURN Salary := x
 ELSE
 SELF:Error(...)

Chapter 25: Objects, Classes, and Methods 415

 RETURN NIL
 ENDIF

ACCESS Salary() CLASS Employee

Binding of Instance Variables

 RETURN Salary

In this case, the value of Salary can be accessed just like any instance variable
(late bound), but when assigning a value to Salary the ASSIGN method
intercepts the assignment, checks its validity and passes it on only if it is valid.
Thus, any method of the class Employee, or a subclass of Employee, can reference
the Salary and unknowingly get the assigned value checked.

For example, look at the assignment statement in the third line of ASSIGN
Salary:
RETURN Salary := x

Why does this reference not call the ASSIGN method again, resulting in an
infinite loop? The compiler is smart enough to know that references to the
variable inside an access or assign method of the same name should be passed
directly to the variable.

Note that the runtime resolution of a late bound reference takes into account the
methods of subclasses. Consider this example:
CLASS Employee
 EXPORT Name
 INSTANCE Salary
 INSTANCE City, State

METHOD AssignOffice(cCity, cState) CLASS Employee
 City := cCity
 State := cState
 RETURN NIL

CLASS NYEmployee INHERIT Employee

ASSIGN State(c) CLASS NYEmployee
 IF c == "NY"
 RETURN State := c
 ELSE
 SELF:Error(...)
 RETURN NIL
 ENDIF

FUNCTION DealWithEmployee(oEmp)
 ...
 oEmp:AssignOffice(cCity, cState)

The method AssignOffice() is declared at the level of the Employee class, and
innocently makes reference to the instance variable State. But at runtime, the
variable oEmp may have been created as a regular employee or as a NY
employee, and in the latter case the reference is intercepted and checked by the
assign method at the lower level. This is one way for a subclass to redefine the
behavior of an inherited method (of course, the other way is to replace the
inherited method altogether).

416 Visual Objects Programmer's Guide

Binding of Methods

Chapter 25: Objects, Classes, and Methods 417

the method is made from a method of the parent class Employee, as in the
AssignOffice() method.

To protect your code against this kind of modification from a lower level, use
PROTECT variables which are early bound and cannot be rerouted through an
access or assign method, or HIDDEN variables which are not even visible in
subclasses. This is the approach used in the built-in classes: for example, the
DBServer class has a virtual variable called Alias, implemented as an access.
This access method does not reference a late bound INSTANCE called Alias, but
rather an early bound PROTECT INSTANCE called symAlias.

Binding of Methods
All method references are late bound: the system determines at runtime which
version of the method is to be called, depending on the class of the object.

Again, this is a key aspect of isomorphism: different classes can have a Print()
method, and your code can make a reference like oObject:Print() without
knowing what kind of object it is dealing with. And again, just as with the access
and assign methods, a method invocation at one level can be redirected by a new
class implementation at a lower level:

Using a vtable for typed methods ensures that this works with typed methods
too.
CLASS Employee
 INSTANCE City, State

METHOD AssignOffice(cCity, cState) CLASS Employee
 City := cCity
 State := SELF:LookUpState(cCity, cState)
 RETURN NIL

METHOD LookUpState(cCity, cState) CLASS Employee
 IF cState = NIL
 RETURN FindStateFromCity(cCity)
 ELSE
 RETURN cState
 ENDIF

CLASS NYEmployee INHERIT Employee

METHOD LookUpState(cCity, cState) CLASS NYEmployee
 LOCAL cST := SUPER:LookUpState(cCity, cState)
 IF cST == "NY"
 RETURN cST
 ELSE
 SELF:Error(...)
 RETURN NIL
 ENDIF

Here, the subclass NYEmployee redefines the LookUpState() method, and this
new version is used for all NYEmployee objects—even when the invocation of

Binding of Methods

Typed Early Bound Methods

Visual Objects permits the utilization of strongly typed messages in addition to
its current untyped message implementation. The main aim of introducing
strong typing of messages in Visual Objects is to provide the application
programmer with a mechanism through which very stable code can be obtained.
The typed information supplied enables the compiler to perform the necessary
type checking providing much greater stability and quality of the code.

Another benefit obtained by utilizing strongly typed messages is that of
performance. The Visual Objects implementation of typed messages assumes
that the programmer employs strongly typed messages and that the compiler can
effectively performs an early binding for the respective message invocation. As a
result of this implementation, typed message invocations are somewhat faster
than the respective untyped counterparts. However, these advantages are
attained at the price of losing the flexibility which untyped messages offer.

Important! It is therefore important to remember that using both the typed and the
untyped versions of a particular message interchangeably in an inheritance chain is
neither permissible nor possible.

Visual Objects allows strong typing of METHODs, ACCESSes and ASSIGNs.
The programmer accomplishes the specification of strongly typed messages with
Visual Objects in two steps.

Step 1 An optional declaration of the typed message is given in its respective class.
Although this declaration is optional, it is in some rare cases compulsory, this
being the most adequate means for the programmer to provide the Visual
Objects system with a specific ordering of all typed methods introduced with the
definition of the respective class.

This ordering is of vital importance and the only guarantee to the programmer
that all sub-classes of the defining class will inherit the typed messages in the
same order specified in the introducing class. This ordering guarantees the
consistency of the virtual table that Visual Objects employs for the invocation of
typed messages. A re-declaration of a message in a sub-class is permissible;
however, it is irrelevant for the ordering specified in the parent class. The
following syntax is used in specifying the message declaration:
DECLARE (ACCESS | ASSIGN | METHOD)
 <message_identifier_list>

418 Visual Objects Programmer's Guide

Binding of Methods

Step 2 Define the strongly typed message. As in the case of strongly typed functions,
message typing is achieved by strongly typing at least one of the arguments of
the message and/or specifying a valid calling convention. The following calling
conventions are valid for typed messages: STRICT, PASCAL or CALLBACK.
One of the following syntactical expressions can be used in defining the strongly
typed message:
ACCESS <xyz_access> ["(" ")"] <return_value_spec>;
 (STRICT|PASCAL|CALLBACK) CLASS xyz_class

 ASSIGN <xyz_assign> "("<typed_parameter_spec>")" [<return_value_spec>] ;
 (STRICT|PASCAL|CALLBACK) CLASS xyz_class

METHOD <xyz_method> "("[<typed_parameter_list_spec>])" <return_value_spec> ;
 (STRICT|PASCAL|CALLBACK) CLASS xyz_class

The visibility of typed methods can also be influenced by using the HIDDEN and
PROTECT modifiers analogously to their use with instance variables. SUPER
calls of HIDDEN methods in parent classes cannot be done by methods of the
sub-classes.

The following example program illustrates the use of strongly typed messages:

FUNC Start
 LOCAL o AS MyClass
 LOCAL o2 AS MyClass2
 LOCAL o3 AS OBJECT

 // MyClass
 o:=MyClass{}

//Access instance variable
MessageBox(0,"Typed access o:MyLValue" + Str(o:MyLValue), "Test",0)

o:MyLValue := 255

//Access instance variable
MessageBox(0,"Typed access o:MyLValue" + Str(o:MyLValue), "Test",0)

// Calling methods directly (using v-table)
//o:Typed(1)
//o:Typed4(4)

// Calling methods indirectly (using v-table)
o:D()

// MyClass2
o:=MyClass2{}

o2:=o
o3:=o

// Calling methods directly (using v-table)
//o:Typed(1)
//o:Typed2(2)
//o:Typed3(3)

Chapter 25: Objects, Classes, and Methods 419

//o:Typed5(5)
// note that this expression produces a late
// bound send because "o" is declared as an
// object of MyClass and there is no Typed5()

Binding of Methods

// method in MyClass

//o3:Typed5(5)
// a late bound send is also generated here
// because "o3" is declared as OBJECT

o2:Typed5(5) // this generates an early bound message call

// Calling methods indirectly (using v-table)
o:D()

RETURN(NIL)

CLASS MyClass
 DECLARE METHOD Typed, Typed2
 PROTECT lValue AS LONG
 DECLARE METHOD Typed3
 DECLARE ACCESS MyLValue
 DECLARE METHOD Typed4
 DECLARE ASSIGN MyLValue

ACCESS MyLValue() AS LONG PASCAL CLASS MyClass
 RETURN lValue

ASSIGN MyLValue(lAssignValue AS LONG);
 AS LONG PASCAL CLASS MyClass
lValue := lAssignValue
RETURN lValue

METHOD Typed(x AS INT) AS MyClass CLASS MyCLass
 MessageBox(0,"MyClass:Typed()", "Test",0)
RETURN(SELF)

METHOD Typed2(x AS INT) AS MyClass CLASS MyCLass
 MessageBox(0,"MyClass:Typed2()", "Test",0)
RETURN(SELF)

METHOD UnTyped(x) CLASS MyCLass
 MessageBox(0,"MyClass:UnTyped()", "Test",0)
RETURN(SELF)

METHOD Typed3(x AS INT) AS MyClass CLASS MyCLass
 MessageBox(0,"MyClass:Typed3()", "Test",0)
RETURN(SELF)

HIDDEN METHOD Typed4(x AS INT) AS MyClass CLASS MyCLass
 MessageBox(0,"MyClass:Typed4()", "Test",0)
RETURN(SELF)

METHOD D CLASS MyClass
 MessageBox(0,"In D: call Typed(), Typed2(),;
 Typed3()", "Test",0)
SELF:Typed(1)
SELF:Typed2(2)
SELF:Typed3(3)

CLASS MyClass2 INHERIT MyClass
 DECLARE METHOD Typed5
// we could redeclare Type, Typed2, Typed3,
// Typed5 here note that Typed4 is hidden and is
// consequently not seen in this sub-class

420 Visual Objects Programmer's Guide

METHOD Typed2(x AS INT) AS MyClass2 CLASS MyCLass2
 MessageBox(0,"MyClass2:Typed2()", "Test",0)
 SELF:Typed3(3)
 RETURN(SELF)

Binding of Methods

METHOD Typed(x AS INT) AS MyClass2 CLASS MyCLass2
 MessageBox(0,"MyClass2:Typed()", "Test",0)
 SUPER:Typed(1)
RETURN(SELF)

METHOD Typed5(x AS INT) AS MyClass2 CLASS MyCLass2
 MessageBox(0,"MyClass2:Typed5()", "Test",0)
 SUPER:Typed4(x) // compiler error, because
 // parent method is hidden!!!
RETURN(SELF)

METHOD Typed3(x AS INT) AS MyClass2 CLASS MyCLass2
 MessageBox(0,"MyClass2:Typed3()", "Test",0)
RETURN(SELF)

Typed Method Restrictions and Pitfalls

The Init method should not be strongly typed. As a matter of fact, strong typing
is not applicable to all methods whose logic highly depends on the Visual
Objects runtime sub-system.

Always remember that a major prerequisite for early binding of a message is the
manner in which the declaration of the message recipient is specified. SUPER
and SELF declarations always guarantee (in the case that all other restrictions are
met) early message binding. The "AS class_xyz" declaration will lead to early
binding in all cases where the invoked message is typed and also defined for the
specified class (class_xyz).

The following mistakes are typically made:

Message declaration is specified in class but respective definition is missing.

■ The linker notices this discrepancy and signals the inherent GPF of the linked
program.

Message declaration is specified in the class but the respective definition is not
strongly typed.

■ The compiler generates late message send for all message invocations.

■ The linker notices this discrepancy and signals the inherent GPF of the linked
program.

The message recipient of the typed/declared message is wrongly declared.

■ The compiler generates late message send for all message invocations.

■ The linker notices this discrepancy and signals the inherent GPF of the linked
program.

Chapter 25: Objects, Classes, and Methods 421

Objects as References

422 Visual Objects Programmer's Guide

object is passed by value, the value passed is a reference and, therefore, behaves
in the indicated manner.

Objects as References
In Visual Objects, objects are treated as references. This means that a variable to
which you assign an object does not actually contain the object. Instead, it
contains a pointer to a location in memory where the actual object contents are
stored.

Thus, it is possible to have multiple references to the same object in your
application. When you have more than one reference to the same object, changes
to one are automatically reflected in the others:
LOCAL oOne, oTwo AS MyClass
oOne := MyClass{}
oTwo := oOne
oTwo:MyExportVar := 10
? oOne:MyExportVar // Displays 10

Equal Operator

You can use the equal operator (=) to determine if two variables refer to the same
object:
LOCAL oOne, oTwo, oThree AS MyClass
oOne := MyClass{}
oTwo := MyClass{}
oThree := oOne
? oOne = oTwo // FALSE
? oOne = oThree // TRUE

In this example, even though oOne and oTwo are instantiated using the same
class, they are created independently as separate instances of the same class and,
therefore, are two distinct object references. In other words, they point to
different locations in memory and comparing them with = returns FALSE.

However, since oThree is created using oOne, these two variables are actually
references to the same object—they point to the same memory location—and
comparing them with = returns TRUE.

Objects as Parameters

When you pass an object as an argument, it is passed by value unless you use the
reference operator (@). However, unlike parameters of other data types, any
changes that you make to the objects exported instance variables in the called
routine are automatically reflected in the original object (and in all references to
it).

This is another implication of treating objects as references. Even though the

Destroying Objects

Chapter 25: Objects, Classes, and Methods 423

area available to other uses. But if you do not want to explicitly destroy the
object, how can you ensure that the database is not left open?

The behavior described above holds true if you pass the object by reference using
the @ operator, but there are some subtle differences between passing an object
by reference and by value. Most notably, it is possible to destroy an object
reference that you pass by reference. When you pass by value, this is not
possible. The original object reference will always remain intact when the
function returns, even though its instance variables may be altered.

Destroying Objects
Just as there is no need to explicitly allocate memory when you create an object,
there is usually no need to explicitly deallocate memory or otherwise destroy an
object. Simply discard the object when you no longer need it, dropping it where
you stand, and the automatic garbage collector will pick it up and dispose of it
properly. Or more precisely, the garbage collector destroys objects that do not
have any references—since there is no way to refer to them, there is no way to
use them or cause them to take any action.

For example, consider a function that creates an object and assigns it to a local
variable:
FUNCTION UseObjectBriefly()
 LOCAL oObject
 oObject := SomeClass{}
 ...<Some Actions>
 RETURN

When the function returns, the local variable disappears: it is deallocated as the
stack frame for the function is removed. The object is not deallocated with the
function, but when the reference to it disappears it is, for all practical purposes,
gone.

However, the function may have presented the object to some other part of the
program, which retained a reference to it. The object may even have registered
itself with some administration facility—the window classes of the GUI Classes
library, for example, keep themselves alive even without any references by the
programmer, by registering themselves with the App object that represents the
entire application.

In any case, the automatic garbage collector keeps track of all these references: it
will not discard the object while it can still have some effect on the world, and it
will dispose of it as soon as it cannot. Thus, in general the developer need not
consider destruction of objects.

Axit() Method However, in some cases an object can manage other resources that do need
proper disposition. For example, if an object opens a database only for its own
use, the object should close the database when it is finished and make the work

Using Arrays of Objects

424 Visual Objects Programmer's Guide

to all of its clients, it simply uses this array name with the proper notification
method. For example:
aClients:NotifyRecordChange()

If you register an object with the RegisterAxit() function, for example in the Init()
method, and provide a method named Axit(), this Axit() method will
automatically be called by the garbage collector just before the object is
destroyed. Thus, in the Axit() method you can close databases, deallocate
memory, or close communications links.

Note: There are circumstances under which you will want to close files and
deallocate other resources as part of an error recovery procedure. See Chapter
14, “Error and Exception Handling,” presented earlier in this guide for a
discussion.

However, as is obvious from these examples, this type of resource management
is rarely needed. Indeed, the question of closing databases illustrates another
benefit of using the object-oriented approach: the DBServer class automatically
closes databases that are no longer needed, using their own Axit() method.
Because of the extensive automatic resource management by the runtime system
and the system classes (all of them have predefined Axit() methods, when
needed), you can build fairly sophisticated classes without having to program
your own Axit() methods.

There are, however, two additional points:

■ For optimal performance, especially in limited memory environments, you
may want to explicitly destroy objects when you are finished with them,
especially complex objects such as windows. Indeed, the built-in window
classes have Destroy() methods that properly dispose of all the resources the
window may have claimed.

■ If you write classes that manage outside resources, you will probably need to
provide your own Axit() methods.

Using Arrays of Objects
Instead of using an object as the first operand when invoking a method with the
message send operator, you can use an array. The array must contain objects (or
other arrays that eventually lead to objects) as its elements, and the system will
automatically invoke the method for each element.

Note: This feature only works for untyped methods. If you want to use typed
methods, you might want to create untyped wrapper methods that call the typed
version.

As a practical example of using arrays to store objects, a data server object keeps
an array of its clients. When the data server needs to send an event notification

Operator Methods

would be equivalent to:
FOR i := 1 TO ALen(aClients)
 aClients[i]:NotifyRecordChange()
NEXT

Tip: If the first operand of the message send operator is neither an object nor
an array, the runtime system will attempt to send the message to the object
registered with the SysObject() function. The first operand, in this case, is
passed as an argument to the indicated method. See the SysObject() entry in
the online help for more information.

Operator Methods
If the Operator Methods compiler option is checked, the compiler will convert
certain operations to method invocations according to the table below. The
conversion requires that the left-hand operand (for example a in the table) be of
the object data type.

Operation Method

a + b a:Add(b)

a - b a:Sub(b)

a * b a:Mul(b)

a / b a:Div(b)

a ^ b
a ** b

a:Pow(b)

a % b a:Mod(b)

a > b a:Gtr(b)

a < b a:Less(b)

a >= b a:GtrEqu(b)

a <= b a:LessEqu(b)

a++ a:Add(1)

a-- a:Sub(1)

Chapter 25: Objects, Classes, and Methods 425

-a a:Neg()

!a a:Not()

Operator Methods

Note: If the object is stored as a polymorphic variable, the Operator Methods
switch has no effect because compile-time checking is not possible for
polymorphic variables. In this case, operators are always converted to method
invocations, regardless of the switch setting. This implementation is designed to
give you the most flexibility.

Using this feature, you can define methods for these operators in your own
classes. For example, this code defines a class for time and implements the plus
and minus operations with Add() and Sub() methods:
FUNCTION Start()
 LOCAL oTime AS TimeClass
 oTime := TimeClass{}
 ? oTime + 4
 ? oTime - 4
 ? oTime - Time()

CLASS TimeClass
 INSTANCE cTime

METHOD Init() CLASS TimeClass
 cTime := Time()
 RETURN SELF

METHOD Add(nSeconds) CLASS TimeClass
 RETURN TString(Secs(cTime) + nSeconds)

METHOD Sub(uTimeValue) CLASS TimeClass
 IF UsualType(uTimeValue) == STRING
 RETURN TString(Secs(cTime) - Secs(uTimeValue))
 ELSE
 RETURN TString(Secs(cTime) - uTimeValue)
 ENDIF

This example implements simple arithmetic for time strings, causing them to
behave similarly to dates (for example, <dValue> - <nValue> and <dValue> +
<nValue> are predefined by the system).

Note, however, that in this example, addition is not commutative. In other
words, you can add a number to a time string, but not vice versa: <nValue> +
<tValue> does not invoke Add() since <nValue> is not an object. Since everybody
expects addition to work both ways, this type of use of operator methods could
be misleading. But the technique works well for adding two objects:
FUNCTION Start()
 ...
 oSalary := Remuneration{12000, 3600}
 oCommission := Remuneration{4300, 1290}
 // Addition of Remunerations is commutative—
 // these statements produce the same result:
 oTotalPay := oCommission + oSalary
 oTotalPay := oSalary + oCommission

CLASS Remuneration
 EXPORT Amount AS INT
 EXPORT Tax AS INT

426 Visual Objects Programmer's Guide

Operator Methods

METHOD Init(nAmount, nTax) CLASS Remuneration
 Amount := nAmount
 Tax := nTax
 RETURN SELF

METHOD Add(oAddend) CLASS Remuneration
 RETURN Remuneration{ ;
 SELF:Amount + oAddend:Amount, ;
 SELF:Tax + oAddend:Tax}

Of course, you can combine the two techniques: you can write an Add() method
that accepts either an object or a number as an addend, or even objects of
different classes—you can make the Add() method as polymorphic as you like.

Chapter 25: Objects, Classes, and Methods 427

Chapter

26 Code Blocks

A code block is a piece of compiled code that you form using one or more
expressions and an optional list of arguments. It provides you with a means for
passing executable program code from one place in a system to another. It may
help you to think of a code block as an anonymous function.

Code blocks are a true data type, and you can therefore use them as arguments
and return values; however, the valid code block operator set is limited to
assignment and a special case in which you can use the macro operator to return
a code block. This chapter discusses various aspects of working with code
blocks, including how to declare, create, and evaluate them.

Literal Code Blocks
As a data type, code blocks have a literal representation. To create a literal code
block, use this syntax:
{|[<idArgumentList>]| <uExpList>}

Both <idArgumentList> and <uExpList> are comma-separated lists.

<idArgumentList> is a list of variable names that you use within the code block
expression list to identify parameters passed to the code block.

Important! Even if you do not specify any arguments, you must include the vertical
bars that delimit the argument list to distinguish a code block from a literal array.

The expressions in <uExpList> can be of any usual data type (see Chapter 22,
“Variables, Constants, and Declarations,”)—no commands or statements such as
control structures and declarations are allowed.

These are examples of valid code blocks:
{|| "just a string"}
{|nValue| nValue + 1}
{|nOne, nTwo| SqRt(nOne) + SqRt(nTwo)}
{|a, b, c| MyFunc(a) , MyFunc(b) , MyFunc(c)}

Chapter 26: Code Blocks 429

Creating Code Blocks

Creating Code Blocks
The simplest way to create a code block is to assign a literal code block to a
polymorphic variable. For example:
cbString := {|| "just a string"}
cbIncr := {|nValue| nValue + 1}
cbCalc := {|nOne, nTwo| SqRt(nOne) + SqRt(nTwo)}

You can also assign an expression that results in a code block, as in the following
example:
cbLocate := oMyServer:GetLocate()

Since the only operator defined for use with the code block data type is the
assignment operator (:=), code block expressions are limited to literals, function
calls, and method calls, with one exception. It is possible to return a code block
as the result of a macro expression.

In this example, the field BlockField contains a code block stored as a string. This
field is used in a macro expression that returns the code block which, in turn, is
saved in the variable cbBlock:
PROCEDURE Start()
 LOCAL cbBlock
 USE exp_file
 DO WHILE .NOT. EOF()
 // Compile code block
 cbBlock := &(BlockField)
 ...
 Eval(cbBlock)
 DBSkip()
 ENDDO
 DBCloseArea()

See Chapter 23, “Operators and Expressions,” for more information.

Declaration

You can declare a variable in which you want to store a code block to the
compiler using the LOCAL or GLOBAL statements (see Chapter 22, “Variables,
Constants, and Declarations,” for more information). To do this, you simply
specify the variable name as part of the declaration statement:
LOCAL cbIncr
GLOBAL cbDisplay

Declaring a variable in this manner, however, does not create the code block.
You must still assign a value to the variable with an assignment statement:
GLOBAL cbIncr

430 Visual Objects Programmer's Guide

cbIncr := {|nValue| nValue + 1}

or as part of the declaration:

Creating Code Blocks

GLOBAL cbIncr := {|nValue| nValue + 1}

Strong Typing

Code blocks that you declare to the compiler or that you create without first
declaring them are polymorphic variables, meaning that you can change their
data type. Consider this example:
LOCAL cbIncr := {|nValue| nValue + 1}
Eval(cbIncr, 5) // Evaluates 5 + 1
...
cbIncr := "New character value"
Eval(cbIncr, 5) // Runtime error!

The LOCAL statement creates cbIncr as a polymorphic variable and assigns a
code block to it. Eval() evaluates the code block, passing an argument of 5 (see
the next section, Evaluating a Code Block). Then, the assignment statement
changes the variable named cbIncr to a string value, destroying the code block
that was previously stored. When you attempt to evaluate cbIncr a second time,
a runtime error occurs because it is no longer a code block.

If you do not want to allow a variable name that you declare as a code block to
change data type in your application, you can specify the CODEBLOCK data
type (called strong typing) as part of the declaration statement. Doing this will
trap as a compiler error any instance in which you misuse the variable name,
including an attempt to change its data type or to use it where another data type
is expected.

When the example given earlier is repeated with the variable cbIncr strongly
typed as a code block, a compiler error occurs when you attempt to assign a
string value to cbIncr:
LOCAL cbIncr := {|nValue| nValue + 1} AS CODEBLOCK
Eval(cbIncr, 5) // Evaluates 5 + 1
...
cbIncr := "New character value" // Compiler error!
Eval(cbIncr, 5)

Tip: Use the system defined constant NULL_CODEBLOCK to test for an
uninitialized, typed code block. For example, the statement LOCAL cbIncr
AS CODEBLOCK leaves cbIncr in an uninitialized state, and the test cbIncr =
NULL_CODEBLOCK returns TRUE until you assign a value to cbIncr.
Likewise, you can return a code block to its original, uninitialized state using
an assignment statement, such as cbIncr := NULL_CODEBLOCK.

Chapter 26: Code Blocks 431

See Chapter 22, “Variables, Constants, and Declarations,” in this guide for more
information on the advantages of declaring and strongly typing variables.

Evaluating a Code Block

Evaluating a Code Block
The examples in the previous section briefly introduced to the Eval() function
used to evaluate a code block. This function evaluates the code block indicated
as its first argument and passes subsequent arguments to the code block as
parameters.

When the code block is evaluated, the expressions in the code block definition
are evaluated in order from left to right, and the result of the last (or only)
expression in the list is used as the code block return value:
cbIncr := {|nValue| nValue + 1}
? Eval(cbIncr, 1) // Result: 2

There are several other built-in functions designed to execute code blocks:

Operation Description

AEval() Evaluate a code block for each element in an
array

AEvalA() Evaluate a code block for each element in an
array and assign the result to the array
element

AEvalOld() Evaluate a code block for each element in an
array, passing the array element number as
a parameter

DBEval() Evaluate a code block for each record in a
work area

Eval() Evaluate a code block

SEval() Evaluate a code block for each byte in a
string

SEvalA() Evaluate a code block for each byte in a
string and assign the result to the string byte

VODBEval() Strongly typed DBEval()

For more information on any of these functions, refer to the online help system.

432 Visual Objects Programmer's Guide

Variable Scoping in Code Blocks

Variable Scoping in Code Blocks
In Chapter 22, “Variables, Constants, and Declarations,” you were introduced to
the concept of lexically scoped variables that you declare based on the lexical
unit in which they will be used. In Visual Objects, a code block is considered to
be a lexical unit.

Creating Variables

Even though declaration statements are not allowed in code block definitions, it
is possible for you to create a new variable in a code block by making an
assignment to a non-existent variable name. If you do this, the variable will be
treated as local to the code block, which means its lifetime and visibility are
limited to the code block:
FUNCTION One()
 LOCAL cbCalc AS CODEBLOCK
 cbCalc := {|nValue| nTemp := nValue + 1 ,;
 SqRt(nTemp)}
 Eval(cbCalc, 100)
 ? nTemp // Runtime error!

When you want to create variables within a code block, keep in mind that global
variables and variables that are local to the creating entity are automatically
visible to the code block. You can also have public and private variables that are
visible to the code block.

Any variable that you want to create as local to the code block must have a name
that does not conflict with other variable names. Otherwise, the assignment
statement will assign to the existing variable, changing its value:
FUNCTION One()
 LOCAL nTemp := 2.3 AS FLOAT, cbCalc AS CODEBLOCK
 cbCalc := {|nValue| nTemp := nValue + 1 , SqRt(nTemp)}
 ? nTemp // Result: 2.3
 Eval(cbCalc, 100)
 ? nTemp // Result: 101

Exporting Local Variables

When you create a code block, you can access local variables defined in the
creating entity within the code block definition without having to pass them as
parameters (in other words, local variables are visible to the code block). This
was illustrated with the last example in the previous section in which an
assignment was made to a local variable within a code block.

Chapter 26: Code Blocks 433

Macros and Code Blocks

434 Visual Objects Programmer's Guide

filter; however, if you change cFilter before moving the record pointer, the filter
condition will reflect this change.

Using this fact along with the fact that you can pass a code block as a parameter,
you can export local variables:
FUNCTION One() EXPORT LOCAL
 LOCAL nVar := 10 AS INT, cbIncr AS CODEBLOCK
 cbIncr := {|nValue| nValue + nVar}

 ? NextFunc(cbIncr) // Result: 210

FUNCTION NextFunc(cbAddEmUp)
 RETURN Eval(cbAddEmUp, 200)

When the code block is evaluated in NextFunc(), nVar, which is local to function
One(), becomes visible even though it is not passed directly as a parameter.

Note: The EXPORT LOCAL clause specified as part of the function definition is
not required to export local variables using a code block; however, including this
clause will make your application compile significantly faster.

Macros and Code Blocks
Code blocks bear a strong resemblance to macros (see The Macro Operator
section in Chapter 23, “Operators and Expressions”), but with a significant
difference. Macros are character strings, which are compiled on the fly at runtime
and immediately executed. Code blocks, on the other hand, are compiled at
compile time along with the rest of the application. For this reason code blocks
are more efficient than macros, while offering similar flexibility.

The difference between code blocks and macros becomes especially important
with declared variables. Variables that you declare at compile time are not
visible within runtime macros, whereas you can access them freely in code
blocks. This section discusses the interaction between code blocks and the macro
operator.

Macro Expansion in Code Blocks

When a code block contains a macro, the macro is expanded each time the code
block is evaluated, a technique known as late evaluation. Consider this use of
DBSetFilter() in which the filter condition is specified as a macro expression:
DBSetFilter({|| &(cFilter)})

When you set a filter condition, the code block must be evaluated each time you
move the record pointer in the active work area. In most cases, you would be
safe in assuming that the value of cFilter remains constant for the duration of the

Macros and Code Blocks

Note: Runtime code blocks (discussed in the next section) use early evaluation if
you specify a macro variable (omit the parentheses) and late evaluation if you
specify a macro expression. With early evaluation, the macro is expanded at the
time the code block is created, and the expanded value remains constant for all
subsequent evaluations of the block. Compile-time code blocks (those created
without using the macro operator) do not support early evaluation because they
are created at compile time, not runtime.

Runtime Code Blocks

The macro compiler supports runtime compilation of code blocks, allowing you
to evaluate code blocks that are stored (as strings) in database fields or entered
by the user at runtime. Code blocks that you create using the macro operator are
called runtime code blocks.

In this example, the field BlockField contains a code block stored as a string. This
field is used in a macro expression that returns the code block. The code block is
saved in the variable cbBlock, which is later evaluated with Eval():
PROCEDURE Start()
 LOCAL cbBlock
 USE exp_file
 DO WHILE .NOT. EOF()
 // Compile code block
 cbBlock := &(BlockField)
 ...
 Eval(cbBlock)
 DBSkip()
 ENDDO
 DBCloseArea()

Note: Because runtime code blocks are implemented as instances of the
system-defined _CODEBLOCK class, their data type is object; therefore, you
cannot save them to variables declared as code blocks (for example, LOCAL
cbBlock AS CODEBLOCK in the above example will not work.) You can store a
runtime code block either as a polymorphic variable (as in the above example) or
AS OBJECT (or, more specifically, AS _CODEBLOCK) if you require strong
typing.

Important! Type() and ValType() return B, not O, when used on a runtime code block.
UsualType(), however, properly distinguishes between the data type of a compile-time
and a runtime code block. See the online help for more information on these functions.

Chapter 26: Code Blocks 435

Chapter

27 Functions and Procedures

Functions and procedures are the basic elements for procedural programming.
Unless you choose a pure OOP style, you will want to know how to define and
use these elements in your application, which is the subject of this chapter.

Functions and procedures are nearly identical. The only differences are:

■ Functions can return any value, but procedures always return NIL. This
effectively excludes the use of procedures in expressions, limiting their use to
program statements.

■ Procedures have special purpose _INIT clauses for automatic execution at
startup.

■ Functions are declared to the compiler using the FUNCTION keyword and
procedures using PROCEDURE.

For the purpose of brevity, the discussion in this chapter is limited to functions,
but you can assume that everything mentioned applies equally to procedures
with the exception of the points enumerated above. For additional information,
see the FUNCTION and PROCEDURE entries in the online help system.

Note: _INIT1 procedures should be considered reserved by Visual Objects.
Users should avoid using them, but use _INIT2 and _INIT3 procedures instead.

Chapter 27: Functions and Procedures 437

Defining

438 Visual Objects Programmer's Guide

statement if you are not interested in getting a value back from the function—the
next entity declaration is considered an implicit return.

Defining
A function is a compiler entity. You define it using a FUNCTION declaration
statement followed by variable declarations and the function body, statements that
define what the function does:
FUNCTION Test()
 ? "This is the Test function."

Visibility

When you define a function in an application module or as part of a library, the
function is available to the entire application or library. Library functions are
also available to any application that includes the library in its search path.

You can limit the visibility of a function by using the STATIC keyword when you
declare the function:
STATIC FUNCTION Test()
 ? "This is the Test function."
 ? "It is not visible to the entire application."

For an application, this limits the visibility of the function to the module in which
it is declared. For libraries, it limits the visibility to the library, thereby hiding it
from the application. Use STATIC FUNCTION to declare service functions not
meant for public use.

Parameters and Return Values

Part of the function declaration statement is the list of parameters that the
function expects to receive when invoked. You specify the function parameters
as a comma-separated list in parentheses following the function identifier:
FUNCTION Test(p1, p2, p3)

Function parameters are declared as local variables in the function. When you
call the function, the arguments that you pass are automatically assigned to the
parameters.

An important part of the function body is its return value, specified with the
RETURN statement:
FUNCTION Test(p1, p2, p3)
 RETURN p1 * p2 / p3

The return statement does two things: it passes control back to the calling routine
and returns the specified value. You do not have to include a RETURN

Defining

You can specify the data type of the return value to detect improper use of the
function at compile time:
FUNCTION Test(p1, p2, p3) AS FLOAT
 RETURN p1 * p2 / p3

Note: AS VOID is a special return value, indicating that the function does not
return a value. If you use it, the function can only be invoked as a program
statement, not as part of an expression, and the function can RETURN VOID, but
no other value.

You can also specify the data types of the arguments (called strong typing) to
enforce type checking of arguments at compile time:
FUNCTION Test(p1 AS FLOAT, p2 AS FLOAT, p3 AS INT) AS FLOAT

With strongly typed parameters, the AS keyword indicates that the argument
must be passed by value when the function is called. Using REF instead of AS
forces the argument to be passed by reference using the reference operator. This
is also enforced at runtime:
FUNCTION Test(p1 REF FLOAT, p2 REF FLOAT, p3 REF INT) AS FLOAT

See Chapter 22, “Variables, Constants, and Declarations,” in this guide for more
information on strong typing and its advantages.

Calling Conventions

The manner in which you declare a function determines the calling convention
that will be used when the function is invoked. You can also explicitly specify
the calling convention with keywords that are part of the FUNCTION
declaration statement.

CLIPPER Functions that you declare with no data typing in the parameter list use the
CLIPPER calling convention, by default. These declarations are equivalent:
FUNCTION Test(p1, p2, p3) AS FLOAT

FUNCTION Test(p1, p2, p3) AS FLOAT CLIPPER

The CLIPPER convention gives you a lot of flexibility when you call the function:

■ You can omit any argument

■ You can use PCount() to determine how many arguments are passed

■ You can call the function in a macro expression

■ You can pass any argument by reference or value

Chapter 27: Functions and Procedures 439

Function Pointers

440 Visual Objects Programmer's Guide

invoking the functions being addressed by these pointers.

STRICT Typing arguments forces STRICT calling convention. These two declarations are
equivalent:
FUNCTION Test(p1 AS FLOAT, p2 AS FLOAT, p3 AS INT) ;
 AS FLOAT

FUNCTION Test(p1 AS FLOAT, p2 AS FLOAT, p3 AS INT) ;
 AS FLOAT STRICT

Using strong typing increases the performance and reliability of your
application. It also takes away all of the CLIPPER flexibility mentioned above:

■ You must specify all arguments

■ PCount() is not applicable

■ You cannot call the function in a macro expression

■ You must pass AS arguments by value and REF arguments by reference

Other PASCAL and CALLBACK are two additional calling conventions that you can
specify for low-level interfacing with Windows.

Declarations

Variable declarations go at the top of a function before the function body. These
define what variables are used by the function (besides its parameters), their
lifetime, and visibility. The most common declaration statement for functions is
LOCAL, which declares variables that are visible only within the function body
and that retain their values only until the function returns.
FUNCTION Test(p1 AS FLOAT, p2 AS FLOAT, p3 AS INT) ;
 AS FLOAT STRICT
 LOCAL nResult := p1 * p2 / p3
 RETURN nResult

STATIC is a variant of the LOCAL declaration that extends the lifetime of a
variable to the application.

Function Pointers
Another capability introduced with CA-Visual Objects 2.0 was function pointers.
CA-Visual Objects 1.0 provided the possibility of manipulating function pointers
in the following manner:
p := @MyFunc()

However, one restriction was that these pointers were only allowed to be passed
to functions that expected pointers as parameters. There was no means of

Function Pointers

Chapter 27: Functions and Procedures 441

Failing to comply with this rule can result in a phase drift error, which is of
sporadic nature making it very difficult to track down in large applications.

The extension of pointers in Visual Objects is similar to that of the general typed
pointers introduced in Chapter 21, “Data Types,” of this guide. Function
pointers are now typed also. They now possess semantic information, which the
compiler can exploit. Moreover, these function pointers can also be
"dereferenced." You can therefore, access the functions being addressed by these
function pointers, for instance, by indirectly calling them.

Nonetheless, there are special cases in which programmers should be capable of
indirectly invoking functions whose specifications are completely unknown by
their current applications. Therefore, special constructs were introduced so that
they could be used in such cases.

The following syntax can be used for declaring a function pointer:
[STATIC] [LOCAL|GLOBAL] <Variable> AS <Defined Function>()

The function pointer variable <Variable> defined is automatically initialized to
address the function <Defined Function>.

Visual Objects provides three different constructs for invoking indirect function
calls:
CALL(<Function Pointer Expression>,<Argument List>)
CCALL(<Function Pointer Expression>,<Argument List>)
PCALL(<Function Pointer Expression>,<Argument List>)

PCALL stands for PASCAL CALL and assumes that the <Function Pointer
Expression> evaluates to an address of a function declared with the PASCAL
calling convention.

CALL is a synonym for PCALL.

CCALL stands for C CALL and assumes that the <Function Pointer Expression>
evaluates to an address of a function declared with the STRICT calling
convention.

If the <Function Pointer Expression> evaluates to a typed function pointer, the
compiler can exploit the semantic information to do argument and return value
type checking as well as other checking. The ADAM system also has sufficient
information to perform its automatic dependency management.

The compiler, on the other hand, in cases where <Function Pointer Expression>
evaluates to an anonymous pointer, cannot exploit any semantic information
about the pointer, and consequently performs no checks with regards to
argument types, return values, or calling conventions. The programmer must
comply with the following rule in this case. The indirectly called function is
assumed to have STRICT calling convention which enables functions to be called
with a variable number of parameters - and must return a value of type USUAL.

The Function Body

The following example program illustrates the use of function pointers:
FUNCTION calla(a,b,c AS WORD) AS WORD PASCAL
 c := b*a
 QOut(c)
FUNCTION callc() AS WORD PASCAL
 QOut("Callc (without parameter)has been called")
FUNCTION MyFunc(a AS WORD, b AS WORD) AS WORD PASCAL
 LOCAL c AS WORD
 LOCAL p AS PTR
 LOCAL fp AS callc PTR
 p:=@calla()
 CALL(@calla(),a,b,c)
 CALL(fp)
FUNCTION MyFunc2(a, b AS WORD) AS WORD PASCAL
 QOut("We have really called MyFunc2")

FUNCTION MyFunc3(a AS WORD) AS WORD PASCAL

FUNCTION Start
 LOCAL fp AS MyFunc PTR
 LOCAL fp3 AS MyFunc3 PTR
 LOCAL pp AS PTR
// the following statement results in an error because
// MyFunc and MyFunc3 are not compatible
//fp := @MyFunc3() // Error !

// Note by assigning fp to pp we lose pointer type
// pp := fp

// the necessary checking; however since pp is set
// to fp which points to a PASCAL function, we are
// not conforming to the above rule in the following
// statement. The statement might result to a phase
// error.
// CALL(pp,7,8)
// Note the automatic initialization of fp
 CALL(fp,7,8)
 fp := @MyFunc2()
 CALL(fp,3,4)
 CALL(fp,6,5)
// CALL(@MyFunc(),3,4)

The Function Body
The function body comes after all variable declarations and defines what the
function does, including its return value:
FUNCTION Test(p1 AS FLOAT, p2 AS FLOAT, p3 AS INT) ;
 AS FLOAT STRICT
 LOCAL nDefaultDivisor
 nDefaultDivisor := 1
 p1 := Abs(p1)
 p2 := Abs(p2)
 p3 := IF(p3 == 0, nDefaultDivisor, p3)
 RETURN p1 * p2 / p3

// pp is an anonymous pointer. Compiler cannot do

442 Visual Objects Programmer's Guide

Calling

You can include any executable statement within the context of the function
body, including conditional and looping constructs, commands, function calls,
object instantiations, and method invocations.

Calling
You call a function by using its identifier, followed by a pair of parentheses
enclosing its arguments. The parentheses are required when you call a function,
regardless of whether you pass arguments.

If you are not concerned with the return value (or if the function returns VOID),
you can call the function as a stand alone program statement, but more often you
will invoke it as part of an expression that uses its return value. If the function is
defined using the CLIPPER calling convention, you can call the function as part
of a macro expression, but other calling conventions do not allow this.

In any case, the function must be visible to the module from which it is called, or
the compiler will return an error.

Default Parameters

Visual Objects now supports default values for parameters. With this new
feature, PASCAL and STRICT functions are now more flexible. The following
function declaration is now valid:
FUNC MyFunc(a:=5 AS INT, b:=8 AS DWORD) AS DWORD PASCAL

When calling MyFunc(), parameters may be skipped or omitted. In such cases
the compiler automatically knows the default parameter to be used for the
missing parameters and thus prepares the call with the appropriate parameters.

The following example program illustrates the use of default parameters:
FUNCTION Start
 ? "Calling x()"
 x()
 ? "Calling x(,)"
 x(,)
 ? "Calling x(2,)"
 x(2,)
 ? "Calling x(, 2,)"
 x(,2,)
 ? "Calling x(, ,2)"
 x(, ,2)

FUNCTION x(a:=3 AS INT, b:=5 AS INT, d:=9 AS INT);
 AS INT PASCAL

Chapter 27: Functions and Procedures 443

 ? "In x: value of a: "
 ? a
 ? "In x: value of b: "
 ? b

Calling

 ? "In x: value of d: "
 ? d

Functions with Variable Number of Parameters

Visual Objects provides a mechanism for defining functions which can accept a
variable number of parameters. Such functions are declared to the compiler by
using an ellipses (...) as the last parameter in the parameter list of the function
declaration.

These functions must comply with the following rule. They must adhere to the
STRICT calling convention enabling functions to be called with a variable
number of parameters. The functions also cannot have a return value (i.e. return
parameter is of type VOID). These functions must have at least one fixed
parameter (a parameter before the ellipses).

Visual Objects provides two special functions for accessing the variable
parameters within functions defined to access a variable parameter list. These
special functions are: _GetFirstParam() and _GetNextParam(). As their names
suggest, they are used for accessing the first and remaining parameters making
up the variable parameter list respectively.

_GetFirstParam() is declared as follows:
FUNC _GetFirstParam (;
 pptrStart REF PTR, ;
 ptrFirst AS PTR, ;
 dwTypeFirst AS DWORD,;
 dwType AS DWORD ;
) AS USUAL PASCAL
FUNC _GetNextParam (;
 pptrStart REF PTR, ;
 dwType AS DWORD ;
) AS USUAL PASCAL

pptrStart references the anonymous pointer variable local to the calling function
which will serve as an address to the list of variable parameters.

ptrFirst is the address of a fixed parameter variable in the parameter list of the
calling function.

dwTypeFirst specifies the type of the above fixed parameter.

dwType specifies the type of the actual parameter to be accessed.

The following example illustrates the implementation of a function accepting a
variable number of parameters:
FUNCTION CFunc(dummy:=1 AS INT, dwNumber AS INT, ...);

444 Visual Objects Programmer's Guide

 AS VOID STRICT
LOCAL xParam AS USUAL
LOCAL i AS DWORD
LOCAL pParam AS PTR

Calling

LOCAL cString AS STRING
xParam := _GetFirstParam(@pParam, @dwNumber, INT,;
 STRING)
? dwNumber
? xParam

FOR i := 2 UPTO dwNumber
 xParam := _GetNextParam(@pParam, STRING)
 ? xParam
NEXT
RETURN
FUNCTION Start
 CFunc(,1, "How")
 CFunc(,2, "How ", "are ")
 CFunc(,3, "How ", "are ", "you ")

Arguments

On the calling side, arguments correspond to parameters. You specify
arguments as expressions in a comma-separated list:
x := Test(5, 10, 2)

If the function is defined using the CLIPPER calling convention, no argument
checking is performed at compile time. You can pass any value to the function
and even omit arguments—errors will not show up until the function is executed
at runtime.

For other calling conventions, the compiler checks the data types of the
arguments to make sure they match the function declaration, checks to make
sure no arguments are missing, and checks to make sure that the arguments are
passed using the correct convention (either by value or by reference). If errors
are detected, the compiler will inform you. You can be assured that unexpected
errors will not show up at runtime.

Passing by Value

Passing by value means that the argument is evaluated and its value is copied to
the receiving parameter. Changes to the receiving parameter are local to the
called function and lost when the function returns.

Any argument corresponding to a parameter that is not strongly typed is passed
by value as the default, including arrays and objects.
FUNCTION Test(p1, p2, p3)
 p1 := p2 * p3
 RETURN p1

FUNCTION CallTest()
 LOCAL nTestValue, nArg1, nArg2, nArg3

Chapter 27: Functions and Procedures 445

 nArg1 := 0
 nArg2 := 10
 nArg3 := 5

Calling

 nTestValue := Test(nArg1, nArg2, nArg3)
 ? nTestValue // Returns 50
 ? nArg1 // Returns 0

Arguments corresponding to strongly typed parameters must be passed by value
if the data type is declared with the AS keyword. Any attempt to pass AS
parameters by reference results in a compiler error.

Passing by Reference

Passing by reference means that a reference to the value of the argument is
passed instead of a copy of the value. The receiving parameter refers to the same
location in memory as the argument. If the called routine changes the value of
the receiving parameter, it also changes the argument passed from the calling
routine.

Other than field variables, any argument corresponding to a parameter that is
not strongly typed can be passed by reference if prefaced by the reference
operator (@).
FUNCTION Test(p1, p2, p3)
 p1 := p2 * p3
 RETURN p1

FUNCTION CallTest()
 LOCAL nArg1, nArg2, nArg3

 nArg1 := 0
 nArg2 := 10
 nArg3 := 5

 Test(@nArg1, nArg2, nArg3)
 ? nArg1 // Returns 50

The @ is required for arguments corresponding to strongly typed parameters
declared with the REF keyword.
FUNCTION Test(p1 REF INT, p2 AS INT, p3 AS INT)
 p1 := p2 * p3
 RETURN p1

FUNCTION CallTest()
 LOCAL nArg1, nArg2, nArg3

 nArg1 := 0
 nArg2 := 10
 nArg3 := 5

 Test(@nArg1, nArg2, nArg3)
 ? nArg1 // Returns 50

 Test(nArg1, nArg2, nArg3) // Compiler error!

446 Visual Objects Programmer's Guide

Calling

Passing Arrays and Objects

Arrays and objects are a little tricky because, although they can be passed by
value or reference like other arguments, they are treated as references.

If you pass an array or object by value, you are passing a reference. The local
parameter is a reference to the same array or object, so that changes to the
components (elements or instance variables) are automatically reflected in the
original argument. Wholesale changes, however, to the entire array or object, get
lost because they create yet another reference.

When you pass by reference, wholesale changes are not lost. They are reflected
upon return. See Chapter 24, “Arrays” for an example.

Recursion

Functions can be recursive (a function can call itself). Every recursive function
should have some test condition that prevents the function from calling itself
indefinitely; otherwise, the function will result in a stack overflow.

This recursive function performs an integer division between two positive
numbers:
FUNCTION IntegerDivide(a AS INT, b AS INT) AS INT
 STATIC LOCAL iResult := 0 AS INT
 LOCAL iRetValue := 0 AS INT

 IF a < b
 // Stops further recursive calls or returns
 // to main caller if this is the first call
 RETURN iResult
 ELSE
 a -= b
 ++iResult
 iRetValue := IntegerDivide(a, b)
 ENDIF

 iResult := 0 // Resets for next call
 RETURN iRetValue // Returns to main caller

Chapter 27: Functions and Procedures 447

Argument Checking

Argument Checking
When parameters are strongly typed, argument checking is done at compile
time. This is the fastest, easiest way to do argument checking. You know for a
fact at runtime that all arguments are present, typed correctly, and passed in the
correct way.

With untyped parameters, you may want to put some type checking into the
function code. Things you can do are:

■ Use PCount() to detect missing parameters within the list, but not those left
of the end.

■ Supply a default, when appropriate, for a missing argument by testing the
parameter for a NIL value. You can use the Default() function for this
purpose:
Default(@p1, 1)

■ Use UsualType() to make sure proper data types are passed:
IF UsualType(p1) = INT
 RETURN FALSE
ENDIF

This may help to prevent certain improper uses of the function, but there may be
errors that you cannot detect and these will not show up until runtime.

448 Visual Objects Programmer's Guide

Appendix

A RDD Specifics

Specifications
The following table outlines the specifications for all of the RDDs supplied with
Visual Objects. Some of the limitations specified may be subject to further
restrictions, such as available RAM or disk space. All numbers are specified in
bytes, unless otherwise indicated.

The specifications for DBFCDX and DBFMDX are for the corresponding native
products, FoxPro (versions 2.0 and above) and dBASE IV (version 2.0),
respectively. In all cases, the supplied drivers create and maintain database and
index files that are compatible with the native product. (Refer to “Using DBF
Files” in this guide for information on interoperability with applications written
using the native product.)

Important! Some of the limitations may not be strictly enforced by the RDD. All
limitations, however, are genuine and should be observed. Otherwise, backward
compatibility cannot be guaranteed.

Appendix A: RDD Specifics 449

Specifications

Specification DBFNTX DBFCDX DBFMDX

Database file extension .DBF .DBF .DBF

Memo file extension .DBT .FPT .DBT

Maximum record length 65,535 65,535 4000

Maximum file sizes:

 .DBF (default)
 .DBF (ANSI Character Set)())

 .DBT
 .FPT or .DBV (using DBFBLOB driver)

1 billion
2 billion
records

32 MB
4.2 billion

2 billion
n/a

n/a
4.2 billion

2 billion
n/a

32 MB
4.2 billion

Maximum records (default)
Maximum records (NewIndexLock() or
IndexHPLock())

500,000
2 billion

1 billion
n/a

1 billion
n/a

 Formula for computing (Max file size - Header() - 1)/RecSize()

Maximum number of fields 1024 1024 255

Maximum length of:

 date field
 float field
 logic field
 memo field
 numeric field
 string field

8
n/a
1
64 KB
19
64 KB

8
n/a
1
no limit
19
64 KB

8
19
1
64 KB
19
254

Default Index file extension .NTX .CDX .MDX

Number of orders per index file 1 no limit 47

Number of index files per work area:

 Visual Objects application
 Native product application

15
15

15
15

15
15

450 Visual Objects Programmer's Guide

Specifications

Specification DBFNTX DBFCDX DBFMDX

INDEX/DBSetOrderCondition() features
 supported:

 for condition
 scope and while condition
 unique keys
 descending keys
 evaluation of code block at intervals
 create order without clearing order list
 create order using current controlling
 order
 custom built order
 optimization

Yes
Yes
Yes
Yes
Yes
No
No

No
No

Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes

Yes
No
Yes
Yes
No
No
No

No
No

Maximum key expression length 256 256 220

Maximum length of key expression result 256 240 100

Maximum for condition length 256 256 220

Data types allowed for key expressions:

Yes
n/a
Yes
No
Yes
Yes

Yes
Yes
No
No
Yes
Yes

Production/structural index file supported No Yes Yes

Implicit record unlocking in single lock
mode

Yes Yes Yes

Multiple record locks supported Yes Yes Yes

Filter optimization supported No Yes No

 date
 float
 logic
 memo
 numeric
 string

Yes
n/a
Yes
No
Yes
Yes

Record Locking Offsets A note regarding the locking offset used for the DBFNTX driver is in order,
because it limits the .DBF file size that you can accurately maintain if your
application relies on record or file locking.

The DBFNTX driver supplied with Visual Objects is designed to be compatible
with CA-Clipper and must, therefore, respect the locking offset defined in the
.NTX header record. The actual value will depend on whether or not your
CA-Clipper application was linked with NTXLOCK2.OBJ.

Appendix A: RDD Specifics 451

The DBFBLOB Driver

By default, CA-Clipper applications are not linked with this file and use a
locking offset of 1 billion. For record locking, the locking address is 1 billion +
the record number (locked for a length of 1 byte). For file locking, the locking
address is 1 billion (locked for a length of 1 billion bytes). This locking scheme
effectively limits the maximum size of .DBF files to 1 billion bytes. Anything
larger cannot be locked appropriately using this locking offset.

Linking NTXLOCK2.OBJ changes the locking offset to a much larger value
(4 GB), which removes .DBF file size limitations imposed by the previously
discussed locking scheme. The record locking address for NTXLOCK2.OBJ is
4 GB - the record number (locked for a length of 1 byte), and the file locking
address is 4 GB (locked for a length of 2 billion bytes).

The limitations for database file sizes created using the Visual Objects DBFNTX
driver will depend on the locking offset settings as defined by the
NewIndexLock() function. By default, the 1 billion byte offset will be used,
imposing the 1 billion byte file size limitation explained earlier. To remove this
limitation on database file size, you can set both flags to TRUE.

The DBFBLOB Driver
The DBFBLOB RDD supplied with Visual Objects is designed to give you an
alternative mechanism for storing and retrieving memo fields and to give you
direct control over managing the file used to store the data (called a BLOB file,
for binary large object). The driver provides an efficient and flexible mechanism
for managing the data, thereby superseding .DBT/.FPT file managers that are the
industry standard.

The DBFBLOB driver features:

■
 A 4.2 GB file size limitation

■
 A 1-byte minimum block size limitation

■
 An efficient technique for recycling file space

■
 The ability of memo fields to store any usual data type (other than object and

code block)

■
 Extensions to the Visual Objects language (BLOB functions) for file and field

management

452 Visual Objects Programmer's Guide

The DBFBLOB Driver

Using DBFBLOB as an Inherited Driver

If you are currently using a driver that supports .DBT style memo fields (such as
DBFNTX or DBFMDX), you can inherit from the DBFBLOB driver. For example:
USE customer VIA "DBFMDX" INHERIT FROM {"DBFBLOB"}

Using this technique, you can have the standard database and index operations
controlled by the main RDD and the memo file operations controlled by the
DBFBLOB RDD.

Note: When the DBFBLOB driver is inherited, the block size defaults to 1 (the
most efficient setting) and the memo file extension defaults to .DBV. The block
size and memo file extension settings can be controlled using the RDDInfo()
_SET_MEMOBLOCKSIZE and _SET_MEMOEXT constants, respectively.

Converting Your Data If you have data that is currently in the .DBF/.DBT file format and want to
convert the .DBT file to a .DBV file for use with DBFBLOB as an inherited driver,
copy the file using the INHERIT FROM “DBFBLOB” clause, as in:
USE <cOriginalDBF> VIA "DBFNTX" // or other driver
COPY TO <cNewDBF> VIA "DBFNTX" ;
 INHERIT FROM {"DBFBLOB"}

In addition to copying the .DBF file, this will copy the data in the associated .DBT
memo file to a .DBV BLOB file. Then, to use the .DBF/.DBV file combination:
USE <cNewDBF> VIA "DBFNTX" INHERIT FROM {"DBFBLOB"}

Using DBFBLOB Via DBFCDX

If you are using the DBFCDX RDD, you will get automatic access to the
DBFBLOB driver because DBFCDX inherits from it. Using the DBFBLOB driver
in this manner lets you maintain .FPT files that are 100% compatible with FoxPro
for a string data types. Furthermore, all report writers and file viewers that
recognize the .FPT file format will be able to read from and write to the file. A
Visual Objects application concurrently accessing a file with any of these other
applications will continue recycling space even though the other application may
not.

Note: To maintain this level of compatibility and interoperability, the default
memo file extension must be .FPT and the default block size must be 32 (or
greater). These are the default settings for the RDDInfo() _SET_MEMOEXT and
_SET_MEMOBLOCKSIZE constants when you use the DBFCDX driver.

Important! Because the DBFCDX driver automatically inherits from the DBFBLOB
driver, do not try to use the DBFBLOB driver as an inherited driver in conjunction with
the DBFCDX driver. It is unnecessary and could produce unexpected results.

Appendix A: RDD Specifics 453

The DBFBLOB Driver

Converting Your Data If you have data that is currently in the .DBF/.DBT file format and want to
convert it for use with the DBFCDX driver, simply copy the file VIA “DBFCDX,”
as in:
USE <cOriginalDBF> VIA "DBFNTX" // or other driver
COPY TO <cNewDBF> VIA "DBFCDX"

In addition to copying the .DBF file, this will copy the data in the associated .DBT
memo file to an .FPT BLOB file. Then, to use the .DBF/.FPT file combination:
USE <cNewDBF> VIA "DBFCDX"

454 Visual Objects Programmer's Guide

Appendix B: Reserved Words 455

CDECL
CDOW
CHR

FIELD
FIELDNAME
FIELDPOS

MEMVAR
METHOD
MIN

SQRT
STATIC
STATUS

Appendix

B Reserved Words

This section lists all the reserved words in Visual Objects; they are presented in alphabetical order.

__ENTITY__
__INLINE
__LINE__
__MODULE__
_CAST
_CO
_DLL
_INIT1
_INIT2
_INIT3
_NC
_WINCALL
AADD
ABS
ACCESS
ALLTRIM
ARRAY
AS
ASC
ASPEN
ASSIGN
AT
BEGIN
BIN2I
BIN2L
BIN2W
BOF
BREAK
BUFFER
BYTE
CALLBACK
CASE

CLASS
CLIPPER
CMONTH
CODEBLOCK
CTOD
DATE
DAY
DESCEND
DECLARE
DEFINE
DIM
DO
DOW
DOWNTO
DTOC
DTOS
DWORD
ELSE
ELSEIF
EMPTY
END
ENDCASE
ENDDO
ENDIF
ENDTEXT
EOF
EVAL
EXIT
EXP
EXPORT
EXTERN
FALSE

FLOAT
FOR
FUNCTION
GLOBAL
HARDCR
HIDDEN
I2BIN
IF
IFDEF
IFNDEF
IN
INHERIT
INSTANCE
INT
INTEGER
IS
ISALPHA
ISDIGIT
ISLOWER
ISUPPER
L2BIN
LEFT
LEN
LOCAL
LOG
LOGIC
LONGINT
LOOP
LOWER
LTRIM
MAX
MEMBER

MONTH
NAME
NEXT
NIL
OBJECT
OF
OTHERWISE
PARAMETERS
PASCAL
PRIVATE
PROCEDURE
PROTECT
PSZ
PTR
PUBLIC
RAT
REAL4
REAL8
RECNO
RECOVER
REF
REPLICATE
RESOURCE
RETURN
RIGHT
ROUND
SECONDS
SELF
SEQUENCE
SHORTINT
SOUNDEX
SPACE

STEP
STR
STRICT
STRING
STRUCTURE
STUFF
SUBSTR
SUPER

SYMBOL
TEXT
TEXTBLOCK
TIME
TO
TODAY
TONE
TRIM

TRUE
TYPE
UPPER
UPTO
USING
USUAL
VAL
VALTYPE

VOID
WHILE
WITH
WORD
YEAR

456 Visual Objects Programmer's Guide

 Index

- (concatenation), 347

-- (decrement), 293, 348, 349, 351, 374

- (subtraction), 348, 349

- (unary minus), 305, 349

!

! (negate), 354

!= (not equal), 356

(not equal), 356

#command | #translate, 259

#define, 267, 274

#else, 271, 272

#endif, 271, 272

#ifdef, 271

#ifndef, 272

#include, 258, 273

#xtranslate, 275

$

$ (substring), 356

%

% (modulus), 349

%= (modulus and assignment), 293, 359, 360

&

& (macro), 368, 372, 373, 374, 375, 376, 378, 379

&& (comment), 295

(

() (grouping), 365, 371

*

Index 457

#undef, 274

#xcommand, 275

* (comment), 295

* (multiplication), 349

** (exponentiation), 349

*= (multiplication and assignment), 293, 359, 360

.

. (dot), 338, 368

. (macro terminator), 372

.AND. (and), 354

.NOT. (negate), 354

.OR. (or), 354

.ppo files, 257

/

/ (division), 349

/*...*/ (comment), 295

// (comment), 295

/= (division and assignment), 293, 359, 360

:

: (send), 291, 319, 367, 396, 398, 407, 408

:= (assignment), 293, 359, 426

;

; (concatenation), 296

; (continuation), 295

@

@ (reference), 369, 442

[

[, 365, 366

^

^ (exponentiation), 349

^= (exponentiation and assignment), 293, 359, 360

_

_And (bitwise and), 349, 352, 353, 374

_Chr() operator, 348

_CODEBLOCK class, 378

_GetFirstParam(), 440

_GetNextParam() function, 440

_MakePtr (make pointer), 374

_Or (bitwise or), 349, 352, 353, 374

_SizeOf (size of), 374

_TypeOf (type of), 374

{

{} (instantiation), 292, 365, 366, 367

{} (literal), 365, 366

|

|| (code block parameters), 366

+

+ (addition), 348, 349

458 Visual Objects Programmer's Guide

+ (concatenation), 347

+ (unary plus), 305, 349

Index 459

in field names, 127
managing, 108, 110
similarities to cursor names, 111

creating, 381, 382, 386
declaring, 382
definition, 381

++ (increment), 293, 348, 349, 351, 374

+= (addition and assignment), 293, 359, 360

<

< (less than), 265, 356

<< (bitwise shift left), 349, 352, 374

<= (less than or equal), 356

<> (not equal), 356

=

= (equal), 387, 418

-= (subtraction and assignment), 293, 359, 360

>

-> (alias), 368

> (greater than), 356

>= (greater than or equal), 356

>> (bitwise shift right), 349, 352, 374

A

Accelerators
command events, 47
definition, 47

ACCESS methods, 402
in data windows, 43
in DBServer class, 127

ACCESS statement, 289, 290, 291

Alias references
counterpart in OOP, 109, 110, 114, 127
importance of

in GUI programming, 106
in multi-tasking environment, 108

uniqueness of, 108, 110

ALL clause, 130, 131

ANSI
character set, 299
codes for comparison, 357

App class, 34
methods

Exec(), 197
relationship to shell window, 158
role in exception handling, 239

App, relationship to shell window, 34

App:Start() method, 289

Application
development in DOS vs. Windows, 27, 33, 53
DOS, 27
event-driven structure, 28
features of a Visual Objects, 33
GUI, 28
hierarchical structure, 27
role of

user in a GUI, 148
user in a hierarchical, 148

role of user in
GUI, 28
hierarchical, 27

typical MDI, 34

ApplicationExec() function, 198
relationship to App:Exec() method, 197

AppWindow class methods
ReportException(), 204
ReportNotification(), 204

Array operator
on typed pointers, 391

example, 391
used beyond the third dimension, 391

ArrayCreate(), 385
function, 309

Arrays
and the macro operator, 373
array operator on typed pointers, 390
as references, 387
assigning values, 385
changing the value of, 385
comparison rules, 357

460 Visual Objects Programmer's Guide

Call stack, use in exception handling, 213, 214

CALLBACK calling convention, 435

concept in OOP, 36
vs. ownership, 36

CLASS statement, 289, 290

dimensioned, 341, 389
dimensions of, 381
dynamic, 381
elements, 381, 384, 385
limitations, 382
literals, 366, 382
multiple references to the same, 387
one-dimensional, 382
operator on typed pointers, 391
passing, 388, 443
ragged, 387
referencing, 387
size, 381
strong typing, 384
subscripts, 366
two-dimensional, 381, 382
uninitializing, 382
used beyond the third dimension, 391
using as return values, 389

ASSIGN methods, 402
in data windows, 43

ASSIGN statement, 289, 290, 291

Automatic type conversion, 361

Axit() method, 216, 420

B

Binary
notation, 303
operators, 346

Binding, 409, 410, 413

Bitwise operators, 352

BREAK clause, 220, 221, 222

Browse view, 43, 44, 46, 163, 165, 169, 174

By reference, 369, 442

By value, 441

C

Calculated variables, 403

Calling conventions
argument checking, 441
as part of macro expression, 439
CALLBACK, 435
CLIPPER, 369, 375, 435, 439
default, 435
PASCAL, 435
STRICT, 369, 435

Canvas, description of window, 157

CASE construct, 290

Visual Objects, getting help, 25

Chained assignments, 360

Character (escape character), 265

Character sets
ANSI vs. OEM, 136
automatic conversion, 136
national letters, 136

Character-based debug/logging output, 147

Checking arguments, 444

Child window
data window as, 164
IBM CUA '91 counterpart, 158
Microsoft counterpart, 158
relationship to

shell window, 160
top window, 158

relationship to shell window, 34

ChildAppWindow class, 160
general description, 40
vs. DialogWindow, 40

Class
_CODEBLOCK, 378
definition, 393
hierarchy, 406
names as data types, 336
tree, 406
virtual state of, 394

Class Browser
viewing

controls with, 186
drawing classes with, 185
GUI classes with, 149

Class hierarchy

Index 461

assigning, 426, 429
changing the data type of, 427
comparison with macros, 430

Compiler
include file directory, 258

Classes
App, 34, 239
ChildAppWindow, 40, 160
clipBoard, 187
Control, 186
DataBrowser, 43
DataColumn, 44
DataField, 117
DataServer, 41, 48, 113
DataWindow, 40, 237
DBServer, 105, 109, 110, 111, 114
DDE, 187
DialogWindow, 40, 160
DrawObject, 185
Error, 222, 223, 239
EventContext, 152
FieldSpec, 117
FileSpec, 127, 233, 234, 235
GUI, 147, 149, 150, 151
HyperLabel, 236, 237, 238, 239
inter-process communication, 187
ListBox, 186, 187
MultiLineEdit, 187
OpenDialog, 163
Printer, 204, 205
PrinterDevice, 206
PrinterExposeEvent, 205, 206
ReportQueue, 201
ShellWindow, 39, 49, 159
SQLConnection, 116
SQLSelect, 105, 111, 115
SQLStatement, 111, 116
TextControl, 186
TopAppWindow, 39
window, 39, 40, 185, 204

CLEAR commands, 323

Client-server
relationship between windows and databases,

114, 130
transferring data, 187

ClipBoard class
features, 187
Insert() method, 187
purpose, 187

CLIPPER calling convention, 435

Code blocks
accessing local variables, 429

creating
literal, 426
local variables, 429
using macro operator, 431

data type of runtime, 431
evaluating, 428
exporting local variables, 430
functions that evaluate, 428
including a macro in, 430
lexically scoped, 429
limitation on expressions, 426
literals, 366, 425
macros in, 378
parameters, 366
preventing a data type change, 427
rules for naming local variables, 429
runtime, 378, 431
storing a code block, 426
using

a macro expression, 431
EXPORT LOCAL clause, 430

visibility of variables, 429

Command directive
#command | #translate, 259

Command events
automatic propagation of, 47
linking to symbolic name, 47, 48
overview, 47
processing, 47
push buttons, 47
routing by event name, 47, 48

Commands
database, 126
DELETE, 107, 126
PACK, 140
RECALL, 132
record scoping, 130
requiring exclusive mode, 140
SKIP, 107
USE, 125
ZAP, 140

Compatibility
ANSI vs. OEM character set, 136
database, 136
definition, 136

Compilation, conditional, 271, 272

Compile and execute, 373

462 Visual Objects Programmer's Guide

Constructs
nesting SEQUENCE, 213, 221, 222

Cursor names
need for using SQLSelect, 115
similarities to alias references, 111

Compiler option
Operator Methods, 421
Type Inference, 332

Compiler switches
/D, 271
/I, 258, 273
/P, 257
/U, 258, 274

Component Object Model (COM)
basic terminology, 68
COM as an object-based model, 69
COM interfaces, 70
in-process server, 74
local server, 74
overview, 67
remote server, 75

Components
delivery platform

DLL vs. source code, 254
developing, 253
guidelines for developing, 254
third-party, 255

buying, 253, 254
catalog of, 254
gauging quality of help in, 254
guidelines for buying, 253, 254

user interface, 147, 150

Concurrency control, 29, 52, 139, 140, 142, 143, 144

Console applications, 147

Constants
advantages of, 341
declaring

as compiler entities, 318
data type, 343
with DEFINE statement, 342

definition, 317
releasing from memory, 342
scope of, 331, 342
static, 331, 342
system-defined

MAX_ALLOC, 299
NULL_, 310
NULL_ARRAY, 382
NULL_DATE, 307
NULL_STRING, 299
NULL_SYMBOL, 300

visibility of, 342

SEQUENCE, 212, 218, 219
syntactic vs. semantic, 219, 220
WHILE, 219

Continuation character, 295

Control class
viewing with Class Browser, 186
virtual variables

value, 186

Control structures
decision-making, 271, 272
preprocessor, 271, 272

Controls
and events, 37, 157
as resources, 237
custom, 46
data-aware, 161
defined in the GUI classes, 186
disabling, 157
dumb, 38
dynamic creation of, 169
examples of, 35
implementing captions, 237
instantiating in Init() method, 167
processing events generated by, 237, 238
relationship to

columns in a data browser, 45
data, 37, 38, 161
data browsers, 44
field specifications, 45
hyperlabels, 166, 167
windows, 35, 43, 157

static creation of, 166
symbolic naming on data windows, 166, 168, 169,

170
working with

editors, 186
list box, 186, 187
multi-line edit, 187
text, 186

Conventions
calling, 435
used in this guide, 20

Copying files, 234

Creating files, 229, 230, 231

Curly braces, 366

Index 463

data windows, 42, 51
relating, 53
relationship to

dynamic creation of, 169
exception handling for, 215, 219
field references, 42, 43

Cursors, referring to contents of, 116

D

Data browsers
as subwindows, 174
features, 43
parallel structure with

data servers, 45
data windows, 45

relationship of columns
to controls, 45
to field specifications, 45

relationship to
controls, 44
data windows, 44, 45

relationship to field specifications, 119
structure illustrated, 45

Data fields
formatting, 117
relationship to

databases, 119
field specifications, 118
hyperlabels, 118

storage type, 117
validation rules, 117

Data propagation
automatic, 52
between data servers and data windows, 52
controlling, 52

Data servers
definition, 113
design philosophy, 113
designing, 113, 120
event notification with related, 53
implement buffered servers, 121, 135
instantiating, 114
instantiating multiple, 110
joining, 121
linking to

data windows, 41
multiple windows, 51, 52, 53

linking to data windows, 163, 166, 169, 170
managing DBF files using, 114
parallel structure with

data browsers, 45

data windows, 110, 113, 120
field specifications, 120

SQL vs. DBF, 113
structure illustrated, 42, 45
using FileSpec objects with, 233
work area, 129

Data types
and operators, 297
casting, 364
checking, 441
choosing, 297
class names as, 336
code block, 425
conversion, 361, 363
creating literal code blocks, 425
date, 307
declaring, 331, 332, 336, 337
inferencing, 332, 341
list of, 297, 332
logic, 308
manual conversion, 363
mixing, 361
NIL, 309
numeric, 300
overview, 297
string, 298, 299
symbol, 299
system level, 298
VOID, 310
with EXPORT LOCAL, 430

Data windows
ACCESS methods, 43
and events, 51
as

child windows, 164
dialog windows, 164
resources, 166
subwindows, 163, 164, 174, 176, 177
top windows, 164

as resources, 237
ASSIGN methods, 43
automatic

event notification, 51, 52
layout, 44

browse view, 44, 46
built-in behavior, 40
changing views, 44, 46
concurrency control mechanisms, 52
controls on, 166, 169

464 Visual Objects Programmer's Guide

interoperability, 137
locking, 137, 139, 142
memo fields, 124
opening

update visibility, 144, 145
using

DataWindow class methods, 163
exclusive mode, 140, 141

form view, 44, 46
implement field references in, 43
instantiating multiple, 110
linking, 51
linking to data servers, 41, 163, 166, 169, 170
managing multiple, 177
multiple instances, 41
multiple instances of, 29, 48, 51
nesting, 46, 163, 164, 174, 176
parallel structure with

data browsers, 45
data servers, 42, 51

referencing fields in, 168, 170
relationship to

data browsers, 44, 45
data servers, 110, 113, 120
databases, 124
dialog windows, 160, 164, 166, 169
field specifications, 119
owner, 41
shell windows, 164

self-configuring, 44, 164, 169
special properties of, 163
static creation of, 166
static vs. dynamic creation of, 169
structure illustrated, 42, 45
switching views, 165, 169
used as, 41

child windows, 164
top windows, 164
various window types, 163, 164, 178

using as sub-data windows, 46
using FileSpec objects with, 233

Database
choosing

a character set, 136
a format, 105, 111, 124
an RDD, 125

closing, 130
commands, 126

record scoping, 130
suitability for GUI programming, 129

compatibility, 136
drivers, 105, 124
exclusive mode, 140, 141
functions, 126

strongly typed, 126, 129, 130
suitability for GUI programming, 129

internationalizing, 239

many times, 107, 108, 110
multiple, 107

record scoping, 130, 131, 132
referencing in OOP, 109, 110, 114
relating files, 134
relationship to data fields, 119
resolving

lock failures, 144, 217, 218
open failures, 140, 141

shared mode, 137, 139, 140, 141
sharing

between DOS and Windows applications,
136

compatibility, 136
interoperability, 136
with CA-Clipper, 137
with dBASE IV, 137
with FoxPro, 137, 449

SQL vs. DBF, 105, 111, 113
translating, 239
undoing changes, 121, 135
work area, 123
writing changes to disk, 145

Database programming
alias referencing in, 106
choosing a character set, 136
compatibility, 136
concurrency control, 139, 140, 142, 143, 144
data sharing, 136
implementing

buffered servers, 121, 135
rollback, 121

in multi-tasking environment, 107, 110, 114
interoperability, 136, 137
joining tables, 121
language overview, 126
major operations in, 106
migrating

procedural to OOP, 129
mixing procedural and OOP, 129, 130
object-oriented vs. procedural, 105, 106, 109, 110,

111
performance issues, 129, 130, 135
reentrant, 109, 110, 114
resolving

lock failures, 144, 217, 218
open failures, 140, 141

SQL-oriented approach, 115
undoing changes, 121, 135

Index 465

multi-instance support in, 48
standard behavior, 40
subclassing, 167

DeleteAll(), 131
FieldGet(), 127, 128
FieldPut(), 127, 128

locks, 137, 139, 142
shared mode, 137, 139, 140, 141

Database system, 318

DataBrowser class, 43

DataColumn class, 44

DataField class
overview, 117
properties of, 117
virtual variables

FieldSpec, 117
HyperLabel, 117
Name, 117
NameSym, 117

DataServer class, 41, 48
automatic exception handling in, 215, 216
methods, 126, 131, 132

summary, 126
relationship to DataWindow class, 113

Datatypes
dynamic arrays, 381, 383

DataWindow class, 398
and hyperlabels, 237
methods

Append(), 154, 173
Cancel(), 173
Clear(), 173
Close(), 173
Copy(), 173
Cut(), 173
data-oriented, 154, 163, 165, 173
Delete(), 154, 173
GoBottom(), 173
GoTo(), 173
GoTop(), 173
Init(), 167
NotifyFieldChange(), 52
NotifyFileChange(), 52
NotifyIntentToMove(), 53
NotifyRecordChange(), 52
OK(), 173
Paste(), 173
SkipNext(), 154, 173
SkipPrevious(), 154, 173
standard Windows operations, 173
Undo(), 173
Use(), 169, 170

Dates
character set, 307
comparison rules, 357
delimiters, 307
examples of, 307
limitations, 308
literal, 307
null, 307
operators, 348
range of valid values, 308

DBBuffRefresh() function, 135

DBCloseAll() function, 126

DBCommit() function, 145

DBCommitAll() function, 126

DBDelete() function, 107, 126

DBEval() function, 126

DBF files
alias references in, 106
as tables, 123
creating data servers for, 114
delete status, 123
fields, 123
header record, 123
moving in related, 134
ordering, 133
records, 123
relating, 134
rules for locating, 229
standard dialog for opening, 163
structure, 124
using

ANSI, 136
in an application, 106
OEM, 136

DBPack() function, 140

DBRecall() function, 132

DBRLock() function, 143

DBServer class, 319, 398
ACCESS methods, 127
instantiating with an RDD, 125
methods

Average(), 131
Commit(), 145
Delete(), 126

466 Visual Objects Programmer's Guide

FUNCTION, 433
MEMVAR, 326

variable, 289, 436

vs. ChildAppWindow, 40

Dimensioned arrays, 341

FLock(), 142
Init(), 216
overview, 114, 126
Pack(), 140
RecallAll(), 131, 132
Refresh(), 135
RLock(), 143
SetIndex(), 133
SetOrder(), 133
SetRelation(), 134
SetSelectiveRelation(), 135
summary, 109, 126
Unlock(), 143
Update(), 140
Zap(), 140

preset record scoping, 132
record scoping, 131, 132
referencing databases, 109, 110
similarities to SQLSelect class, 105, 111, 115
subclassing, 120
suitability for GUI programming, 129
virtual variables

DBScopeAll, 132
DBScopeRest, 132
ForBlock, 132
Scope, 132
Status, 141
WhileBlock, 132

DBServer Editor, 119, 120, 124, 149

DBSetIndex() function, 133

DBSetOrder() function, 133

DBSetRelation() function, 134

DBSkip() function, 107

DBZap() function, 140

DDE
using the GUI classes, 186, 187

Debugging DLLs, 244

Decimal notation, 302

Declarations
compile time, 289, 290, 318, 320, 326, 327, 330, 342
entity, 288
instance variables, 290
LOCAL, 436
STATIC, 436
using

DECLARE METHOD statement, 414

Defaults
directory, 229, 230, 231
disk drive, 229, 230, 231
search path, 229, 230, 231

DefError() function, 224

DEFINE statement, 289

DELETE command, 107, 126

Deleting files, 234

Delimiters
date, 307
logic, 308
string, 299, 302
symbol, 300

Destroying objects, 419

Dialog boxes
Application Options, 257, 274, 293
Automation Server Base Class Generation, 85
Change Source, 101
Insert Object, 78, 79, 97, 100
Insert OLE Control, 80
Invoke Control Method, 91
Links, 100
Paste Special, 100
Setup OLE Controls, 80, 92
System Settings, 293, 353

Dialog manager, 40, 41

Dialog window
data window as, 164
Microsoft counterpart, 158
relationship to

data window, 160, 164, 166, 169
shell window, 160

standard, 163
Printer Setup, 163, 206
Save As, 163

Dialog windows
and resources, 40
modal, 40
modeless, 40
nesting, 40

DialogWindow class
general description, 40
Show() method, 160

Index 467

Early
bound, 409, 410

default error handler, 224, 227
definition, 210
handling, 209, 239

declaring, 389
overview, 389
using with function pointers, 390

Dimensions of arrays, 381

Directives
#command | #translate, 259
#define, 267, 274
#else, 271, 272
#endif, 271, 272
#ifdef, 271
#ifndef, 272
#include, 273
#undef, 274
#xcommand, 275
#xtranslate, 275

Directory
default, 229, 230, 231
obtaining using FileSpec object, 234, 235

Directory(), 385

Disk drive
default, 229, 230, 231
obtaining using FileSpec object, 234, 235

DLLs, debugging, 244

Drag and drop
in the GUI classes, 187
Windows File Manager as server, 187

Drawing
using the GUI classes, 185, 186
using the Printer class, 204

DrawObject class, 185

Dynamic arrays
as references, 387
changing datatype of, 383
creating, 381, 383
declaring, 382, 384
number of, 382
runtime overhead, 384

Dynamically
bound, 407
scoped, 321

E

evaluation, 431

Editor controls, 186

Encapsulation, 405
importance in GUI, 149

Entity
declaration statements

ACCESS, 289, 290, 291
ASSIGN, 289, 290, 291
CLASS, 289, 290
DEFINE, 289, 342
FUNCTION, 288, 290
GLOBAL, 288, 330
METHOD, 289, 290, 291
PROCEDURE, 289, 290
RESOURCE, 289
STRUCTURE, 289
TEXTBLOCK, 289, 295

definition, 288

Environment variables
INCLUDE, 258
setting

default directory, 231
default drive, 231
default search path, 231

Error block
registering

a hierarchy of, 225, 226
a new, 224, 227
in a library, 226

use of Error class, 224, 225
vs. SEQUENCE construct, 218, 219, 225

Error class
and hyperlabels, 239
as used by error block, 224, 225
instance variables, 223

CanRetry, 227
CanSubstitute, 227

instantiating, 223
subclassing, 224
used in error recovery, 222, 223

Error messages
displaying meaningful, 211
getting help with, 239

ErrorBlock() function, 224, 225, 226

Errors

468 Visual Objects Programmer's Guide

processing, 38
by name, 152, 153, 237, 238
during wait time, 197, 198

EXTERNAL
used in header files, 274

catastrophic, 215, 217, 218
printer, 206

limiting propagation of, 211
main sources of

in DOS application, 210
in GUI application, 210

obtaining information about, 223, 239
relationship to hyperlabels, 239
vs. exceptions, 210

ERRORSYS.PRG, 227

Escalating exceptions, 212, 214

Eval() function, 428

Evaluate() function, 375

Event class
subclassing, 198

Event context, 152

EventContext class, 152
Dispatch() method, 198, 199
Override() method, 198

Events
and controls, 157
and exceptions, 210, 213
command, 155
default behavior for, 157
dispatching, 38
escalation of, 156
extending the event system, 198
generating, 37
handling, 37, 38, 152, 153, 154, 155, 157, 237, 238

exception, 213
printer, 205, 206
under Windows, 210

MenuInit, 162
MenuSelect, 162
MouseButtonUp, 187
MouseDrag, 187
notification

automatic, 51, 52
between data windows and data servers, 51,

52, 53
disadvantages of manual, 51
messages, 52

notification between windows and reports, 204
PrinterError, 206
PrinterExpose, 205
processed by windows, 155

for ReportQueue class, 204
queuing, 198
relationship to windows, 157
routing, 38, 47, 155

Exceptions
and events, 210, 213
and the call stack, 213, 214
automatic handling

in DataServer classes, 215, 216
in GUI classes, 210, 215, 216

cleaning up after, 215, 216
definition

of exception condition, 210
escalation of, 212, 214, 215, 218
handling, 209, 239

at the right level, 211, 222
critical, 215
in a frame-based system, 213, 214, 218
in methods, 214, 215, 218
in ReportQueue class, 204
in the GUI classes, 217
locally, 214, 215, 218, 220, 221
low-level, 217, 218, 224
non-critical, 214, 215, 218
with error block, 218, 219, 224, 225, 226, 227
with SEQUENCE construct, 218, 219, 225

internal system for handling, 217, 218, 224, 225
objectives for handling, 211
proper flow for handling, 215
structured handling of, 212
summary of architecture for handling, 218
using the Error object, 223, 239
vs. errors, 210

Exclusive mode
automatic for read-write operations, 140
potential for open failures, 141
required uses of, 140

EXPORT INSTANCE statement, 290, 397, 411

EXPORT LOCAL clause, 429, 430

Expressions
as program statements, 292, 293, 345, 352, 360
changing evaluation order, 371
definition, 345
evaluating, 369
mixing data types in, 350, 361, 363
order of evaluation, 370
precedence rules, 370

Index 469

FieldGet() function, 127, 128

FieldPut() function, 127, 128

Size, 234
TimeChanged, 234

F

FClose() function, 235

Field
aliases, 319, 320
declaration statements, 290, 320
name, 318
qualifying, 319, 320
references, 319
scope, 318
variables, 318

Field references
ACCESS methods, 43
advantages of using symbolic, 128
alias references in, 127
as virtual variables, 127
ASSIGN methods, 43
by

name, 117, 127, 128
number, 117, 128

implementation in a data window, 43
in

a data window, 168, 170
OOP, 127
procedural programming, 127
SQL databases, 116

in a data window, 42, 43
object-oriented vs. procedural, 116, 127, 128
symbolic, 128
using

FieldGet(), 127, 128
FieldPut(), 127, 128

Field specifications
automatic creation of, 119
automatic generation, 46
formatting, 117
properties, 45
relationship to

controls, 45
data browser columns, 45
data browsers, 119
data fields, 118
data servers, 120
data windows, 119

storage type, 117
validation rules, 117

FIELD statement, 290

FieldSpec class, 45
overview, 117
properties of, 117

File handling
installation suggestions, 231, 234
low-level, 235
search rules, 229
strategies for, 229, 231, 233, 234, 235
using Windows startup directory, 230, 234

File specifications
building a, 235
using with

DataWindow objects, 233
DBServer objects, 233

Files
binary, 235
configuration, 231, 234
copying, 234
creating, 229, 230, 231
default location

for creating, 229, 230, 231
for opening, 229, 230, 231

deleting, 234
location requirements for memo, 230
locking, 142, 143
long file names, 229
mixed Case, 229
obtaining date and time stamp, 234
obtaining size, 234
opening, 229, 230, 231
renaming, 234
specifying names, 127
specifying search path for, 231
UNC names, 229
unlocking, 143

FileSpec class
methods

Copy(), 234
Delete(), 234
Find(), 234
Rename(), 234

purpose of, 233
referring to DBServer object with, 127
virtual variables

Drive, 234, 235
Extension, 235
FileName, 235
Path, 234, 235

470 Visual Objects Programmer's Guide

FRead(), 235
FWrite(), 235
FXOpen(), 139 Garbage collection, 419, 420

FLock() function, 142

FOpen() function, 139, 235

FOR clause, 130, 131

FOR construct, 290, 386

Form view, 44, 46, 163, 165, 169, 174

Frame-based exception handling, 213, 214, 218

FRead() function, 235

Function pointers, 436
used with dimensioned arrays, 390

FUNCTION statement, 288, 290

Functions
ApplicationExec(), 197, 198
argument checking, 441, 444
availability to application, 433
conversion, 363
database, 126
DBBuffRefresh(), 135
DBCloseAll(), 126
DBCommit(), 145
DBCommitAll(), 126
DBDelete(), 107, 126
DBEval(), 126
DBPack(), 140
DBRecall(), 132
DBRLock(), 143
DBSetIndex(), 133
DBSetOrder(), 133
DBSetRelation(), 134
DBSkip(), 107
DBZap(), 140
declaring

parameters with REF keyword, 442
without a data type, 435

DefError(), 224
defining

as a compiler entity, 433
function body, 438

detecting errors, 441
differences from procedures, 433
ErrorBlock(), 224, 225, 226
FClose(), 235
FieldGet(), 127, 128
FieldPut(), 127, 128
FLock(), 142
FOpen(), 139, 235

GetEnv(), 231
invocation, 292
limiting visibility using STATIC keyword, 434
low-level file, 235
macro, 375
NetErr(), 140
overview on calling, 438
passing

arguments by reference, 442
arguments by value, 441
arrays and objects, 443

RDDSetDefault(), 125
recursion, 443
requiring exclusive mode, 140
return values, 433
RLock(), 143
SetDefault(), 230, 231
SetExclusive(), 139
SetPath(), 230, 231
special

_GetFirstParam(), 440
_GetNextParam(), 440

specifying
function parameters, 434
return value, 434

strongly typed database, 126, 129, 130
type checking of arguments, 441
untyped parameters, 444
using

AS keyword, 441
FUNCTION keyword, 433
LOCAL declaration, 436
parentheses to call, 438
STATIC declaration, 434, 436

variable number of parameters, 440
visibility to calling module, 439
VODBFLock(), 142
VODBPack(), 140
VODBRLock(), 143
VODBUnlock(), 143
VODBZap(), 140

Functions Pointers
Default Parameters, 439

FWrite() function, 235

FXOpen() function, 139

G

Garbage collector, 216

GetEnv() function, 231

Getting help, 25

GLOBAL statement, 288, 383

GUI classes
as components for OOP, 147
as Windows API layer, 149
automatic exception handling in, 210, 215, 216
benefits of using, 149
clipboard implementation, 187
DDE features, 186, 187
definition of GUI, 18
drag and drop implementation, 187
exception handling in, 217
exception handling objectives, 211
low-level exception handling in, 217
methods

Close(), 215, 216
overview, 151

vs.
printing with, 204

terminal emulation layer, 150
Windows API, 149, 150

working with controls, 186

H

Has-a
relationship between

DataField and FieldSpec, 118
DataField and HyperLabel, 118
Error and HyperLabel, 239

Has-a, concept in OOP, 36

Header files
general discussion, 274
identifier scoping in, 274
nesting, 274
path searching, 274
searching for, 258
specifying a directory for, 258
Std.ch, 274

Help
gauging quality of in third-party components,

254
getting, 178, 179, 180, 182
implementing

context-sensitive, 118, 178, 179, 180, 181, 182,
236, 237

using Microsoft Windows Help Compiler,
179

internationalizing, 239
translating, 239
using the WinHelp system, 178, 179, 180, 181,

182, 237

Help, getting, 25

Hexadecimal notation, 303

HIDDEN INSTANCE statement, 290, 397, 411

Hourglass, avoiding, 197, 198

HyperLabel class
properties of, 117, 236
virtual variables, 236

Caption, 237, 239
Description, 237, 238, 239
HelpContext, 181, 237, 239

Hyperlabels
automatic creation of, 118
definition, 236
for

error messages, 118, 239
push buttons, 154

implementing
captions using, 237
context-sensitive help with, 181, 237
status bar description, 237, 238

internationalizing, 238
levels of, 118
purpose, 236
relationship to

controls, 166, 167
data fields, 118
errors, 239

symbolic names, 237, 238, 239
system, 117
translating, 238

I

Identifier naming rules, 289, 317

IF construct, 290

INCLUDE directory, 258

Incremental enhancement, 406

Index

Index 471

choosing a format, 124, 133
rules for locating files, 229
single-order vs. multiple-order, 133
standard dialog for opening, 163
using to order a database, 133

Infix notation, 346

Inheritance, 406
importance in GUI, 149

Init() method, 216, 400, 401

Initial values, 334, 398

Initialization procedures, 227

Insert Object dialog box
linking object, 76

Insert OLE Object
create from new, 78
displaying object as icon, 79
inserting from an existing file, 79

Installation
default directory structure, 258

INSTANCE statement, 290, 411

Instance variables
accessing, 291, 319
creating dynamically, 408
declaring, 290, 337, 397, 408
defining in a CLASS declaration, 402
early

binding, 409
reference, 410

Error
CanRetry, 227
CanSubstitute, 227

exported, 290, 398
hidden, 290, 411
improving performance, 409
inheritance of, 406
initializing, 398
late

binding, 409
reference, 410

non-exported, 402
overloading, 411
overriding, 403
overview, 396
preventing runtime errors(), 398
protected, 290, 405, 411
referring to, 398
strongly typed, 337
using SELF, 398

within class definition, 396

Internal state, 396, 403, 405

Internationalizing an application, 238, 239

Interoperability
definition, 136
of databases between products, 137

Inter-process communication, 187

Invocations
command, 292
function, 292

Is-a, concept in OOP, 36

Isomorphism, 410

Isomorphism, used in event handling, 155

L

Language elements, 287

Late
bound, 409, 410
evaluation, 430

Lexical scoping, 327, 429

Libraries
Console Classes, 147
error handling in, 226
Terminal Lite, 147
third-party, 255

Line continuation, 295

Linking data servers to data windows, 163, 166, 169,
170

List box controls, 186, 187

ListBox class
interaction with the clipboard, 187
selection virtual variable, 186

Literal
arrays, 382
code blocks, 425

Locking
file, 142
for operations

read-only, 142
update, 142

record, 143

472 Visual Objects Programmer's Guide

resolving failures, 144, 217, 218
strategies for resolving failures, 144
testing success of, 142, 143
unlocking, 143

Logic
character set, 308
comparison rules, 357
delimiters, 308
literal values, 308
operators, 354
three-state, 309

Logical operations, 353

Low-level
exception handling, 217, 218, 224
file handling, 235

M

Macro
comparison with code blocks, 430
compiler, 372, 373, 374, 375, 376, 378, 379
expansion, 430
expression, 373, 426
functions, 375
in code blocks, 378
limitations, 373, 374, 379
nesting, 375
operator, 368, 372
rules for using, 372
substitution, 372
terminator, 372
using, 373, 374
variable, 372, 373

Manifest constants
defining, 268
removing, 274

MAssign() function, 375

Master-detail paradigm, 134, 135, 174

Match markers, 261
extended expression, 262
List, 261
optional match clauses, 262
Restricted, 261
Result, 261
Wild, 262

Match pattern
matching commands, 259

saving command, 259
Words, 261

MCompile() function, 375

MCShort() function, 375

MDI
ChildAppWindow, 40
definition, 29, 39
description of behavior, 148
ShellWindow, 39

Memo fields, storage mechanism, 124

Memo files
location requirements, 230
naming conventions, 124

MEMVAR
declarations, 326
hiding variables, 330, 331, 342
statement, 290

Menu Editor, 162
application framework, 154
code generated by, 153
method naming conventions, 152

MenuInit event, 162

Menus
and events, 38
command events, 47
implementing captions, 237
navigation methods, 162
processing events generated by, 155, 162, 237, 238
relationship to windows, 35, 47, 155
special events generated by, 162
use in

GUI, 162
shell window, 159

MenuSelect event, 162

Messages sent to an object, 291, 319, 367

Metasymbols, table of prefixes used in, 21

METHOD statement, 289, 290, 291

Methods
access, 402
ACCESS, 127
App

Exec(), 197
AppWindow

ReportException(), 204
ReportNotification(), 204

assign, 402

Index 473

Axit(), 216, 420
binding of, 413
clipBoard:Insert(), 187
converting operators to, 421
DataServer, 50, 126, 131, 132

naming conventions, 113
summary, 113, 126

DataWindow
Append(), 154, 173
Cancel(), 173
Clear(), 173
Close(), 173
Copy(), 173
Cut(), 173
database, 50
data-oriented, 154, 163, 165, 173
Delete(), 154, 173
event notification, 52
GoBottom(), 173
GoTo(), 173
GoTop(), 173
Init(), 167
NotifyFieldChange(), 52
NotifyFileChange(), 52
NotifyIntentToMove(), 53
NotifyRecordChange(), 52
OK(), 173
Paste(), 173
SkipNext(), 154, 173
SkipPrevious(), 154, 173
standard Windows operations, 173
Undo(), 173
Use(), 169, 170

DBServer
Average(), 131
Commit(), 145
Delete(), 126
DeleteAll(), 131
FieldGet(), 127, 128
FieldPut(), 127, 128
FLock(), 142
Init(), 216
naming conventions, 126
Pack(), 140
Recall(), 131, 132
RecallAll(), 131
Refresh(), 135
RLock(), 143
SetIndex(), 133
SetOrder(), 133
SetRelation(), 134
SetSelectiveRelation(), 135
suitability for GUI programming, 129

summary, 109, 126
Unlock(), 143
Update(), 140
Zap(), 140

definition, 394
early bound, 395
event handler, 37, 43, 47, 48, 52, 53, 152, 153, 154,

157, 205, 206, 237, 238
EventContext

Dispatch(), 198, 199
Override(), 198

example, 403
FileSpec

Copy(), 234
Delete(), 234
Find(), 234
Rename(), 234

for accessing protected variables, 405
GUI classes

Close(), 215, 216
handling exceptions locally, 214, 215, 218
HIDDEN, 395, 415
inheritance of, 406
Init(), 400, 401
invocation, 291, 396, 404, 407
NoIVarGet(), 398
NoIVarPut(), 398
NoMethod(), 407
overview, 394
ownership of event handler, 155
preventing runtime errors, 398
Printer

Destroy(), 205
IsValid(), 205
PrinterError(), 206
PrinterExpose(), 205
Start(), 205, 207

PrinterDevice:Setup(), 206
PROTECT, 395, 415
record scoping, 131, 132
RegisterAxit(), 420
ReportQueue

Open(), 201
Preview(), 202, 207
Print(), 202, 207
SaveToFile(), 202

requiring exclusive mode, 140
scope of, 126
SQLSelect

Fetch(), 115
implementation, 115, 116

Start(), 289
strong typing, 414

474 Visual Objects Programmer's Guide

typed early bound, 414
typing, 395
using

HIDDEN instance variables, 411
PROTECT instance variables, 411

visibility, 395
Window

ButtonClick(), 157
Draw(), 185
LineTo(), 204
MenuCommand(), 157
MoveTo(), 204
PointInside(), 185
TextPrint(), 204

MExec() function, 375

Mixing data types, 361

Modal
behavior of Xbase applications, 148
definition, 148

Modal, definition, 40

Modeless
behavior of Windows applications, 148
definition, 148

Modeless, definition, 40

Module definition, 330

MouseButtonUp event, 187

MouseDrag event, 187

Multidimensional arrays, 386

Multi-line edit controls, 187

MultiLineEdit class, 187

Multiple assignments, 360

Multiple instantiation
of data servers, 29, 48, 51, 52, 53
of data windows, 29, 48, 51

Multi-task vs. single task, 29

Multi-tasking, and database programming, 107, 110,
114

N

Negative numbers, 305

NetErr() function, 140

NEXT clause, 130

NoIVarGet() method, 398

NoIVarPut() method, 398

NoMethod()
function, 408
method, 407

Notations
binary, 303
decimal, 302
hexadecimal, 303
infix, 346
long integer, 304
scientific, 304

NOTE command, 295

NULL constants, 334

Numeric
character set, 302
comparison rules, 357
data type of undeclared, 301
examples of, 300
literals, 302, 303, 304, 305
negatives, 305
notations

binary, 303
decimal, 302
hexadecimal, 303
long integer, 304
scientific, 304

operators, 349
platform-independent, 306
platform-specific, 306
range of values, 306

O

Object linking and embedding (OLE)
adding OCXs to tool palette, 81
breaking linked object links, 101
changing source of linked object, 101
Component Object Model (COM), 67
drag and drop objects, 101
editing linked object source, 101
embedding objects, 76
inserting objects, 97
linking objects, 76
OLE automation, 82
OLE Controls (OCX), 77

Index 475

overview, 67
placing OLE field, 103
registering OCXs, 81
removing OCX from tool palette, 81
show links dialog box at runtime, 100
show paste special dialog box at runtime, 100
unregistering OCXs, 81
using OLE field in databases, 103

Objects
accessing instance variables, 291
comparison rules, 357
creating, 399, 409
declaring, 337, 408, 409
definition, 393
destroying, 419
examples of strong typing, 409
instantiation, 292, 366, 367
invoking, 407
multiple references to, 418
naming class in declaration statement, 409
passing, 418, 443
printing, 413
referencing, 418
registering, 419
sending messages to, 291, 319
state of, 396, 402, 405
strong typing, 409
using

as references, 418
send operator, 396, 398

ODBC
definition, 105
vs. SQLSelect, 115

OLE automation
advantages of using a pre-generated class, 88
creating named arguments, 89
IDispatch, 82
use automation server at runtime, 83

OLE Controls (OCX)
adding to palette, 81
events, 93
generating class, 81
OLE Control Properties window, 93
registering controls, 81
removing from palette, 81
setting up, 80
unregistering controls, 81

Online help, accessing, 25

OOP
suitability for GUI, 105, 109, 111, 148, 149

vs. procedural programming, 105, 109, 110, 111,
147, 150

Open modes
automatic determination of, 140
exclusive, 140, 141
shared, 139, 140, 141

OpenDialog class, 163

Opening files, 229, 230, 231

Operators
_Chr(), 348
OR,_AND_,_XOR, 354
addition, 348, 349
alias, 109, 319, 320, 368
and, 354
assignment, 293, 359, 360
binary, 346
bitwise, 349, 352, 353, 374
boolean, 354
code block parameters, 366
commutative, 348
compile-and-run, 368
compound assignment, 293, 359, 360
concatenation, 347
conversion, 361, 374
date, 348
decrement, 293, 348, 349, 351, 374
definition, 346
division, 349
dot, 338, 368
equal, 356
exactly equal, 356, 358
exponentiation, 349
float, 346
greater

than, 356
than or equal, 356

grouping, 365, 371
increment, 293, 348, 349, 351, 374
infix, 346
instantiation, 292, 366, 367, 399
less

than, 356
than or equal, 356

less than, 265
literals, 366
logic, 354, 356
macro, 368, 372, 373, 374, 375, 376, 378, 379, 425
make pointer, 374
methods, 421
modulus, 349
multiplication, 349

476 Visual Objects Programmer's Guide

Index 477

windows and menus, 35, 47
windows and reports, 202, 204
windows and toolbars, 35

role in exception handling, 215, 216, 218

#endif, 271, 272
#ifdef, 271
#ifndef, 272

negate, 346, 354
not equal, 356
numeric, 349
or, 354
overloaded, 348
postfix, 346, 351
postincrement, 346
prefix, 346, 351
reference, 369, 442
relational, 354, 356
send, 109, 291, 319, 367, 396, 398
size of, 374
special, 365
string, 347
subscript, 366
substring, 356
subtraction, 348, 349
type, 364, 374
unary, 305, 346, 349
usage rules, 346
using less than operator with <resultPattern>,

265
Variable Parameter Lists, 354

Order
physical vs. logical, 133
relationship to index, 133
single vs. multiple, 133

Overloaded
definition, 348
instance variables, 411

Ownership
and data window usage, 41
and error handling, 36
and event handling, 155, 157
and message routing, 36
and prompting, 36
as used in event routing, 47
concept in OOP, 34
determining, 34
relationship between

App and shell window, 34
controls and data, 37, 38
shell and child windows, 160
shell and dialog windows, 160
shell and other windows, 158, 159
shell window and child window, 34
windows, 36
windows and controls, 35, 43

used in defining data window, 41
visual cues, 36
vs. class hierarchy, 36

P

PACK command, 140

Parameters
declaring data type, 336
hiding variables, 323, 324
strongly typed, 336
with functions, 434

PASCAL calling convention, 435

Passing
arrays, 443
by reference, 369, 442
by value, 388, 441
objects, 443

Paste Special dialog box
linking object, 76

Pointers
Converting Typed Pointers, 363
Declaration of Typed Pointers, 314
Default Parameters, 439
dereference, 312
dereferenced, 311
Dereferencing Typed Pointers, 315
function, 436
Pointer Arithmetic, 315
reference, 312
Typed, 313
Untyped_, 311

Polymorphism, 410

Postfix notation, 346

Precedence levels, 370

Predefined Identifiers, 294

Prefixes
metasymbol, 21
variable, 21

Preprocessor directives
#define, 267, 274
#else, 271, 272

478 Visual Objects Programmer's Guide

206
using GUI classes, 204
using the Printer class, 204, 205

CA-Clipper, 124
Visual Objects, 124
choosing, 125

#include, 258, 273
#undef, 274
#xcommand, 275
#xtranslate, 275
summary of, 257

Preprocessor identifiers
defining, 274
testing existence of, 271
testing nonexistence of, 272

Print method, 413

Printer class, 204
drawing features, 204
instantiating, 205
methods

Destroy(), 205
IsValid(), 205
PrinterError(), 206
PrinterExpose(), 205
Start(), 205, 207

relationship to Window class, 204

Printer Setup, standard dialog window, 163, 206

PrinterDevice class
setting options using, 206
Setup() method, 206

PrinterError event, 206

PrinterErrorEvent class
ErrorType virtual variable, 206
handling printer errors with, 206

PrinterExpose event, 205

PrinterExposeEvent class
ExposedArea virtual variable, 205
PageNo virtual variable, 205

Printing
a report, 201
a Report Editor report, 201
definition of a print job, 207
destroying a Printer object, 205
example using ReportQueue class, 202
handling errors using the Printer class, 206
managing pages, 205
opening a report, 201
principal techniques, 201
setting the default printer, 206
specifying range of pages for Printer object, 205
standard dialog window for setting options, 163,

validating a Printer object, 205
via Windows Printers folder, 207

Procedural programming
suitability for GUI, 105, 106, 108, 111
vs. OOP, 105, 106, 111, 147, 150

PROCEDURE statement, 289, 290
_INIT1 clause, 227

Procedures, initialization, 227

Program
comments, 295
constructs, 290
example, 288
flow, 290
language elements, 287
line continuation, 295
multi-statement lines, 296
parts of, 287
startup, 289, 329
types of statements, 287

Program structure and control
DOS vs. Windows, 27, 33, 53
event-driven, 28, 34
hierarchical, 27
object-oriented, 34
reentrancy, 29
suitability of

event-driven for GUI, 28
hierarchical for DOS, 27

typical MDI, 34

Property, 394

PROTECT INSTANCE statement, 290, 397, 405, 411,
413

Pseudofunctions
defining, 267, 268
removing, 274

Push buttons
command events, 47
processing events generated by, 153, 237, 238

R

RDD
and index technology, 133

Index 479

customizing the appearance of, 203
printing a report, 201

dBASE IV, 124
DBFBLOB, 124, 448, 449, 450
DBFCDX, 124, 137, 449, 450
DBFMDX, 124, 137
DBFNTX, 124, 125, 137, 449
definition, 105
FoxPro, 124, 449, 450
limitations of

DBFBLOB, 445
DBFCDX, 445
DBFMDX, 445
DBFNTX, 125, 445

overview, 124
standard dialog for choosing, 163
third-party, 125

RDDSetDefault() function, 125

RECALL command, 132

Record
locking, 143
scoping

and selective relations, 135
default, 130, 131, 135
in commands, 130
in methods, 131, 132
with FOR, 130, 131
with WHILE, 130, 131

unlocking, 143

RECORD clause, 130

RECOVER clause, 216, 220, 221

RECOVER USING clause
data type of variable, 222
relationship to Error object, 223

Reentrant program
definition, 109
in OOP, 110, 114

Reference operator, 369

RegisterAxit(), 420

Registry
entries, 245

Relating databases, 134, 135

RELEASE command, 323

Renaming files, 234

Report Editor

Reporting
example using ReportQueue class, 202
internationalizing a report, 239
opening a report, 201
principal techniques, 201
translating a report, 239
via Windows Printers folder, 207
with a report, 201
with a Report Editor report, 201

ReportQueue class, 201
example using, 202
methods

Open(), 201
Preview(), 202, 207
Print(), 202, 207
SaveToFile(), 202

subclassing, 203

Reserved words, 288, 289, 307, 308, 309, 317, 451

Resource files
for menus, 153
for windows, 153

Resources, and dialog windows, 40

Resources, managing Windows, 216

REST clause, 130, 131

Result markers
Blockify result marker, 264
Dumb stringify result marker, 263
Logify result marker, 264
Normal stringify result marker, 263
Regular result marker, 263
Smart stringify result marker, 263
table of marker forms, 263

Result pattern
Literal tokens, 262
Repeating result clauses, 264
specify more than one statement, 265
Words, 263

Return values, 310, 336, 389, 434

RLock() function, 143

Runtime
code blocks, 431
compilation, 373
errors, 398

480 Visual Objects Programmer's Guide

automatic for read-only operations, 140
potential for open failures, 141

Shell window

Standard conventions used in this guide, 20

Standard dialog, definition, 163

S

Save As, standard dialog window, 163

Scientific notation, 304

Scope
ALL, 130, 131, 132
definition, 318
dynamic, 321
lexical, 327
NEXT, 130, 132
RECORD, 130
REST, 130, 131, 132
syntax in commands, 130
syntax in DBServer methods, 131
variable, 429

Scroll bars
use in shell window, 159

SDI
application structure, 158, 164
ChildAppWindow, 40
definition, 39, 164
role of top window in, 158
TopAppWindow, 39

Search path
default, 229, 230, 231
specifying as part of file name, 231

SELF, 395, 396, 398

SEQUENCE construct, 212, 219, 290, 291
ability to span entities, 219, 220
BREAK clause, 220, 221, 222
nesting, 213, 221, 222
placement of BREAK clause, 220
proper use of, 223
RECOVER clause, 216, 220, 221
RECOVER USING clause, 222, 223
vs.

error block, 218, 219, 225
WHILE construct, 219

SetDefault() function, 230, 231

SetExclusive() function, 139

SetPath() function, 230, 231

Shared mode, 139
and locking, 142

basic components of, 159
controls on, 159
customizing, 159
IBM CUA '91 counterpart, 158
Microsoft counterpart, 158
relationship to

App, 34, 158
child window, 34, 160
data window, 164
dialog window, 160
other windows, 158, 159
top window, 158

use of
canvas, 158, 159
menus, 159
scroll bars, 159
status bar, 159, 162
toolbars, 159

ShellWindow class, 39, 49
automatic window management in, 159
subclassing, 159

Signed numbers, 305

Single task vs. multi-task, 29

SKIP command, 107

Specifying
translation directive, 259
user-defined command, 259

SQL databases
constraints, 111
cursor names in, 111, 115
field references, 116
using in an application, 111, 115

SQL Editor, 119, 120, 149

SQLConnection class, 116

SQLSelect class, 115
implementation of methods in, 115, 116
instantiating, 111, 115, 116
methods

Fetch(), 115
similarities to DBServer class, 105, 111, 115

SQLStatement class
features, 111, 116
instantiating, 116

Square brackets, 383, 384

Index 481

Strings
character set, 299
comparison rules, 357

SUPER, 408

Superclass, 406

Start() routine, 289

Startup directory, 230, 234

State
of class, 394
of object, 396, 402, 405

Statements
ACCESS, 289, 290, 291
ASSIGN, 289, 290, 291
assignment, 293
BEGIN SEQUENCE, 212, 213, 218, 219
CLASS, 289, 290, 394
DEFINE, 289
DO WHILE, 219
entity declaration, 288
EXPORT, 290
expressions used as, 292, 293
FIELD, 290
FUNCTION, 288, 290
GLOBAL, 288
HIDDEN, 290
INSTANCE, 290
LOCAL, 290
MEMVAR, 290
METHOD, 289, 290, 291, 394
placement of assignment in code, 293
PROCEDURE, 289, 290
PROTECT, 290
RETURN, 434
STATIC, 290
STRUCTURE, 289
TEXTBLOCK, 289, 295
variable declaration, 290

STATIC
LOCAL, 328, 330
releasing static global variables, 331
statement, 290
using within GLOBAL, 330

Status bar
description from hyperlabel, 237, 238
events, 38
in shell window, 159, 162

Std.ch, 274

STD.UDC, 292

StrEvaluate() function, 375

STRICT calling convention, 435

converting to symbols, 299
delimiters, 299, 302
examples of, 298
literal, 299
maximum size, 299
null, 299
operators, 347
time, 422

Strong typing
advantages, 331, 409, 435
constants, 343
methods, 414
objects, 409
of arguments, 434
parameters, 435
using CODEBLOCK, 427
with arrays, 383

STRUCTURE
Alignment, 339
statement, 289
Variable Structure Alignment, 339

Structures
accessing members, 338, 368
AS vs. IS typing, 338
control, 290
declaring data type, 338, 339
dot operator, 338
garbage collection in, 339
relationship to USUAL, 341

Subclass, 406

Sub-data windows
comparison to

controls, 46
data windows, 46

used as
data windows, 46
limitations, 46
master-detail relationship, 46

subscript, 366

Substituting text, 372

Subwindows
as custom controls, 164
definition, 163
reasons for using, 174
various arrangements for, 177

482 Visual Objects Programmer's Guide

role in SDI, 158

Transferring data
between client and server, 187

Uses-a
concept in OOP, 36

Symbol2String() function, 299

Syntax
of identifiers, 289, 317
table of prefixes, 21

SysAddAtom() function, 299

T

Terminal emulation layer
for migration of CA-Clipper applications, 147,

150
purpose of, 147
vs. GUI classes, 150
Win32 console applications, 147

Text files, 229

Text substitution, 372

TEXTBLOCK statement, 289, 295

TextControl class
AsString virtual variable, 186

Third-party
catalog, 254
components, 255

buying, 253, 254
catalog of, 254
gauging quality of help in, 254
guidelines for buying, 253, 254

RDDs, 125

Time strings, 422

Toolbars
and events, 38
relationship to windows, 35
use in shell window, 159

Top window
data window as, 164
IBM CUA '91 counterpart, 158
Microsoft counterpart, 158
relationship to

child window, 158
shell window, 158

use of canvas, 158

TopAppWindow class, 39
ownership relationships in, 158

using the clipboard, 187

Translating an application, 238, 239

Translation directives, 275
#command | #translate, 259

Tree structures, 406

Truth table, 353

Typed Methods
Restrictions and Pitfalls, 417

U

UDC files
attaching to an application, 277
creating, 277

Unary operators, 346

Undoing changes to a database, 121, 135

Unions
members, 340
USUALS, 340

Unlocking
at file closing, 143
at program termination, 143
explicit, 143
techniques, 143
with another lock, 143

USE command
VIA clause, 125

User interface
expectations in a GUI, 30
programming

character vs. graphical, 30
purpose of using GUI, 30

terminal emulation layer, 30

User interface programming
drawing objects, 185, 186
object-oriented vs. procedural, 147, 150

User-defined commands, 275
defining, 276
ordering, 277
translation rules, 277

Index 483

value of, 325
virtual, 127, 394, 402, 406
visibility of static global, 330

definition, 318
of constants, 342
of functions, 433

relationship between data window and data
server, 41

V

Variables
accessibility to program during execution, 318
ambiguous references, 319
calculated, 403
changing data type, 323, 324, 327, 330, 331
creating

at runtime, 317
global, 330
in code blocks, 429
local, 327
private, 322
public, 324

declaring, 290, 317, 326, 327, 331
defining names, 317
definition, 317
duration of life, 318
dynamically scoped, 321
dynamically scoped inefficiency, 326
eliminating

ambiguous references, 320
runtime overhead, 320

exported, 290, 429
field, 318
global, 330
hidden instance, 290
hiding, 323, 324, 330, 331, 342
initial values, 334
instance, 290, 405, 406
lexically scoped, 327
local, 290, 327, 328, 429
polymorphic, 321, 327
private, 321, 322
protected instance, 290, 405
public, 321, 324
qualifying with _MEMVAR alias, 325
referencing, 325
scope of, 321, 328, 329, 330, 344, 429
static

global, 330, 331
local, 328

strongly typed, 331
undeclared, 321, 324
using declared, 374

Variables, table of prefixes used for, 21

VIA clause, 125

Virtual state, 394, 402, 405

Virtual variables
as class properties, 394
as field references, 127
Control

AsString, 186
Value, 186

DataField
FieldSpec, 117
HyperLabel, 117
Name, 117
NameSym, 117

DBServer
DBScopeAll, 132
DBScopeRest, 132
ForBlock, 132
Scope, 132
Status, 141
WhileBlock, 132

definition, 402
example of, 405
FileSpec

Drive, 234, 235
Extension, 235
FileName, 235
Path, 234, 235
Size, 234
TimeChanged, 234

HyperLabel
Caption, 237, 239
Description, 237, 238, 239
HelpContext, 181, 237, 239

implementation, 405
inheritance of, 406
ListBox:Selection, 186
PrinterErrorEvent:ErrorType, 206
PrinterExposeEvent

ExposedArea, 205
PageNo, 205

purpose of, 405
TextControl:AsString, 186
TextValue, 186
uses of, 402
Value, 186
window:BoundingBox, 185

Visibility

of global variables, 330
of variables, 429

Visual development tools
advantages of using, 31
code generators, 33, 53
overview, 53
relationship to class libraries, 53

VODBFLock() function, 142

VODBPack() function, 140

VODBRLock() function, 143

VODBUnlock() function, 143

VODBZap() function, 140

W

WHILE clause, 130, 131

WHILE construct, 290
vs. SEQUENCE construct, 219

Window class
BoundingBox virtual variable, 185
methods

ButtonClick(), 157
Draw(), 185
LineTo(), 204
MenuCommand(), 157
MoveTo(), 204
PointInside(), 185
TextPrint(), 204

relationship to Printer class, 204

Window Editor
application framework, 154
code generated by, 153, 167, 237
designing dialog windows, 160
method naming conventions, 152
OLE Control Properties window, 77, 93

OLE Object Properties window, 103
OLE support, 77
relationship to GUI classes, 149

Windows
and events, 37, 38, 43
behavior in GUI, 157
data-aware, 40
description of canvas area, 157
GUI window classes, 39, 40
modal vs. modeless, 40
ownership relationships, 36
processing of events by, 155
relationship to

controls, 35, 43, 157
events, 157
menus, 35, 47, 155
reports, 202, 204
toolbars, 35

smart, 38
used for viewing, 157

Windows API
vs. GUI classes, 149, 150

Windows File Manager
as drag and drop server, 187

Windows Printers folder, definition of a print job, 207

WinHelp system, 178, 179, 180, 181, 182, 237

Work area
number available, 123
of a data server, 129
of a database, 123

Z

ZAP command, 140

484 Visual Objects Programmer's Guide

	Visual Objects 2.7 - Programmer's Guide
	Chapter 1 - Introduction
	What You Need to Know
	Metasymbol and Variable Name Prefixes
	General Syntax Conventions
	General Typographic Conventions

	Getting Help

	Chapter 2 - From Character Mode to Windows
	Application Behavior and Structure
	Multiple Users, Tasks, and Windows
	User Interface
	New Tools for the New Approach

	Chapter 3 - Program Structure and Flow
	The Objectives
	Windows and Controls
	Ownership Relationships
	Meaning of Ownership Relationships
	Visual Signs of Ownership
	Ownership vs. Inheritance

	Event Generation and Handling
	Types of Windows
	TopAppWindow
	ShellWindow
	ChildAppWindow
	DialogWindow
	DataWindow
	DataDialog Window

	Using Data Windows and Data Servers
	Data Links
	Parallel Structure
	Business Processing
	DataBrowser: A Spreadsheet-Like Table
	Form and Browse View
	Parallel Structure
	FieldSpecs
	Sub-Data Windows

	Command Events
	Event Routing by Name
	Control Flow
	Multiple Instantiation
	The Standard Application

	Database-Oriented Actions
	Event Notification
	Automatic Data Propagation

	Visual Development Tools

	Chapter 4 - Standard Components - Classes, Objects and Libraries
	Why You Need Components
	What Is Architecture?
	What Are Components?

	Plugging Components Together
	Class Relationships
	Inheritance
	Ownership
	Client-Server

	Database Relations
	Importance of Tree Structures
	Summary

	A Tour of the Visual Objects Components
	Data Server Classes
	GUI Classes
	Classes for Annotation
	Business Logic

	You Can Develop Components

	Chapter 5 - Object Linking and Embedding
	OLE Overview
	Component Object Model (COM)
	Basic COM Terminology
	COM as an Object-Based Model
	COM Interfaces
	OLE and COM
	Issues of a Component-Based System
	Interoperability
	Versioning
	Language Independence
	Transparent Remoting

	OLE 2 Features
	Linking and Embedding
	Controls and Control Containers
	OLE Support Inside Visual Objects Window Editor
	Insert OLE Object
	Insert OLE Control
	Setup OLE Control

	OLE Automation
	Visual Objects and Automation
	Runtime Automation Handling
	Compile-Time Automation Handling
	Automation Server Generator
	Using a Pre-Generated Automation Class
	Changing Generated Automation Server Code
	Advantages of Using a Pre-Generated Automation Class

	OLE Automation Collections
	Named Arguments
	OLE Automation and OCXs
	Runtime-Based Automation Handling
	Compile-Time Automation Handling
	Events

	Putting OLE to Work
	The Sample Frame Work
	Inserting Objects
	Adding Paste and Link Support
	Inserting Objects Using Drag-and-Drop
	Showing Status Bar Messages
	Using OLE in Databases

	Chapter 6 - Justifying Database Access Choices
	Technology—Object-Oriented or Procedural
	Aliased References
	Multi-Tasking, Multiple Documents
	Object-Oriented Database Programming
	Referencing Multiple Databases Simultaneously
	The Right Choice

	Database—DBF or SQL

	Chapter 7 - Data Server Classes
	Data Servers
	DBF Servers
	SQL Servers
	Field References in Object-Oriented SQL
	Other SQL Operations

	Data Fields and Field Specifications
	Data Fields
	A Data Field’s Relationship to Its Properties
	How Data Servers Use Data Fields and Field Specifications
	How Data Windows Use Data Fields and Field Specifications

	Other Data Servers
	Joining Tables
	Buffered Servers

	Chapter 8 - Using DBF Files
	Databases and Work Areas
	Replaceable Database Drivers
	Choosing an RDD
	Common Interface
	Third-Party RDDs

	Language Overview
	Commands vs. Functions vs. Methods
	File Specifications
	Accessing Fields

	Which Approach to Use
	Hybrid Programming
	Record Scoping
	Scoping Through Method Parameters
	Preset Scopes

	Indexing
	Relating Databases
	Selective Relations
	Undoing Changes
	Data Sharing
	Compatibility
	Interoperability

	Chapter 9 - Concurrency Control
	Using Shared Mode
	When to Obtain Exclusive Use
	Other File Open Operations
	Retrying After an Open Failure

	Locking
	File Locking
	Record Locking
	Unlocking

	Resolving a Failure
	Update Visibility
	The Initiator
	The Operating System and Other Processes
	The Physical Disk
	Abnormal Termination

	Chapter 10 - Justifying User Interface Choices
	The Terminal Emulation Layer
	GUI Classes
	The Right Choice

	Chapter 11 - GUI Classes
	Events, Event Contexts, and Event Handlers
	Command Events
	Event Processing by Name
	The Window Handles Events

	The Shell and the Windows It Owns
	Programming the User Interface
	The Shell as Owner
	Customizing the Shell

	Window Relationships
	Child Windows
	Data Windows
	Dialog Windows
	DataDialog Windows

	Controls
	Menus
	Standard Dialogs
	Data Windows
	Different Types of Data Windows
	Form and Browse View
	Resource-Driven Instantiation
	Symbolic Names
	Subclassing DataWindow
	Pre/PostInit()

	Access to Values
	Virtual Variables
	Automatic Generation of Virtual Variables

	Dynamic Instantiation
	Automatic Layout
	Linking a Data Window to a Data Server
	Display Options
	Validation
	Action Methods
	Data Propagation
	Concurrency Control

	Sub-Data Windows
	Instantiating a Sub-Data Window as a Control
	Relating the Data Servers
	Nesting Sub-Data Windows
	Second Table for Lookup

	Using an Online Help System
	Specifying Keywords
	Associating Help Files
	Built-in Context-Sensitive Help
	Implementing Additional Help

	Chapter 12 - Other Features of the GUI Classes
	Drawing Objects
	Working with Controls
	Transferring Data Using the Clipboard
	Implementing Drag-and-Drop
	Using Dynamic Data Exchange
	Overview of DDE Basics
	Inter-Process Communication (IPC)
	The Client Classes
	The Server Classes

	Starting a DDE Conversation
	Starting Other Applications
	Error Handling

	Avoiding the Hourglass
	Custom Events

	Chapter 13 - Printing
	Reports
	ReportQueue Class
	Printing a Report
	Customizing the Appearance of the Report Writer
	Other ReportQueue Methods

	The GUI Classes
	The Printer Class
	Starting the Print Job
	Handling PrinterExpose Events
	Handling PrinterError Events

	Changing the Default Printer and Settings
	Print Jobs and the Printers Folder

	Chapter 14 - Error and Exception Handling
	Exception Handling in GUI Applications
	Objectives
	The Right Level
	Structured Exception Handling
	Problem Escalation
	Frame-Based Exception Handling

	Structure of Event-Driven GUI Applications
	Object-Oriented Exception Handling
	Ownership-Based Escalation
	Cleaning Up

	Low-Level Exception Handling
	Exception Handling Architecture: A Summary

	Language Mechanisms
	The SEQUENCE Construct
	RECOVER
	Nested SEQUENCE Constructs
	BREAK Value and RECOVER USING Variable
	Abuse of the SEQUENCE Construct

	The Error Object
	The Error Block
	Using a Hierarchy of Error Handlers
	Installing Error Handlers in Libraries
	Return Values

	Chapter 15 - File Handling
	Naming Conventions
	The Defaults
	Runtime Configuration
	Environment Variables
	Initialization Files
	Using Windows Defaults
	Generated Source Code

	The FileSpec Class
	The Default Directory
	String Manipulation

	Low-Level File Handling

	Chapter 16 - Hyperlabels
	Purposeful Components
	Hyperlabel Properties

	Interaction with Resources
	Use by the Status Bar
	Internationalization
	Use by Exceptions

	Chapter 17 - Operating Environment
	Shared Libraries and DLLs
	Shared Libraries
	Dynamic Link Libraries
	Using DLLs
	Creating DLLs

	Utilizing the Registry
	Accessing the Registry from an Application
	Managing Projects
	Default Project
	Multiple Projects
	Sharing Project Components
	The Project Catalog
	Add/Delete Project

	How to Distribute Your Application
	Generating the .DLL and .EXE Files
	Other Files to Distribute
	Location of Files

	Chapter 18 - Third-Party Components
	Selecting Components
	Guidelines
	Components as Capsules
	Hypertext

	Third-Party Market

	Chapter 19 - How the Visual Objects Two-Level Preprocessor Works
	Compilation
	Header Files
	How the CA-Clipper Compatible Preprocessor Works
	#command | #translate directive
	Syntax
	Arguments
	Description
	Notes
	Examples

	#define directive
	Syntax
	Arguments
	Description
	Examples

	#ifdef directive
	Syntax
	Arguments
	Description
	Examples

	#ifndef directive
	Syntax
	Arguments
	Description
	Examples

	#include directive
	Syntax
	Arguments
	Description

	#undef directive
	Syntax
	Arguments
	Description
	Examples

	#xcommand | #xtranslate directive
	Syntax
	Arguments
	Description

	How the Visual Objects Preprocessor Works
	Why Commands?
	Creating a .UDC File
	Order Significance

	Attaching a .UDC File
	Compilation

	Translation Rules

	Chapter 20 - Overview of Language Elements
	The Parts of a Program
	An Example Program
	Entity Declarations
	Variable Declarations
	Instance Variable Declarations
	Control Structures
	Method Invocations and Instance Variable Access
	Function Invocations
	Command Invocations
	Object Instantiation Statements
	Assignment Statements
	Predefined Identifiers
	Comments

	Line Continuation
	Multistatement Lines

	Chapter 21 - Data Types
	String
	Symbol
	Numeric
	Decimal Notation
	Hexadecimal Notation
	Binary Notation
	Scientific Notation
	Long Integer Notation
	Negative Numbers

	Date
	Logic
	NIL
	VOID
	Pointers
	Untyped Pointers
	Typed Pointers
	Declaration of Typed Pointers
	Dereferencing Typed Pointers
	Pointer Arithmetic

	Chapter 22 - Variables, Constants and Declarations
	Terminology
	Field Variables
	DBServer Field References
	Aliased Field References
	FIELD Declarations and _FIELD Aliases
	Recap

	Dynamically Scoped Variables
	Private
	Public
	Variable References
	MEMVAR Declarations

	Lexically Scoped Variables
	Local
	Global

	Strongly Typed Variables
	Data Type Declarations
	Initial Values
	Typing Parameters and Return Values
	Class Names as Data Types
	Structure Names as Data Types
	AS vs. IS Typing
	Strong Typing Structure Members

	Variable Structure Alignment
	Unions
	The USUAL Data Type

	Constants
	Declaration and Initialization
	Lifetime and Visibility
	Strong Typing

	A Summary Table

	Chapter 23 - Operators and Expressions
	Terminology
	String Operators
	Date Operators
	Numeric Operators
	Increment and Decrement Operators
	Bitwise Operators
	Variable Parameter Lists

	Logic Operators
	Boolean Operators
	Relational Operators

	Assignment Operators
	Assignments as Program Statements
	Assignments as Expressions
	Compound Assignments

	Mixing Data Types
	Automatic Type Conversion
	Manual Type Conversion
	Converting Typed Pointers
	Type Casting

	Special Operators
	Parentheses
	Curly Braces
	Subscript
	Message Send
	Dot
	Alias Identifier
	Macro
	Reference

	Expression Evaluation
	Precedence Levels
	Parentheses

	The Macro Operator
	Text Substitution
	Compile and Execute
	Using Declared Variables
	Using Operators
	Using Functions

	Nesting Macros
	Related Functions
	Macros and Code Blocks
	When Not to Use the Macro Operator

	Chapter 24 - Arrays
	Dynamic Arrays
	Literal Arrays
	Limitations
	Creating Arrays
	Strong Typing
	Addressing Array Elements
	Assigning Values to Array Elements
	Multidimensional Arrays
	Arrays as References
	Equal Operator
	Arrays as Parameters
	Arrays as Return Values

	Dimensioned Arrays
	Using the Array Operator on Typed Pointers
	Array Operator used Beyond the Third Dimension

	Chapter 25 - Objects, Classes and Methods
	Classes
	Methods
	Declaring
	Typing
	Visibility
	Invoking

	Instance Variables
	Declaring
	Assigning Initial Values
	Referencing

	Instantiation
	Virtual Variables
	Access and Assign Methods
	Encapsulation

	Inheritance
	The Class Tree
	Resolving Method Invocations
	Referring to the Superclass

	Declaring Object Variables
	Binding of Instance Variables
	Early or Late Bound
	Overloading Instance Variables

	Binding of Methods
	Typed Early Bound Methods
	Typed Method Restrictions and Pitfalls

	Objects as References
	Equal Operator
	Objects as Parameters

	Destroying Objects
	Using Arrays of Objects
	Operator Methods

	Chapter 26 - Code Blocks
	Literal Code Blocks
	Creating Code Blocks
	Declaration
	Strong Typing

	Evaluating a Code Block
	Variable Scoping in Code Blocks
	Creating Variables
	Exporting Local Variables

	Macros and Code Blocks
	Macro Expansion in Code Blocks
	Runtime Code Blocks

	Chapter 27 - Functions and Procedures
	Defining
	Visibility
	Parameters and Return Values
	Calling Conventions
	Declarations

	Function Pointers
	The Function Body
	Calling
	Default Parameters
	Functions with Variable Number of Parameters
	Arguments
	Passing by Value
	Passing by Reference
	Passing Arrays and Objects

	Recursion

	Argument Checking

	Appendix A - RDD Specifics
	Specifications
	The DBFBLOB Driver
	Using DBFBLOB as an Inherited Driver
	Using DBFBLOB Via DBFCDX

